Home | History | Annotate | Download | only in glib
      1 /* GLIB sliced memory - fast concurrent memory chunk allocator
      2  * Copyright (C) 2005 Tim Janik
      3  *
      4  * This library is free software; you can redistribute it and/or
      5  * modify it under the terms of the GNU Lesser General Public
      6  * License as published by the Free Software Foundation; either
      7  * version 2 of the License, or (at your option) any later version.
      8  *
      9  * This library is distributed in the hope that it will be useful,
     10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     12  * Lesser General Public License for more details.
     13  *
     14  * You should have received a copy of the GNU Lesser General Public
     15  * License along with this library; if not, write to the
     16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     17  * Boston, MA 02111-1307, USA.
     18  */
     19 /* MT safe */
     20 
     21 #include "config.h"
     22 
     23 #if     defined HAVE_POSIX_MEMALIGN && defined POSIX_MEMALIGN_WITH_COMPLIANT_ALLOCS
     24 #  define HAVE_COMPLIANT_POSIX_MEMALIGN 1
     25 #endif
     26 
     27 #ifdef HAVE_COMPLIANT_POSIX_MEMALIGN
     28 #define _XOPEN_SOURCE 600       /* posix_memalign() */
     29 #endif
     30 #include <stdlib.h>             /* posix_memalign() */
     31 #include <string.h>
     32 #include <errno.h>
     33 #include "gmem.h"               /* gslice.h */
     34 #include "gthreadprivate.h"
     35 #include "glib.h"
     36 #include "galias.h"
     37 #ifdef HAVE_UNISTD_H
     38 #include <unistd.h>             /* sysconf() */
     39 #endif
     40 #ifdef G_OS_WIN32
     41 #include <windows.h>
     42 #include <process.h>
     43 #endif
     44 
     45 #include <stdio.h>              /* fputs/fprintf */
     46 
     47 
     48 /* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
     49  * allocator and magazine extensions as outlined in:
     50  * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
     51  *   memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
     52  * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
     53  *   slab allocator to many cpu's and arbitrary resources.
     54  *   USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
     55  * the layers are:
     56  * - the thread magazines. for each (aligned) chunk size, a magazine (a list)
     57  *   of recently freed and soon to be allocated chunks is maintained per thread.
     58  *   this way, most alloc/free requests can be quickly satisfied from per-thread
     59  *   free lists which only require one g_private_get() call to retrive the
     60  *   thread handle.
     61  * - the magazine cache. allocating and freeing chunks to/from threads only
     62  *   occours at magazine sizes from a global depot of magazines. the depot
     63  *   maintaines a 15 second working set of allocated magazines, so full
     64  *   magazines are not allocated and released too often.
     65  *   the chunk size dependent magazine sizes automatically adapt (within limits,
     66  *   see [3]) to lock contention to properly scale performance across a variety
     67  *   of SMP systems.
     68  * - the slab allocator. this allocator allocates slabs (blocks of memory) close
     69  *   to the system page size or multiples thereof which have to be page aligned.
     70  *   the blocks are divided into smaller chunks which are used to satisfy
     71  *   allocations from the upper layers. the space provided by the reminder of
     72  *   the chunk size division is used for cache colorization (random distribution
     73  *   of chunk addresses) to improve processor cache utilization. multiple slabs
     74  *   with the same chunk size are kept in a partially sorted ring to allow O(1)
     75  *   freeing and allocation of chunks (as long as the allocation of an entirely
     76  *   new slab can be avoided).
     77  * - the page allocator. on most modern systems, posix_memalign(3) or
     78  *   memalign(3) should be available, so this is used to allocate blocks with
     79  *   system page size based alignments and sizes or multiples thereof.
     80  *   if no memalign variant is provided, valloc() is used instead and
     81  *   block sizes are limited to the system page size (no multiples thereof).
     82  *   as a fallback, on system without even valloc(), a malloc(3)-based page
     83  *   allocator with alloc-only behaviour is used.
     84  *
     85  * NOTES:
     86  * [1] some systems memalign(3) implementations may rely on boundary tagging for
     87  *     the handed out memory chunks. to avoid excessive page-wise fragmentation,
     88  *     we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
     89  *     specified in NATIVE_MALLOC_PADDING.
     90  * [2] using the slab allocator alone already provides for a fast and efficient
     91  *     allocator, it doesn't properly scale beyond single-threaded uses though.
     92  *     also, the slab allocator implements eager free(3)-ing, i.e. does not
     93  *     provide any form of caching or working set maintenance. so if used alone,
     94  *     it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
     95  *     at certain thresholds.
     96  * [3] magazine sizes are bound by an implementation specific minimum size and
     97  *     a chunk size specific maximum to limit magazine storage sizes to roughly
     98  *     16KB.
     99  * [4] allocating ca. 8 chunks per block/page keeps a good balance between
    100  *     external and internal fragmentation (<= 12.5%). [Bonwick94]
    101  */
    102 
    103 /* --- macros and constants --- */
    104 #define LARGEALIGNMENT          (256)
    105 #define P2ALIGNMENT             (2 * sizeof (gsize))                            /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
    106 #define ALIGN(size, base)       ((base) * (gsize) (((size) + (base) - 1) / (base)))
    107 #define NATIVE_MALLOC_PADDING   P2ALIGNMENT                                     /* per-page padding left for native malloc(3) see [1] */
    108 #define SLAB_INFO_SIZE          P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
    109 #define MAX_MAGAZINE_SIZE       (256)                                           /* see [3] and allocator_get_magazine_threshold() for this */
    110 #define MIN_MAGAZINE_SIZE       (4)
    111 #define MAX_STAMP_COUNTER       (7)                                             /* distributes the load of gettimeofday() */
    112 #define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8)    /* we want at last 8 chunks per page, see [4] */
    113 #define MAX_SLAB_INDEX(al)      (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
    114 #define SLAB_INDEX(al, asize)   ((asize) / P2ALIGNMENT - 1)                     /* asize must be P2ALIGNMENT aligned */
    115 #define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
    116 #define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)
    117 
    118 /* optimized version of ALIGN (size, P2ALIGNMENT) */
    119 #if     GLIB_SIZEOF_SIZE_T * 2 == 8  /* P2ALIGNMENT */
    120 #define P2ALIGN(size)   (((size) + 0x7) & ~(gsize) 0x7)
    121 #elif   GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
    122 #define P2ALIGN(size)   (((size) + 0xf) & ~(gsize) 0xf)
    123 #else
    124 #define P2ALIGN(size)   ALIGN (size, P2ALIGNMENT)
    125 #endif
    126 
    127 /* special helpers to avoid gmessage.c dependency */
    128 static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2);
    129 #define mem_assert(cond)    do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)
    130 
    131 /* --- structures --- */
    132 typedef struct _ChunkLink      ChunkLink;
    133 typedef struct _SlabInfo       SlabInfo;
    134 typedef struct _CachedMagazine CachedMagazine;
    135 struct _ChunkLink {
    136   ChunkLink *next;
    137   ChunkLink *data;
    138 };
    139 struct _SlabInfo {
    140   ChunkLink *chunks;
    141   guint n_allocated;
    142   SlabInfo *next, *prev;
    143 };
    144 typedef struct {
    145   ChunkLink *chunks;
    146   gsize      count;                     /* approximative chunks list length */
    147 } Magazine;
    148 typedef struct {
    149   Magazine   *magazine1;                /* array of MAX_SLAB_INDEX (allocator) */
    150   Magazine   *magazine2;                /* array of MAX_SLAB_INDEX (allocator) */
    151 } ThreadMemory;
    152 typedef struct {
    153   gboolean always_malloc;
    154   gboolean bypass_magazines;
    155   gboolean debug_blocks;
    156   gsize    working_set_msecs;
    157   guint    color_increment;
    158 } SliceConfig;
    159 typedef struct {
    160   /* const after initialization */
    161   gsize         min_page_size, max_page_size;
    162   SliceConfig   config;
    163   gsize         max_slab_chunk_size_for_magazine_cache;
    164   /* magazine cache */
    165   GMutex       *magazine_mutex;
    166   ChunkLink   **magazines;                /* array of MAX_SLAB_INDEX (allocator) */
    167   guint        *contention_counters;      /* array of MAX_SLAB_INDEX (allocator) */
    168   gint          mutex_counter;
    169   guint         stamp_counter;
    170   guint         last_stamp;
    171   /* slab allocator */
    172   GMutex       *slab_mutex;
    173   SlabInfo    **slab_stack;                /* array of MAX_SLAB_INDEX (allocator) */
    174   guint        color_accu;
    175 } Allocator;
    176 
    177 /* --- g-slice prototypes --- */
    178 static gpointer     slab_allocator_alloc_chunk       (gsize      chunk_size);
    179 static void         slab_allocator_free_chunk        (gsize      chunk_size,
    180                                                       gpointer   mem);
    181 static void         private_thread_memory_cleanup    (gpointer   data);
    182 static gpointer     allocator_memalign               (gsize      alignment,
    183                                                       gsize      memsize);
    184 static void         allocator_memfree                (gsize      memsize,
    185                                                       gpointer   mem);
    186 static inline void  magazine_cache_update_stamp      (void);
    187 static inline gsize allocator_get_magazine_threshold (Allocator *allocator,
    188                                                       guint      ix);
    189 
    190 /* --- g-slice memory checker --- */
    191 static void     smc_notify_alloc  (void   *pointer,
    192                                    size_t  size);
    193 static int      smc_notify_free   (void   *pointer,
    194                                    size_t  size);
    195 
    196 /* --- variables --- */
    197 static GPrivate   *private_thread_memory = NULL;
    198 static gsize       sys_page_size = 0;
    199 static Allocator   allocator[1] = { { 0, }, };
    200 static SliceConfig slice_config = {
    201   FALSE,        /* always_malloc */
    202   FALSE,        /* bypass_magazines */
    203   FALSE,        /* debug_blocks */
    204   15 * 1000,    /* working_set_msecs */
    205   1,            /* color increment, alt: 0x7fffffff */
    206 };
    207 static GMutex     *smc_tree_mutex = NULL; /* mutex for G_SLICE=debug-blocks */
    208 
    209 /* --- auxillary funcitons --- */
    210 void
    211 g_slice_set_config (GSliceConfig ckey,
    212                     gint64       value)
    213 {
    214   g_return_if_fail (sys_page_size == 0);
    215   switch (ckey)
    216     {
    217     case G_SLICE_CONFIG_ALWAYS_MALLOC:
    218       slice_config.always_malloc = value != 0;
    219       break;
    220     case G_SLICE_CONFIG_BYPASS_MAGAZINES:
    221       slice_config.bypass_magazines = value != 0;
    222       break;
    223     case G_SLICE_CONFIG_WORKING_SET_MSECS:
    224       slice_config.working_set_msecs = value;
    225       break;
    226     case G_SLICE_CONFIG_COLOR_INCREMENT:
    227       slice_config.color_increment = value;
    228     default: ;
    229     }
    230 }
    231 
    232 gint64
    233 g_slice_get_config (GSliceConfig ckey)
    234 {
    235   switch (ckey)
    236     {
    237     case G_SLICE_CONFIG_ALWAYS_MALLOC:
    238       return slice_config.always_malloc;
    239     case G_SLICE_CONFIG_BYPASS_MAGAZINES:
    240       return slice_config.bypass_magazines;
    241     case G_SLICE_CONFIG_WORKING_SET_MSECS:
    242       return slice_config.working_set_msecs;
    243     case G_SLICE_CONFIG_CHUNK_SIZES:
    244       return MAX_SLAB_INDEX (allocator);
    245     case G_SLICE_CONFIG_COLOR_INCREMENT:
    246       return slice_config.color_increment;
    247     default:
    248       return 0;
    249     }
    250 }
    251 
    252 gint64*
    253 g_slice_get_config_state (GSliceConfig ckey,
    254                           gint64       address,
    255                           guint       *n_values)
    256 {
    257   guint i = 0;
    258   g_return_val_if_fail (n_values != NULL, NULL);
    259   *n_values = 0;
    260   switch (ckey)
    261     {
    262       gint64 array[64];
    263     case G_SLICE_CONFIG_CONTENTION_COUNTER:
    264       array[i++] = SLAB_CHUNK_SIZE (allocator, address);
    265       array[i++] = allocator->contention_counters[address];
    266       array[i++] = allocator_get_magazine_threshold (allocator, address);
    267       *n_values = i;
    268       return g_memdup (array, sizeof (array[0]) * *n_values);
    269     default:
    270       return NULL;
    271     }
    272 }
    273 
    274 static void
    275 slice_config_init (SliceConfig *config)
    276 {
    277   /* don't use g_malloc/g_message here */
    278   gchar buffer[1024];
    279   const gchar *val = _g_getenv_nomalloc ("G_SLICE", buffer);
    280   const GDebugKey keys[] = {
    281     { "always-malloc", 1 << 0 },
    282     { "debug-blocks",  1 << 1 },
    283   };
    284   gint flags = !val ? 0 : g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
    285   *config = slice_config;
    286   if (flags & (1 << 0))         /* always-malloc */
    287     config->always_malloc = TRUE;
    288   if (flags & (1 << 1))         /* debug-blocks */
    289     config->debug_blocks = TRUE;
    290 }
    291 
    292 static void
    293 g_slice_init_nomessage (void)
    294 {
    295   /* we may not use g_error() or friends here */
    296   mem_assert (sys_page_size == 0);
    297   mem_assert (MIN_MAGAZINE_SIZE >= 4);
    298 
    299 #ifdef G_OS_WIN32
    300   {
    301     SYSTEM_INFO system_info;
    302     GetSystemInfo (&system_info);
    303     sys_page_size = system_info.dwPageSize;
    304   }
    305 #else
    306   sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
    307 #endif
    308   mem_assert (sys_page_size >= 2 * LARGEALIGNMENT);
    309   mem_assert ((sys_page_size & (sys_page_size - 1)) == 0);
    310   slice_config_init (&allocator->config);
    311   allocator->min_page_size = sys_page_size;
    312 #if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN
    313   /* allow allocation of pages up to 8KB (with 8KB alignment).
    314    * this is useful because many medium to large sized structures
    315    * fit less than 8 times (see [4]) into 4KB pages.
    316    * we allow very small page sizes here, to reduce wastage in
    317    * threads if only small allocations are required (this does
    318    * bear the risk of incresing allocation times and fragmentation
    319    * though).
    320    */
    321   allocator->min_page_size = MAX (allocator->min_page_size, 4096);
    322   allocator->max_page_size = MAX (allocator->min_page_size, 8192);
    323   allocator->min_page_size = MIN (allocator->min_page_size, 128);
    324 #else
    325   /* we can only align to system page size */
    326   allocator->max_page_size = sys_page_size;
    327 #endif
    328   allocator->magazine_mutex = NULL;     /* _g_slice_thread_init_nomessage() */
    329   allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator));
    330   allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator));
    331   allocator->mutex_counter = 0;
    332   allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */
    333   allocator->last_stamp = 0;
    334   allocator->slab_mutex = NULL;         /* _g_slice_thread_init_nomessage() */
    335   allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator));
    336   allocator->color_accu = 0;
    337   magazine_cache_update_stamp();
    338   /* values cached for performance reasons */
    339   allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator);
    340   if (allocator->config.always_malloc || allocator->config.bypass_magazines)
    341     allocator->max_slab_chunk_size_for_magazine_cache = 0;      /* non-optimized cases */
    342   /* at this point, g_mem_gc_friendly() should be initialized, this
    343    * should have been accomplished by the above g_malloc/g_new calls
    344    */
    345 }
    346 
    347 static inline guint
    348 allocator_categorize (gsize aligned_chunk_size)
    349 {
    350   /* speed up the likely path */
    351   if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache))
    352     return 1;           /* use magazine cache */
    353 
    354   /* the above will fail (max_slab_chunk_size_for_magazine_cache == 0) if the
    355    * allocator is still uninitialized, or if we are not configured to use the
    356    * magazine cache.
    357    */
    358   if (!sys_page_size)
    359     g_slice_init_nomessage ();
    360   if (!allocator->config.always_malloc &&
    361       aligned_chunk_size &&
    362       aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator))
    363     {
    364       if (allocator->config.bypass_magazines)
    365         return 2;       /* use slab allocator, see [2] */
    366       return 1;         /* use magazine cache */
    367     }
    368   return 0;             /* use malloc() */
    369 }
    370 
    371 void
    372 _g_slice_thread_init_nomessage (void)
    373 {
    374   /* we may not use g_error() or friends here */
    375   if (!sys_page_size)
    376     g_slice_init_nomessage();
    377   else
    378     {
    379       /* g_slice_init_nomessage() has been called already, probably due
    380        * to a g_slice_alloc1() before g_thread_init().
    381        */
    382     }
    383   private_thread_memory = g_private_new (private_thread_memory_cleanup);
    384   allocator->magazine_mutex = g_mutex_new();
    385   allocator->slab_mutex = g_mutex_new();
    386   if (allocator->config.debug_blocks)
    387     smc_tree_mutex = g_mutex_new();
    388 }
    389 
    390 static inline void
    391 g_mutex_lock_a (GMutex *mutex,
    392                 guint  *contention_counter)
    393 {
    394   gboolean contention = FALSE;
    395   if (!g_mutex_trylock (mutex))
    396     {
    397       g_mutex_lock (mutex);
    398       contention = TRUE;
    399     }
    400   if (contention)
    401     {
    402       allocator->mutex_counter++;
    403       if (allocator->mutex_counter >= 1)        /* quickly adapt to contention */
    404         {
    405           allocator->mutex_counter = 0;
    406           *contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE);
    407         }
    408     }
    409   else /* !contention */
    410     {
    411       allocator->mutex_counter--;
    412       if (allocator->mutex_counter < -11)       /* moderately recover magazine sizes */
    413         {
    414           allocator->mutex_counter = 0;
    415           *contention_counter = MAX (*contention_counter, 1) - 1;
    416         }
    417     }
    418 }
    419 
    420 static inline ThreadMemory*
    421 thread_memory_from_self (void)
    422 {
    423   ThreadMemory *tmem = g_private_get (private_thread_memory);
    424   if (G_UNLIKELY (!tmem))
    425     {
    426       static ThreadMemory *single_thread_memory = NULL;   /* remember single-thread info for multi-threaded case */
    427       if (single_thread_memory && g_thread_supported ())
    428         {
    429           g_mutex_lock (allocator->slab_mutex);
    430           if (single_thread_memory)
    431             {
    432               /* GSlice has been used before g_thread_init(), and now
    433                * we are running threaded. to cope with it, use the saved
    434                * thread memory structure from when we weren't threaded.
    435                */
    436               tmem = single_thread_memory;
    437               single_thread_memory = NULL;      /* slab_mutex protected when multi-threaded */
    438             }
    439           g_mutex_unlock (allocator->slab_mutex);
    440         }
    441       if (!tmem)
    442 	{
    443           const guint n_magazines = MAX_SLAB_INDEX (allocator);
    444 	  tmem = g_malloc0 (sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines);
    445 	  tmem->magazine1 = (Magazine*) (tmem + 1);
    446 	  tmem->magazine2 = &tmem->magazine1[n_magazines];
    447 	}
    448       /* g_private_get/g_private_set works in the single-threaded xor the multi-
    449        * threaded case. but not *across* g_thread_init(), after multi-thread
    450        * initialization it returns NULL for previously set single-thread data.
    451        */
    452       g_private_set (private_thread_memory, tmem);
    453       /* save single-thread thread memory structure, in case we need to
    454        * pick it up again after multi-thread initialization happened.
    455        */
    456       if (!single_thread_memory && !g_thread_supported ())
    457         single_thread_memory = tmem;            /* no slab_mutex created yet */
    458     }
    459   return tmem;
    460 }
    461 
    462 static inline ChunkLink*
    463 magazine_chain_pop_head (ChunkLink **magazine_chunks)
    464 {
    465   /* magazine chains are linked via ChunkLink->next.
    466    * each ChunkLink->data of the toplevel chain may point to a subchain,
    467    * linked via ChunkLink->next. ChunkLink->data of the subchains just
    468    * contains uninitialized junk.
    469    */
    470   ChunkLink *chunk = (*magazine_chunks)->data;
    471   if (G_UNLIKELY (chunk))
    472     {
    473       /* allocating from freed list */
    474       (*magazine_chunks)->data = chunk->next;
    475     }
    476   else
    477     {
    478       chunk = *magazine_chunks;
    479       *magazine_chunks = chunk->next;
    480     }
    481   return chunk;
    482 }
    483 
    484 #if 0 /* useful for debugging */
    485 static guint
    486 magazine_count (ChunkLink *head)
    487 {
    488   guint count = 0;
    489   if (!head)
    490     return 0;
    491   while (head)
    492     {
    493       ChunkLink *child = head->data;
    494       count += 1;
    495       for (child = head->data; child; child = child->next)
    496         count += 1;
    497       head = head->next;
    498     }
    499   return count;
    500 }
    501 #endif
    502 
    503 static inline gsize
    504 allocator_get_magazine_threshold (Allocator *allocator,
    505                                   guint      ix)
    506 {
    507   /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
    508    * which is required by the implementation. also, for moderately sized chunks
    509    * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
    510    * of chunks available per page/2 to avoid excessive traffic in the magazine
    511    * cache for small to medium sized structures.
    512    * the upper bound of the magazine size is effectively provided by
    513    * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
    514    * the content of a single magazine doesn't exceed ca. 16KB.
    515    */
    516   gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
    517   guint threshold = MAX (MIN_MAGAZINE_SIZE, allocator->max_page_size / MAX (5 * chunk_size, 5 * 32));
    518   guint contention_counter = allocator->contention_counters[ix];
    519   if (G_UNLIKELY (contention_counter))  /* single CPU bias */
    520     {
    521       /* adapt contention counter thresholds to chunk sizes */
    522       contention_counter = contention_counter * 64 / chunk_size;
    523       threshold = MAX (threshold, contention_counter);
    524     }
    525   return threshold;
    526 }
    527 
    528 /* --- magazine cache --- */
    529 static inline void
    530 magazine_cache_update_stamp (void)
    531 {
    532   if (allocator->stamp_counter >= MAX_STAMP_COUNTER)
    533     {
    534       GTimeVal tv;
    535       g_get_current_time (&tv);
    536       allocator->last_stamp = tv.tv_sec * 1000 + tv.tv_usec / 1000; /* milli seconds */
    537       allocator->stamp_counter = 0;
    538     }
    539   else
    540     allocator->stamp_counter++;
    541 }
    542 
    543 static inline ChunkLink*
    544 magazine_chain_prepare_fields (ChunkLink *magazine_chunks)
    545 {
    546   ChunkLink *chunk1;
    547   ChunkLink *chunk2;
    548   ChunkLink *chunk3;
    549   ChunkLink *chunk4;
    550   /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
    551   /* ensure a magazine with at least 4 unused data pointers */
    552   chunk1 = magazine_chain_pop_head (&magazine_chunks);
    553   chunk2 = magazine_chain_pop_head (&magazine_chunks);
    554   chunk3 = magazine_chain_pop_head (&magazine_chunks);
    555   chunk4 = magazine_chain_pop_head (&magazine_chunks);
    556   chunk4->next = magazine_chunks;
    557   chunk3->next = chunk4;
    558   chunk2->next = chunk3;
    559   chunk1->next = chunk2;
    560   return chunk1;
    561 }
    562 
    563 /* access the first 3 fields of a specially prepared magazine chain */
    564 #define magazine_chain_prev(mc)         ((mc)->data)
    565 #define magazine_chain_stamp(mc)        ((mc)->next->data)
    566 #define magazine_chain_uint_stamp(mc)   GPOINTER_TO_UINT ((mc)->next->data)
    567 #define magazine_chain_next(mc)         ((mc)->next->next->data)
    568 #define magazine_chain_count(mc)        ((mc)->next->next->next->data)
    569 
    570 static void
    571 magazine_cache_trim (Allocator *allocator,
    572                      guint      ix,
    573                      guint      stamp)
    574 {
    575   /* g_mutex_lock (allocator->mutex); done by caller */
    576   /* trim magazine cache from tail */
    577   ChunkLink *current = magazine_chain_prev (allocator->magazines[ix]);
    578   ChunkLink *trash = NULL;
    579   while (ABS (stamp - magazine_chain_uint_stamp (current)) >= allocator->config.working_set_msecs)
    580     {
    581       /* unlink */
    582       ChunkLink *prev = magazine_chain_prev (current);
    583       ChunkLink *next = magazine_chain_next (current);
    584       magazine_chain_next (prev) = next;
    585       magazine_chain_prev (next) = prev;
    586       /* clear special fields, put on trash stack */
    587       magazine_chain_next (current) = NULL;
    588       magazine_chain_count (current) = NULL;
    589       magazine_chain_stamp (current) = NULL;
    590       magazine_chain_prev (current) = trash;
    591       trash = current;
    592       /* fixup list head if required */
    593       if (current == allocator->magazines[ix])
    594         {
    595           allocator->magazines[ix] = NULL;
    596           break;
    597         }
    598       current = prev;
    599     }
    600   g_mutex_unlock (allocator->magazine_mutex);
    601   /* free trash */
    602   if (trash)
    603     {
    604       const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
    605       g_mutex_lock (allocator->slab_mutex);
    606       while (trash)
    607         {
    608           current = trash;
    609           trash = magazine_chain_prev (current);
    610           magazine_chain_prev (current) = NULL; /* clear special field */
    611           while (current)
    612             {
    613               ChunkLink *chunk = magazine_chain_pop_head (&current);
    614               slab_allocator_free_chunk (chunk_size, chunk);
    615             }
    616         }
    617       g_mutex_unlock (allocator->slab_mutex);
    618     }
    619 }
    620 
    621 static void
    622 magazine_cache_push_magazine (guint      ix,
    623                               ChunkLink *magazine_chunks,
    624                               gsize      count) /* must be >= MIN_MAGAZINE_SIZE */
    625 {
    626   ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks);
    627   ChunkLink *next, *prev;
    628   g_mutex_lock (allocator->magazine_mutex);
    629   /* add magazine at head */
    630   next = allocator->magazines[ix];
    631   if (next)
    632     prev = magazine_chain_prev (next);
    633   else
    634     next = prev = current;
    635   magazine_chain_next (prev) = current;
    636   magazine_chain_prev (next) = current;
    637   magazine_chain_prev (current) = prev;
    638   magazine_chain_next (current) = next;
    639   magazine_chain_count (current) = (gpointer) count;
    640   /* stamp magazine */
    641   magazine_cache_update_stamp();
    642   magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp);
    643   allocator->magazines[ix] = current;
    644   /* free old magazines beyond a certain threshold */
    645   magazine_cache_trim (allocator, ix, allocator->last_stamp);
    646   /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
    647 }
    648 
    649 static ChunkLink*
    650 magazine_cache_pop_magazine (guint  ix,
    651                              gsize *countp)
    652 {
    653   g_mutex_lock_a (allocator->magazine_mutex, &allocator->contention_counters[ix]);
    654   if (!allocator->magazines[ix])
    655     {
    656       guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix);
    657       gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
    658       ChunkLink *chunk, *head;
    659       g_mutex_unlock (allocator->magazine_mutex);
    660       g_mutex_lock (allocator->slab_mutex);
    661       head = slab_allocator_alloc_chunk (chunk_size);
    662       head->data = NULL;
    663       chunk = head;
    664       for (i = 1; i < magazine_threshold; i++)
    665         {
    666           chunk->next = slab_allocator_alloc_chunk (chunk_size);
    667           chunk = chunk->next;
    668           chunk->data = NULL;
    669         }
    670       chunk->next = NULL;
    671       g_mutex_unlock (allocator->slab_mutex);
    672       *countp = i;
    673       return head;
    674     }
    675   else
    676     {
    677       ChunkLink *current = allocator->magazines[ix];
    678       ChunkLink *prev = magazine_chain_prev (current);
    679       ChunkLink *next = magazine_chain_next (current);
    680       /* unlink */
    681       magazine_chain_next (prev) = next;
    682       magazine_chain_prev (next) = prev;
    683       allocator->magazines[ix] = next == current ? NULL : next;
    684       g_mutex_unlock (allocator->magazine_mutex);
    685       /* clear special fields and hand out */
    686       *countp = (gsize) magazine_chain_count (current);
    687       magazine_chain_prev (current) = NULL;
    688       magazine_chain_next (current) = NULL;
    689       magazine_chain_count (current) = NULL;
    690       magazine_chain_stamp (current) = NULL;
    691       return current;
    692     }
    693 }
    694 
    695 /* --- thread magazines --- */
    696 static void
    697 private_thread_memory_cleanup (gpointer data)
    698 {
    699   ThreadMemory *tmem = data;
    700   const guint n_magazines = MAX_SLAB_INDEX (allocator);
    701   guint ix;
    702   for (ix = 0; ix < n_magazines; ix++)
    703     {
    704       Magazine *mags[2];
    705       guint j;
    706       mags[0] = &tmem->magazine1[ix];
    707       mags[1] = &tmem->magazine2[ix];
    708       for (j = 0; j < 2; j++)
    709         {
    710           Magazine *mag = mags[j];
    711           if (mag->count >= MIN_MAGAZINE_SIZE)
    712             magazine_cache_push_magazine (ix, mag->chunks, mag->count);
    713           else
    714             {
    715               const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
    716               g_mutex_lock (allocator->slab_mutex);
    717               while (mag->chunks)
    718                 {
    719                   ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
    720                   slab_allocator_free_chunk (chunk_size, chunk);
    721                 }
    722               g_mutex_unlock (allocator->slab_mutex);
    723             }
    724         }
    725     }
    726   g_free (tmem);
    727 }
    728 
    729 static void
    730 thread_memory_magazine1_reload (ThreadMemory *tmem,
    731                                 guint         ix)
    732 {
    733   Magazine *mag = &tmem->magazine1[ix];
    734   mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */
    735   mag->count = 0;
    736   mag->chunks = magazine_cache_pop_magazine (ix, &mag->count);
    737 }
    738 
    739 static void
    740 thread_memory_magazine2_unload (ThreadMemory *tmem,
    741                                 guint         ix)
    742 {
    743   Magazine *mag = &tmem->magazine2[ix];
    744   magazine_cache_push_magazine (ix, mag->chunks, mag->count);
    745   mag->chunks = NULL;
    746   mag->count = 0;
    747 }
    748 
    749 static inline void
    750 thread_memory_swap_magazines (ThreadMemory *tmem,
    751                               guint         ix)
    752 {
    753   Magazine xmag = tmem->magazine1[ix];
    754   tmem->magazine1[ix] = tmem->magazine2[ix];
    755   tmem->magazine2[ix] = xmag;
    756 }
    757 
    758 static inline gboolean
    759 thread_memory_magazine1_is_empty (ThreadMemory *tmem,
    760                                   guint         ix)
    761 {
    762   return tmem->magazine1[ix].chunks == NULL;
    763 }
    764 
    765 static inline gboolean
    766 thread_memory_magazine2_is_full (ThreadMemory *tmem,
    767                                  guint         ix)
    768 {
    769   return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix);
    770 }
    771 
    772 static inline gpointer
    773 thread_memory_magazine1_alloc (ThreadMemory *tmem,
    774                                guint         ix)
    775 {
    776   Magazine *mag = &tmem->magazine1[ix];
    777   ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
    778   if (G_LIKELY (mag->count > 0))
    779     mag->count--;
    780   return chunk;
    781 }
    782 
    783 static inline void
    784 thread_memory_magazine2_free (ThreadMemory *tmem,
    785                               guint         ix,
    786                               gpointer      mem)
    787 {
    788   Magazine *mag = &tmem->magazine2[ix];
    789   ChunkLink *chunk = mem;
    790   chunk->data = NULL;
    791   chunk->next = mag->chunks;
    792   mag->chunks = chunk;
    793   mag->count++;
    794 }
    795 
    796 /* --- API functions --- */
    797 gpointer
    798 g_slice_alloc (gsize mem_size)
    799 {
    800   gsize chunk_size;
    801   gpointer mem;
    802   guint acat;
    803   chunk_size = P2ALIGN (mem_size);
    804   acat = allocator_categorize (chunk_size);
    805   if (G_LIKELY (acat == 1))     /* allocate through magazine layer */
    806     {
    807       ThreadMemory *tmem = thread_memory_from_self();
    808       guint ix = SLAB_INDEX (allocator, chunk_size);
    809       if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
    810         {
    811           thread_memory_swap_magazines (tmem, ix);
    812           if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
    813             thread_memory_magazine1_reload (tmem, ix);
    814         }
    815       mem = thread_memory_magazine1_alloc (tmem, ix);
    816     }
    817   else if (acat == 2)           /* allocate through slab allocator */
    818     {
    819       g_mutex_lock (allocator->slab_mutex);
    820       mem = slab_allocator_alloc_chunk (chunk_size);
    821       g_mutex_unlock (allocator->slab_mutex);
    822     }
    823   else                          /* delegate to system malloc */
    824     mem = g_malloc (mem_size);
    825   if (G_UNLIKELY (allocator->config.debug_blocks))
    826     smc_notify_alloc (mem, mem_size);
    827   return mem;
    828 }
    829 
    830 gpointer
    831 g_slice_alloc0 (gsize mem_size)
    832 {
    833   gpointer mem = g_slice_alloc (mem_size);
    834   if (mem)
    835     memset (mem, 0, mem_size);
    836   return mem;
    837 }
    838 
    839 gpointer
    840 g_slice_copy (gsize         mem_size,
    841               gconstpointer mem_block)
    842 {
    843   gpointer mem = g_slice_alloc (mem_size);
    844   if (mem)
    845     memcpy (mem, mem_block, mem_size);
    846   return mem;
    847 }
    848 
    849 void
    850 g_slice_free1 (gsize    mem_size,
    851                gpointer mem_block)
    852 {
    853   gsize chunk_size = P2ALIGN (mem_size);
    854   guint acat = allocator_categorize (chunk_size);
    855   if (G_UNLIKELY (!mem_block))
    856     return;
    857   if (G_UNLIKELY (allocator->config.debug_blocks) &&
    858       !smc_notify_free (mem_block, mem_size))
    859     abort();
    860   if (G_LIKELY (acat == 1))             /* allocate through magazine layer */
    861     {
    862       ThreadMemory *tmem = thread_memory_from_self();
    863       guint ix = SLAB_INDEX (allocator, chunk_size);
    864       if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
    865         {
    866           thread_memory_swap_magazines (tmem, ix);
    867           if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
    868             thread_memory_magazine2_unload (tmem, ix);
    869         }
    870       if (G_UNLIKELY (g_mem_gc_friendly))
    871         memset (mem_block, 0, chunk_size);
    872       thread_memory_magazine2_free (tmem, ix, mem_block);
    873     }
    874   else if (acat == 2)                   /* allocate through slab allocator */
    875     {
    876       if (G_UNLIKELY (g_mem_gc_friendly))
    877         memset (mem_block, 0, chunk_size);
    878       g_mutex_lock (allocator->slab_mutex);
    879       slab_allocator_free_chunk (chunk_size, mem_block);
    880       g_mutex_unlock (allocator->slab_mutex);
    881     }
    882   else                                  /* delegate to system malloc */
    883     {
    884       if (G_UNLIKELY (g_mem_gc_friendly))
    885         memset (mem_block, 0, mem_size);
    886       g_free (mem_block);
    887     }
    888 }
    889 
    890 void
    891 g_slice_free_chain_with_offset (gsize    mem_size,
    892                                 gpointer mem_chain,
    893                                 gsize    next_offset)
    894 {
    895   gpointer slice = mem_chain;
    896   /* while the thread magazines and the magazine cache are implemented so that
    897    * they can easily be extended to allow for free lists containing more free
    898    * lists for the first level nodes, which would allow O(1) freeing in this
    899    * function, the benefit of such an extension is questionable, because:
    900    * - the magazine size counts will become mere lower bounds which confuses
    901    *   the code adapting to lock contention;
    902    * - freeing a single node to the thread magazines is very fast, so this
    903    *   O(list_length) operation is multiplied by a fairly small factor;
    904    * - memory usage histograms on larger applications seem to indicate that
    905    *   the amount of released multi node lists is negligible in comparison
    906    *   to single node releases.
    907    * - the major performance bottle neck, namely g_private_get() or
    908    *   g_mutex_lock()/g_mutex_unlock() has already been moved out of the
    909    *   inner loop for freeing chained slices.
    910    */
    911   gsize chunk_size = P2ALIGN (mem_size);
    912   guint acat = allocator_categorize (chunk_size);
    913   if (G_LIKELY (acat == 1))             /* allocate through magazine layer */
    914     {
    915       ThreadMemory *tmem = thread_memory_from_self();
    916       guint ix = SLAB_INDEX (allocator, chunk_size);
    917       while (slice)
    918         {
    919           guint8 *current = slice;
    920           slice = *(gpointer*) (current + next_offset);
    921           if (G_UNLIKELY (allocator->config.debug_blocks) &&
    922               !smc_notify_free (current, mem_size))
    923             abort();
    924           if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
    925             {
    926               thread_memory_swap_magazines (tmem, ix);
    927               if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
    928                 thread_memory_magazine2_unload (tmem, ix);
    929             }
    930           if (G_UNLIKELY (g_mem_gc_friendly))
    931             memset (current, 0, chunk_size);
    932           thread_memory_magazine2_free (tmem, ix, current);
    933         }
    934     }
    935   else if (acat == 2)                   /* allocate through slab allocator */
    936     {
    937       g_mutex_lock (allocator->slab_mutex);
    938       while (slice)
    939         {
    940           guint8 *current = slice;
    941           slice = *(gpointer*) (current + next_offset);
    942           if (G_UNLIKELY (allocator->config.debug_blocks) &&
    943               !smc_notify_free (current, mem_size))
    944             abort();
    945           if (G_UNLIKELY (g_mem_gc_friendly))
    946             memset (current, 0, chunk_size);
    947           slab_allocator_free_chunk (chunk_size, current);
    948         }
    949       g_mutex_unlock (allocator->slab_mutex);
    950     }
    951   else                                  /* delegate to system malloc */
    952     while (slice)
    953       {
    954         guint8 *current = slice;
    955         slice = *(gpointer*) (current + next_offset);
    956         if (G_UNLIKELY (allocator->config.debug_blocks) &&
    957             !smc_notify_free (current, mem_size))
    958           abort();
    959         if (G_UNLIKELY (g_mem_gc_friendly))
    960           memset (current, 0, mem_size);
    961         g_free (current);
    962       }
    963 }
    964 
    965 /* --- single page allocator --- */
    966 static void
    967 allocator_slab_stack_push (Allocator *allocator,
    968                            guint      ix,
    969                            SlabInfo  *sinfo)
    970 {
    971   /* insert slab at slab ring head */
    972   if (!allocator->slab_stack[ix])
    973     {
    974       sinfo->next = sinfo;
    975       sinfo->prev = sinfo;
    976     }
    977   else
    978     {
    979       SlabInfo *next = allocator->slab_stack[ix], *prev = next->prev;
    980       next->prev = sinfo;
    981       prev->next = sinfo;
    982       sinfo->next = next;
    983       sinfo->prev = prev;
    984     }
    985   allocator->slab_stack[ix] = sinfo;
    986 }
    987 
    988 static gsize
    989 allocator_aligned_page_size (Allocator *allocator,
    990                              gsize      n_bytes)
    991 {
    992   gsize val = 1 << g_bit_storage (n_bytes - 1);
    993   val = MAX (val, allocator->min_page_size);
    994   return val;
    995 }
    996 
    997 static void
    998 allocator_add_slab (Allocator *allocator,
    999                     guint      ix,
   1000                     gsize      chunk_size)
   1001 {
   1002   ChunkLink *chunk;
   1003   SlabInfo *sinfo;
   1004   gsize addr, padding, n_chunks, color = 0;
   1005   gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
   1006   /* allocate 1 page for the chunks and the slab */
   1007   gpointer aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING);
   1008   guint8 *mem = aligned_memory;
   1009   guint i;
   1010   if (!mem)
   1011     {
   1012       const gchar *syserr = "unknown error";
   1013 #if HAVE_STRERROR
   1014       syserr = strerror (errno);
   1015 #endif
   1016       mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
   1017                  (guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr);
   1018     }
   1019   /* mask page adress */
   1020   addr = ((gsize) mem / page_size) * page_size;
   1021   /* assert alignment */
   1022   mem_assert (aligned_memory == (gpointer) addr);
   1023   /* basic slab info setup */
   1024   sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE);
   1025   sinfo->n_allocated = 0;
   1026   sinfo->chunks = NULL;
   1027   /* figure cache colorization */
   1028   n_chunks = ((guint8*) sinfo - mem) / chunk_size;
   1029   padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size;
   1030   if (padding)
   1031     {
   1032       color = (allocator->color_accu * P2ALIGNMENT) % padding;
   1033       allocator->color_accu += allocator->config.color_increment;
   1034     }
   1035   /* add chunks to free list */
   1036   chunk = (ChunkLink*) (mem + color);
   1037   sinfo->chunks = chunk;
   1038   for (i = 0; i < n_chunks - 1; i++)
   1039     {
   1040       chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size);
   1041       chunk = chunk->next;
   1042     }
   1043   chunk->next = NULL;   /* last chunk */
   1044   /* add slab to slab ring */
   1045   allocator_slab_stack_push (allocator, ix, sinfo);
   1046 }
   1047 
   1048 static gpointer
   1049 slab_allocator_alloc_chunk (gsize chunk_size)
   1050 {
   1051   ChunkLink *chunk;
   1052   guint ix = SLAB_INDEX (allocator, chunk_size);
   1053   /* ensure non-empty slab */
   1054   if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks)
   1055     allocator_add_slab (allocator, ix, chunk_size);
   1056   /* allocate chunk */
   1057   chunk = allocator->slab_stack[ix]->chunks;
   1058   allocator->slab_stack[ix]->chunks = chunk->next;
   1059   allocator->slab_stack[ix]->n_allocated++;
   1060   /* rotate empty slabs */
   1061   if (!allocator->slab_stack[ix]->chunks)
   1062     allocator->slab_stack[ix] = allocator->slab_stack[ix]->next;
   1063   return chunk;
   1064 }
   1065 
   1066 static void
   1067 slab_allocator_free_chunk (gsize    chunk_size,
   1068                            gpointer mem)
   1069 {
   1070   ChunkLink *chunk;
   1071   gboolean was_empty;
   1072   guint ix = SLAB_INDEX (allocator, chunk_size);
   1073   gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
   1074   gsize addr = ((gsize) mem / page_size) * page_size;
   1075   /* mask page adress */
   1076   guint8 *page = (guint8*) addr;
   1077   SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE);
   1078   /* assert valid chunk count */
   1079   mem_assert (sinfo->n_allocated > 0);
   1080   /* add chunk to free list */
   1081   was_empty = sinfo->chunks == NULL;
   1082   chunk = (ChunkLink*) mem;
   1083   chunk->next = sinfo->chunks;
   1084   sinfo->chunks = chunk;
   1085   sinfo->n_allocated--;
   1086   /* keep slab ring partially sorted, empty slabs at end */
   1087   if (was_empty)
   1088     {
   1089       /* unlink slab */
   1090       SlabInfo *next = sinfo->next, *prev = sinfo->prev;
   1091       next->prev = prev;
   1092       prev->next = next;
   1093       if (allocator->slab_stack[ix] == sinfo)
   1094         allocator->slab_stack[ix] = next == sinfo ? NULL : next;
   1095       /* insert slab at head */
   1096       allocator_slab_stack_push (allocator, ix, sinfo);
   1097     }
   1098   /* eagerly free complete unused slabs */
   1099   if (!sinfo->n_allocated)
   1100     {
   1101       /* unlink slab */
   1102       SlabInfo *next = sinfo->next, *prev = sinfo->prev;
   1103       next->prev = prev;
   1104       prev->next = next;
   1105       if (allocator->slab_stack[ix] == sinfo)
   1106         allocator->slab_stack[ix] = next == sinfo ? NULL : next;
   1107       /* free slab */
   1108       allocator_memfree (page_size, page);
   1109     }
   1110 }
   1111 
   1112 /* --- memalign implementation --- */
   1113 #ifdef HAVE_MALLOC_H
   1114 #include <malloc.h>             /* memalign() */
   1115 #endif
   1116 
   1117 /* from config.h:
   1118  * define HAVE_POSIX_MEMALIGN           1 // if free(posix_memalign(3)) works, <stdlib.h>
   1119  * define HAVE_COMPLIANT_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works for sizes != 2^n, <stdlib.h>
   1120  * define HAVE_MEMALIGN                 1 // if free(memalign(3)) works, <malloc.h>
   1121  * define HAVE_VALLOC                   1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
   1122  * if none is provided, we implement malloc(3)-based alloc-only page alignment
   1123  */
   1124 
   1125 #if !(HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
   1126 static GTrashStack *compat_valloc_trash = NULL;
   1127 #endif
   1128 
   1129 static gpointer
   1130 allocator_memalign (gsize alignment,
   1131                     gsize memsize)
   1132 {
   1133   gpointer aligned_memory = NULL;
   1134   gint err = ENOMEM;
   1135 #if     HAVE_COMPLIANT_POSIX_MEMALIGN
   1136   err = posix_memalign (&aligned_memory, alignment, memsize);
   1137 #elif   HAVE_MEMALIGN
   1138   errno = 0;
   1139   aligned_memory = memalign (alignment, memsize);
   1140   err = errno;
   1141 #elif   HAVE_VALLOC
   1142   errno = 0;
   1143   aligned_memory = valloc (memsize);
   1144   err = errno;
   1145 #else
   1146   /* simplistic non-freeing page allocator */
   1147   mem_assert (alignment == sys_page_size);
   1148   mem_assert (memsize <= sys_page_size);
   1149   if (!compat_valloc_trash)
   1150     {
   1151       const guint n_pages = 16;
   1152       guint8 *mem = malloc (n_pages * sys_page_size);
   1153       err = errno;
   1154       if (mem)
   1155         {
   1156           gint i = n_pages;
   1157           guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size);
   1158           if (amem != mem)
   1159             i--;        /* mem wasn't page aligned */
   1160           while (--i >= 0)
   1161             g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size);
   1162         }
   1163     }
   1164   aligned_memory = g_trash_stack_pop (&compat_valloc_trash);
   1165 #endif
   1166   if (!aligned_memory)
   1167     errno = err;
   1168   return aligned_memory;
   1169 }
   1170 
   1171 static void
   1172 allocator_memfree (gsize    memsize,
   1173                    gpointer mem)
   1174 {
   1175 #if     HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
   1176   free (mem);
   1177 #else
   1178   mem_assert (memsize <= sys_page_size);
   1179   g_trash_stack_push (&compat_valloc_trash, mem);
   1180 #endif
   1181 }
   1182 
   1183 static void
   1184 mem_error (const char *format,
   1185            ...)
   1186 {
   1187   const char *pname;
   1188   va_list args;
   1189   /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
   1190   fputs ("\n***MEMORY-ERROR***: ", stderr);
   1191   pname = g_get_prgname();
   1192   fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid());
   1193   va_start (args, format);
   1194   vfprintf (stderr, format, args);
   1195   va_end (args);
   1196   fputs ("\n", stderr);
   1197   abort();
   1198   _exit (1);
   1199 }
   1200 
   1201 /* --- g-slice memory checker tree --- */
   1202 typedef size_t SmcKType;                /* key type */
   1203 typedef size_t SmcVType;                /* value type */
   1204 typedef struct {
   1205   SmcKType key;
   1206   SmcVType value;
   1207 } SmcEntry;
   1208 static void             smc_tree_insert      (SmcKType  key,
   1209                                               SmcVType  value);
   1210 static gboolean         smc_tree_lookup      (SmcKType  key,
   1211                                               SmcVType *value_p);
   1212 static gboolean         smc_tree_remove      (SmcKType  key);
   1213 
   1214 
   1215 /* --- g-slice memory checker implementation --- */
   1216 static void
   1217 smc_notify_alloc (void   *pointer,
   1218                   size_t  size)
   1219 {
   1220   size_t adress = (size_t) pointer;
   1221   if (pointer)
   1222     smc_tree_insert (adress, size);
   1223 }
   1224 
   1225 #if 0
   1226 static void
   1227 smc_notify_ignore (void *pointer)
   1228 {
   1229   size_t adress = (size_t) pointer;
   1230   if (pointer)
   1231     smc_tree_remove (adress);
   1232 }
   1233 #endif
   1234 
   1235 static int
   1236 smc_notify_free (void   *pointer,
   1237                  size_t  size)
   1238 {
   1239   size_t adress = (size_t) pointer;
   1240   SmcVType real_size;
   1241   gboolean found_one;
   1242 
   1243   if (!pointer)
   1244     return 1; /* ignore */
   1245   found_one = smc_tree_lookup (adress, &real_size);
   1246   if (!found_one)
   1247     {
   1248       fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
   1249       return 0;
   1250     }
   1251   if (real_size != size && (real_size || size))
   1252     {
   1253       fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size);
   1254       return 0;
   1255     }
   1256   if (!smc_tree_remove (adress))
   1257     {
   1258       fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
   1259       return 0;
   1260     }
   1261   return 1; /* all fine */
   1262 }
   1263 
   1264 /* --- g-slice memory checker tree implementation --- */
   1265 #define SMC_TRUNK_COUNT     (4093 /* 16381 */)          /* prime, to distribute trunk collisions (big, allocated just once) */
   1266 #define SMC_BRANCH_COUNT    (511)                       /* prime, to distribute branch collisions */
   1267 #define SMC_TRUNK_EXTENT    (SMC_BRANCH_COUNT * 2039)   /* key adress space per trunk, should distribute uniformly across BRANCH_COUNT */
   1268 #define SMC_TRUNK_HASH(k)   ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT)  /* generate new trunk hash per megabyte (roughly) */
   1269 #define SMC_BRANCH_HASH(k)  (k % SMC_BRANCH_COUNT)
   1270 
   1271 typedef struct {
   1272   SmcEntry    *entries;
   1273   unsigned int n_entries;
   1274 } SmcBranch;
   1275 
   1276 static SmcBranch     **smc_tree_root = NULL;
   1277 
   1278 static void
   1279 smc_tree_abort (int errval)
   1280 {
   1281   const char *syserr = "unknown error";
   1282 #if HAVE_STRERROR
   1283   syserr = strerror (errval);
   1284 #endif
   1285   mem_error ("MemChecker: failure in debugging tree: %s", syserr);
   1286 }
   1287 
   1288 static inline SmcEntry*
   1289 smc_tree_branch_grow_L (SmcBranch   *branch,
   1290                         unsigned int index)
   1291 {
   1292   unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]);
   1293   unsigned int new_size = old_size + sizeof (branch->entries[0]);
   1294   SmcEntry *entry;
   1295   mem_assert (index <= branch->n_entries);
   1296   branch->entries = (SmcEntry*) realloc (branch->entries, new_size);
   1297   if (!branch->entries)
   1298     smc_tree_abort (errno);
   1299   entry = branch->entries + index;
   1300   g_memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0]));
   1301   branch->n_entries += 1;
   1302   return entry;
   1303 }
   1304 
   1305 static inline SmcEntry*
   1306 smc_tree_branch_lookup_nearest_L (SmcBranch *branch,
   1307                                   SmcKType   key)
   1308 {
   1309   unsigned int n_nodes = branch->n_entries, offs = 0;
   1310   SmcEntry *check = branch->entries;
   1311   int cmp = 0;
   1312   while (offs < n_nodes)
   1313     {
   1314       unsigned int i = (offs + n_nodes) >> 1;
   1315       check = branch->entries + i;
   1316       cmp = key < check->key ? -1 : key != check->key;
   1317       if (cmp == 0)
   1318         return check;                   /* return exact match */
   1319       else if (cmp < 0)
   1320         n_nodes = i;
   1321       else /* (cmp > 0) */
   1322         offs = i + 1;
   1323     }
   1324   /* check points at last mismatch, cmp > 0 indicates greater key */
   1325   return cmp > 0 ? check + 1 : check;   /* return insertion position for inexact match */
   1326 }
   1327 
   1328 static void
   1329 smc_tree_insert (SmcKType key,
   1330                  SmcVType value)
   1331 {
   1332   unsigned int ix0, ix1;
   1333   SmcEntry *entry;
   1334 
   1335   g_mutex_lock (smc_tree_mutex);
   1336   ix0 = SMC_TRUNK_HASH (key);
   1337   ix1 = SMC_BRANCH_HASH (key);
   1338   if (!smc_tree_root)
   1339     {
   1340       smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0]));
   1341       if (!smc_tree_root)
   1342         smc_tree_abort (errno);
   1343     }
   1344   if (!smc_tree_root[ix0])
   1345     {
   1346       smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0]));
   1347       if (!smc_tree_root[ix0])
   1348         smc_tree_abort (errno);
   1349     }
   1350   entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
   1351   if (!entry ||                                                                         /* need create */
   1352       entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries ||   /* need append */
   1353       entry->key != key)                                                                /* need insert */
   1354     entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries);
   1355   entry->key = key;
   1356   entry->value = value;
   1357   g_mutex_unlock (smc_tree_mutex);
   1358 }
   1359 
   1360 static gboolean
   1361 smc_tree_lookup (SmcKType  key,
   1362                  SmcVType *value_p)
   1363 {
   1364   SmcEntry *entry = NULL;
   1365   unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
   1366   gboolean found_one = FALSE;
   1367   *value_p = 0;
   1368   g_mutex_lock (smc_tree_mutex);
   1369   if (smc_tree_root && smc_tree_root[ix0])
   1370     {
   1371       entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
   1372       if (entry &&
   1373           entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
   1374           entry->key == key)
   1375         {
   1376           found_one = TRUE;
   1377           *value_p = entry->value;
   1378         }
   1379     }
   1380   g_mutex_unlock (smc_tree_mutex);
   1381   return found_one;
   1382 }
   1383 
   1384 static gboolean
   1385 smc_tree_remove (SmcKType key)
   1386 {
   1387   unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
   1388   gboolean found_one = FALSE;
   1389   g_mutex_lock (smc_tree_mutex);
   1390   if (smc_tree_root && smc_tree_root[ix0])
   1391     {
   1392       SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
   1393       if (entry &&
   1394           entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
   1395           entry->key == key)
   1396         {
   1397           unsigned int i = entry - smc_tree_root[ix0][ix1].entries;
   1398           smc_tree_root[ix0][ix1].n_entries -= 1;
   1399           g_memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0]));
   1400           if (!smc_tree_root[ix0][ix1].n_entries)
   1401             {
   1402               /* avoid useless pressure on the memory system */
   1403               free (smc_tree_root[ix0][ix1].entries);
   1404               smc_tree_root[ix0][ix1].entries = NULL;
   1405             }
   1406           found_one = TRUE;
   1407         }
   1408     }
   1409   g_mutex_unlock (smc_tree_mutex);
   1410   return found_one;
   1411 }
   1412 
   1413 #ifdef G_ENABLE_DEBUG
   1414 void
   1415 g_slice_debug_tree_statistics (void)
   1416 {
   1417   g_mutex_lock (smc_tree_mutex);
   1418   if (smc_tree_root)
   1419     {
   1420       unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u;
   1421       double tf, bf;
   1422       for (i = 0; i < SMC_TRUNK_COUNT; i++)
   1423         if (smc_tree_root[i])
   1424           {
   1425             t++;
   1426             for (j = 0; j < SMC_BRANCH_COUNT; j++)
   1427               if (smc_tree_root[i][j].n_entries)
   1428                 {
   1429                   b++;
   1430                   su += smc_tree_root[i][j].n_entries;
   1431                   en = MIN (en, smc_tree_root[i][j].n_entries);
   1432                   ex = MAX (ex, smc_tree_root[i][j].n_entries);
   1433                 }
   1434               else if (smc_tree_root[i][j].entries)
   1435                 o++; /* formerly used, now empty */
   1436           }
   1437       en = b ? en : 0;
   1438       tf = MAX (t, 1.0); /* max(1) to be a valid divisor */
   1439       bf = MAX (b, 1.0); /* max(1) to be a valid divisor */
   1440       fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o);
   1441       fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
   1442                b / tf,
   1443                100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT));
   1444       fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
   1445                su / bf, en, ex);
   1446     }
   1447   else
   1448     fprintf (stderr, "GSlice: MemChecker: root=NULL\n");
   1449   g_mutex_unlock (smc_tree_mutex);
   1450 
   1451   /* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
   1452    *  PID %CPU %MEM   VSZ  RSS      COMMAND
   1453    * 8887 30.3 45.8 456068 414856   beast-0.7.1 empty.bse
   1454    * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
   1455    * 114017 103714 2354 344 0 108676 0
   1456    * $ cat /proc/8887/status
   1457    * Name:   beast-0.7.1
   1458    * VmSize:   456068 kB
   1459    * VmLck:         0 kB
   1460    * VmRSS:    414856 kB
   1461    * VmData:   434620 kB
   1462    * VmStk:        84 kB
   1463    * VmExe:      1376 kB
   1464    * VmLib:     13036 kB
   1465    * VmPTE:       456 kB
   1466    * Threads:        3
   1467    * (gdb) print g_slice_debug_tree_statistics ()
   1468    * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
   1469    * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
   1470    * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
   1471    */
   1472 }
   1473 #endif /* G_ENABLE_DEBUG */
   1474 
   1475 #define __G_SLICE_C__
   1476 #include "galiasdef.c"
   1477