Home | History | Annotate | Download | only in fpu
      1 
      2 /*============================================================================
      3 
      4 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
      5 Arithmetic Package, Release 2b.
      6 
      7 Written by John R. Hauser.  This work was made possible in part by the
      8 International Computer Science Institute, located at Suite 600, 1947 Center
      9 Street, Berkeley, California 94704.  Funding was partially provided by the
     10 National Science Foundation under grant MIP-9311980.  The original version
     11 of this code was written as part of a project to build a fixed-point vector
     12 processor in collaboration with the University of California at Berkeley,
     13 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     14 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
     15 arithmetic/SoftFloat.html'.
     16 
     17 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
     18 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
     19 RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
     20 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
     21 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
     22 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
     23 INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
     24 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
     25 
     26 Derivative works are acceptable, even for commercial purposes, so long as
     27 (1) the source code for the derivative work includes prominent notice that
     28 the work is derivative, and (2) the source code includes prominent notice with
     29 these four paragraphs for those parts of this code that are retained.
     30 
     31 =============================================================================*/
     32 
     33 /*----------------------------------------------------------------------------
     34 | Shifts `a' right by the number of bits given in `count'.  If any nonzero
     35 | bits are shifted off, they are ``jammed'' into the least significant bit of
     36 | the result by setting the least significant bit to 1.  The value of `count'
     37 | can be arbitrarily large; in particular, if `count' is greater than 32, the
     38 | result will be either 0 or 1, depending on whether `a' is zero or nonzero.
     39 | The result is stored in the location pointed to by `zPtr'.
     40 *----------------------------------------------------------------------------*/
     41 
     42 INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
     43 {
     44     bits32 z;
     45 
     46     if ( count == 0 ) {
     47         z = a;
     48     }
     49     else if ( count < 32 ) {
     50         z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
     51     }
     52     else {
     53         z = ( a != 0 );
     54     }
     55     *zPtr = z;
     56 
     57 }
     58 
     59 /*----------------------------------------------------------------------------
     60 | Shifts `a' right by the number of bits given in `count'.  If any nonzero
     61 | bits are shifted off, they are ``jammed'' into the least significant bit of
     62 | the result by setting the least significant bit to 1.  The value of `count'
     63 | can be arbitrarily large; in particular, if `count' is greater than 64, the
     64 | result will be either 0 or 1, depending on whether `a' is zero or nonzero.
     65 | The result is stored in the location pointed to by `zPtr'.
     66 *----------------------------------------------------------------------------*/
     67 
     68 INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
     69 {
     70     bits64 z;
     71 
     72     if ( count == 0 ) {
     73         z = a;
     74     }
     75     else if ( count < 64 ) {
     76         z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
     77     }
     78     else {
     79         z = ( a != 0 );
     80     }
     81     *zPtr = z;
     82 
     83 }
     84 
     85 /*----------------------------------------------------------------------------
     86 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
     87 | _plus_ the number of bits given in `count'.  The shifted result is at most
     88 | 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'.  The
     89 | bits shifted off form a second 64-bit result as follows:  The _last_ bit
     90 | shifted off is the most-significant bit of the extra result, and the other
     91 | 63 bits of the extra result are all zero if and only if _all_but_the_last_
     92 | bits shifted off were all zero.  This extra result is stored in the location
     93 | pointed to by `z1Ptr'.  The value of `count' can be arbitrarily large.
     94 |     (This routine makes more sense if `a0' and `a1' are considered to form
     95 | a fixed-point value with binary point between `a0' and `a1'.  This fixed-
     96 | point value is shifted right by the number of bits given in `count', and
     97 | the integer part of the result is returned at the location pointed to by
     98 | `z0Ptr'.  The fractional part of the result may be slightly corrupted as
     99 | described above, and is returned at the location pointed to by `z1Ptr'.)
    100 *----------------------------------------------------------------------------*/
    101 
    102 INLINE void
    103  shift64ExtraRightJamming(
    104      bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
    105 {
    106     bits64 z0, z1;
    107     int8 negCount = ( - count ) & 63;
    108 
    109     if ( count == 0 ) {
    110         z1 = a1;
    111         z0 = a0;
    112     }
    113     else if ( count < 64 ) {
    114         z1 = ( a0<<negCount ) | ( a1 != 0 );
    115         z0 = a0>>count;
    116     }
    117     else {
    118         if ( count == 64 ) {
    119             z1 = a0 | ( a1 != 0 );
    120         }
    121         else {
    122             z1 = ( ( a0 | a1 ) != 0 );
    123         }
    124         z0 = 0;
    125     }
    126     *z1Ptr = z1;
    127     *z0Ptr = z0;
    128 
    129 }
    130 
    131 /*----------------------------------------------------------------------------
    132 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
    133 | number of bits given in `count'.  Any bits shifted off are lost.  The value
    134 | of `count' can be arbitrarily large; in particular, if `count' is greater
    135 | than 128, the result will be 0.  The result is broken into two 64-bit pieces
    136 | which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
    137 *----------------------------------------------------------------------------*/
    138 
    139 INLINE void
    140  shift128Right(
    141      bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
    142 {
    143     bits64 z0, z1;
    144     int8 negCount = ( - count ) & 63;
    145 
    146     if ( count == 0 ) {
    147         z1 = a1;
    148         z0 = a0;
    149     }
    150     else if ( count < 64 ) {
    151         z1 = ( a0<<negCount ) | ( a1>>count );
    152         z0 = a0>>count;
    153     }
    154     else {
    155         z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
    156         z0 = 0;
    157     }
    158     *z1Ptr = z1;
    159     *z0Ptr = z0;
    160 
    161 }
    162 
    163 /*----------------------------------------------------------------------------
    164 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
    165 | number of bits given in `count'.  If any nonzero bits are shifted off, they
    166 | are ``jammed'' into the least significant bit of the result by setting the
    167 | least significant bit to 1.  The value of `count' can be arbitrarily large;
    168 | in particular, if `count' is greater than 128, the result will be either
    169 | 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
    170 | nonzero.  The result is broken into two 64-bit pieces which are stored at
    171 | the locations pointed to by `z0Ptr' and `z1Ptr'.
    172 *----------------------------------------------------------------------------*/
    173 
    174 INLINE void
    175  shift128RightJamming(
    176      bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
    177 {
    178     bits64 z0, z1;
    179     int8 negCount = ( - count ) & 63;
    180 
    181     if ( count == 0 ) {
    182         z1 = a1;
    183         z0 = a0;
    184     }
    185     else if ( count < 64 ) {
    186         z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
    187         z0 = a0>>count;
    188     }
    189     else {
    190         if ( count == 64 ) {
    191             z1 = a0 | ( a1 != 0 );
    192         }
    193         else if ( count < 128 ) {
    194             z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
    195         }
    196         else {
    197             z1 = ( ( a0 | a1 ) != 0 );
    198         }
    199         z0 = 0;
    200     }
    201     *z1Ptr = z1;
    202     *z0Ptr = z0;
    203 
    204 }
    205 
    206 /*----------------------------------------------------------------------------
    207 | Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
    208 | by 64 _plus_ the number of bits given in `count'.  The shifted result is
    209 | at most 128 nonzero bits; these are broken into two 64-bit pieces which are
    210 | stored at the locations pointed to by `z0Ptr' and `z1Ptr'.  The bits shifted
    211 | off form a third 64-bit result as follows:  The _last_ bit shifted off is
    212 | the most-significant bit of the extra result, and the other 63 bits of the
    213 | extra result are all zero if and only if _all_but_the_last_ bits shifted off
    214 | were all zero.  This extra result is stored in the location pointed to by
    215 | `z2Ptr'.  The value of `count' can be arbitrarily large.
    216 |     (This routine makes more sense if `a0', `a1', and `a2' are considered
    217 | to form a fixed-point value with binary point between `a1' and `a2'.  This
    218 | fixed-point value is shifted right by the number of bits given in `count',
    219 | and the integer part of the result is returned at the locations pointed to
    220 | by `z0Ptr' and `z1Ptr'.  The fractional part of the result may be slightly
    221 | corrupted as described above, and is returned at the location pointed to by
    222 | `z2Ptr'.)
    223 *----------------------------------------------------------------------------*/
    224 
    225 INLINE void
    226  shift128ExtraRightJamming(
    227      bits64 a0,
    228      bits64 a1,
    229      bits64 a2,
    230      int16 count,
    231      bits64 *z0Ptr,
    232      bits64 *z1Ptr,
    233      bits64 *z2Ptr
    234  )
    235 {
    236     bits64 z0, z1, z2;
    237     int8 negCount = ( - count ) & 63;
    238 
    239     if ( count == 0 ) {
    240         z2 = a2;
    241         z1 = a1;
    242         z0 = a0;
    243     }
    244     else {
    245         if ( count < 64 ) {
    246             z2 = a1<<negCount;
    247             z1 = ( a0<<negCount ) | ( a1>>count );
    248             z0 = a0>>count;
    249         }
    250         else {
    251             if ( count == 64 ) {
    252                 z2 = a1;
    253                 z1 = a0;
    254             }
    255             else {
    256                 a2 |= a1;
    257                 if ( count < 128 ) {
    258                     z2 = a0<<negCount;
    259                     z1 = a0>>( count & 63 );
    260                 }
    261                 else {
    262                     z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
    263                     z1 = 0;
    264                 }
    265             }
    266             z0 = 0;
    267         }
    268         z2 |= ( a2 != 0 );
    269     }
    270     *z2Ptr = z2;
    271     *z1Ptr = z1;
    272     *z0Ptr = z0;
    273 
    274 }
    275 
    276 /*----------------------------------------------------------------------------
    277 | Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
    278 | number of bits given in `count'.  Any bits shifted off are lost.  The value
    279 | of `count' must be less than 64.  The result is broken into two 64-bit
    280 | pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
    281 *----------------------------------------------------------------------------*/
    282 
    283 INLINE void
    284  shortShift128Left(
    285      bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
    286 {
    287 
    288     *z1Ptr = a1<<count;
    289     *z0Ptr =
    290         ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
    291 
    292 }
    293 
    294 /*----------------------------------------------------------------------------
    295 | Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
    296 | by the number of bits given in `count'.  Any bits shifted off are lost.
    297 | The value of `count' must be less than 64.  The result is broken into three
    298 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
    299 | `z1Ptr', and `z2Ptr'.
    300 *----------------------------------------------------------------------------*/
    301 
    302 INLINE void
    303  shortShift192Left(
    304      bits64 a0,
    305      bits64 a1,
    306      bits64 a2,
    307      int16 count,
    308      bits64 *z0Ptr,
    309      bits64 *z1Ptr,
    310      bits64 *z2Ptr
    311  )
    312 {
    313     bits64 z0, z1, z2;
    314     int8 negCount;
    315 
    316     z2 = a2<<count;
    317     z1 = a1<<count;
    318     z0 = a0<<count;
    319     if ( 0 < count ) {
    320         negCount = ( ( - count ) & 63 );
    321         z1 |= a2>>negCount;
    322         z0 |= a1>>negCount;
    323     }
    324     *z2Ptr = z2;
    325     *z1Ptr = z1;
    326     *z0Ptr = z0;
    327 
    328 }
    329 
    330 /*----------------------------------------------------------------------------
    331 | Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
    332 | value formed by concatenating `b0' and `b1'.  Addition is modulo 2^128, so
    333 | any carry out is lost.  The result is broken into two 64-bit pieces which
    334 | are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
    335 *----------------------------------------------------------------------------*/
    336 
    337 INLINE void
    338  add128(
    339      bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
    340 {
    341     bits64 z1;
    342 
    343     z1 = a1 + b1;
    344     *z1Ptr = z1;
    345     *z0Ptr = a0 + b0 + ( z1 < a1 );
    346 
    347 }
    348 
    349 /*----------------------------------------------------------------------------
    350 | Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
    351 | 192-bit value formed by concatenating `b0', `b1', and `b2'.  Addition is
    352 | modulo 2^192, so any carry out is lost.  The result is broken into three
    353 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
    354 | `z1Ptr', and `z2Ptr'.
    355 *----------------------------------------------------------------------------*/
    356 
    357 INLINE void
    358  add192(
    359      bits64 a0,
    360      bits64 a1,
    361      bits64 a2,
    362      bits64 b0,
    363      bits64 b1,
    364      bits64 b2,
    365      bits64 *z0Ptr,
    366      bits64 *z1Ptr,
    367      bits64 *z2Ptr
    368  )
    369 {
    370     bits64 z0, z1, z2;
    371     int8 carry0, carry1;
    372 
    373     z2 = a2 + b2;
    374     carry1 = ( z2 < a2 );
    375     z1 = a1 + b1;
    376     carry0 = ( z1 < a1 );
    377     z0 = a0 + b0;
    378     z1 += carry1;
    379     z0 += ( z1 < carry1 );
    380     z0 += carry0;
    381     *z2Ptr = z2;
    382     *z1Ptr = z1;
    383     *z0Ptr = z0;
    384 
    385 }
    386 
    387 /*----------------------------------------------------------------------------
    388 | Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
    389 | 128-bit value formed by concatenating `a0' and `a1'.  Subtraction is modulo
    390 | 2^128, so any borrow out (carry out) is lost.  The result is broken into two
    391 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
    392 | `z1Ptr'.
    393 *----------------------------------------------------------------------------*/
    394 
    395 INLINE void
    396  sub128(
    397      bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
    398 {
    399 
    400     *z1Ptr = a1 - b1;
    401     *z0Ptr = a0 - b0 - ( a1 < b1 );
    402 
    403 }
    404 
    405 /*----------------------------------------------------------------------------
    406 | Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
    407 | from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
    408 | Subtraction is modulo 2^192, so any borrow out (carry out) is lost.  The
    409 | result is broken into three 64-bit pieces which are stored at the locations
    410 | pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
    411 *----------------------------------------------------------------------------*/
    412 
    413 INLINE void
    414  sub192(
    415      bits64 a0,
    416      bits64 a1,
    417      bits64 a2,
    418      bits64 b0,
    419      bits64 b1,
    420      bits64 b2,
    421      bits64 *z0Ptr,
    422      bits64 *z1Ptr,
    423      bits64 *z2Ptr
    424  )
    425 {
    426     bits64 z0, z1, z2;
    427     int8 borrow0, borrow1;
    428 
    429     z2 = a2 - b2;
    430     borrow1 = ( a2 < b2 );
    431     z1 = a1 - b1;
    432     borrow0 = ( a1 < b1 );
    433     z0 = a0 - b0;
    434     z0 -= ( z1 < borrow1 );
    435     z1 -= borrow1;
    436     z0 -= borrow0;
    437     *z2Ptr = z2;
    438     *z1Ptr = z1;
    439     *z0Ptr = z0;
    440 
    441 }
    442 
    443 /*----------------------------------------------------------------------------
    444 | Multiplies `a' by `b' to obtain a 128-bit product.  The product is broken
    445 | into two 64-bit pieces which are stored at the locations pointed to by
    446 | `z0Ptr' and `z1Ptr'.
    447 *----------------------------------------------------------------------------*/
    448 
    449 INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
    450 {
    451     bits32 aHigh, aLow, bHigh, bLow;
    452     bits64 z0, zMiddleA, zMiddleB, z1;
    453 
    454     aLow = a;
    455     aHigh = a>>32;
    456     bLow = b;
    457     bHigh = b>>32;
    458     z1 = ( (bits64) aLow ) * bLow;
    459     zMiddleA = ( (bits64) aLow ) * bHigh;
    460     zMiddleB = ( (bits64) aHigh ) * bLow;
    461     z0 = ( (bits64) aHigh ) * bHigh;
    462     zMiddleA += zMiddleB;
    463     z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
    464     zMiddleA <<= 32;
    465     z1 += zMiddleA;
    466     z0 += ( z1 < zMiddleA );
    467     *z1Ptr = z1;
    468     *z0Ptr = z0;
    469 
    470 }
    471 
    472 /*----------------------------------------------------------------------------
    473 | Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
    474 | `b' to obtain a 192-bit product.  The product is broken into three 64-bit
    475 | pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
    476 | `z2Ptr'.
    477 *----------------------------------------------------------------------------*/
    478 
    479 INLINE void
    480  mul128By64To192(
    481      bits64 a0,
    482      bits64 a1,
    483      bits64 b,
    484      bits64 *z0Ptr,
    485      bits64 *z1Ptr,
    486      bits64 *z2Ptr
    487  )
    488 {
    489     bits64 z0, z1, z2, more1;
    490 
    491     mul64To128( a1, b, &z1, &z2 );
    492     mul64To128( a0, b, &z0, &more1 );
    493     add128( z0, more1, 0, z1, &z0, &z1 );
    494     *z2Ptr = z2;
    495     *z1Ptr = z1;
    496     *z0Ptr = z0;
    497 
    498 }
    499 
    500 /*----------------------------------------------------------------------------
    501 | Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
    502 | 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
    503 | product.  The product is broken into four 64-bit pieces which are stored at
    504 | the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
    505 *----------------------------------------------------------------------------*/
    506 
    507 INLINE void
    508  mul128To256(
    509      bits64 a0,
    510      bits64 a1,
    511      bits64 b0,
    512      bits64 b1,
    513      bits64 *z0Ptr,
    514      bits64 *z1Ptr,
    515      bits64 *z2Ptr,
    516      bits64 *z3Ptr
    517  )
    518 {
    519     bits64 z0, z1, z2, z3;
    520     bits64 more1, more2;
    521 
    522     mul64To128( a1, b1, &z2, &z3 );
    523     mul64To128( a1, b0, &z1, &more2 );
    524     add128( z1, more2, 0, z2, &z1, &z2 );
    525     mul64To128( a0, b0, &z0, &more1 );
    526     add128( z0, more1, 0, z1, &z0, &z1 );
    527     mul64To128( a0, b1, &more1, &more2 );
    528     add128( more1, more2, 0, z2, &more1, &z2 );
    529     add128( z0, z1, 0, more1, &z0, &z1 );
    530     *z3Ptr = z3;
    531     *z2Ptr = z2;
    532     *z1Ptr = z1;
    533     *z0Ptr = z0;
    534 
    535 }
    536 
    537 /*----------------------------------------------------------------------------
    538 | Returns an approximation to the 64-bit integer quotient obtained by dividing
    539 | `b' into the 128-bit value formed by concatenating `a0' and `a1'.  The
    540 | divisor `b' must be at least 2^63.  If q is the exact quotient truncated
    541 | toward zero, the approximation returned lies between q and q + 2 inclusive.
    542 | If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
    543 | unsigned integer is returned.
    544 *----------------------------------------------------------------------------*/
    545 
    546 static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
    547 {
    548     bits64 b0, b1;
    549     bits64 rem0, rem1, term0, term1;
    550     bits64 z;
    551 
    552     if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
    553     b0 = b>>32;
    554     z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
    555     mul64To128( b, z, &term0, &term1 );
    556     sub128( a0, a1, term0, term1, &rem0, &rem1 );
    557     while ( ( (sbits64) rem0 ) < 0 ) {
    558         z -= LIT64( 0x100000000 );
    559         b1 = b<<32;
    560         add128( rem0, rem1, b0, b1, &rem0, &rem1 );
    561     }
    562     rem0 = ( rem0<<32 ) | ( rem1>>32 );
    563     z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
    564     return z;
    565 
    566 }
    567 
    568 /*----------------------------------------------------------------------------
    569 | Returns an approximation to the square root of the 32-bit significand given
    570 | by `a'.  Considered as an integer, `a' must be at least 2^31.  If bit 0 of
    571 | `aExp' (the least significant bit) is 1, the integer returned approximates
    572 | 2^31*sqrt(`a'/2^31), where `a' is considered an integer.  If bit 0 of `aExp'
    573 | is 0, the integer returned approximates 2^31*sqrt(`a'/2^30).  In either
    574 | case, the approximation returned lies strictly within +/-2 of the exact
    575 | value.
    576 *----------------------------------------------------------------------------*/
    577 
    578 static bits32 estimateSqrt32( int16 aExp, bits32 a )
    579 {
    580     static const bits16 sqrtOddAdjustments[] = {
    581         0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
    582         0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
    583     };
    584     static const bits16 sqrtEvenAdjustments[] = {
    585         0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
    586         0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
    587     };
    588     int8 index;
    589     bits32 z;
    590 
    591     index = ( a>>27 ) & 15;
    592     if ( aExp & 1 ) {
    593         z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ (int)index ];
    594         z = ( ( a / z )<<14 ) + ( z<<15 );
    595         a >>= 1;
    596     }
    597     else {
    598         z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ (int)index ];
    599         z = a / z + z;
    600         z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
    601         if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
    602     }
    603     return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
    604 
    605 }
    606 
    607 /*----------------------------------------------------------------------------
    608 | Returns the number of leading 0 bits before the most-significant 1 bit of
    609 | `a'.  If `a' is zero, 32 is returned.
    610 *----------------------------------------------------------------------------*/
    611 
    612 static int8 countLeadingZeros32( bits32 a )
    613 {
    614     static const int8 countLeadingZerosHigh[] = {
    615         8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
    616         3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    617         2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    618         2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    619         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    620         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    621         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    622         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    623         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    624         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    625         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    626         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    627         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    628         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    629         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    630         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    631     };
    632     int8 shiftCount;
    633 
    634     shiftCount = 0;
    635     if ( a < 0x10000 ) {
    636         shiftCount += 16;
    637         a <<= 16;
    638     }
    639     if ( a < 0x1000000 ) {
    640         shiftCount += 8;
    641         a <<= 8;
    642     }
    643     shiftCount += countLeadingZerosHigh[ a>>24 ];
    644     return shiftCount;
    645 
    646 }
    647 
    648 /*----------------------------------------------------------------------------
    649 | Returns the number of leading 0 bits before the most-significant 1 bit of
    650 | `a'.  If `a' is zero, 64 is returned.
    651 *----------------------------------------------------------------------------*/
    652 
    653 static int8 countLeadingZeros64( bits64 a )
    654 {
    655     int8 shiftCount;
    656 
    657     shiftCount = 0;
    658     if ( a < ( (bits64) 1 )<<32 ) {
    659         shiftCount += 32;
    660     }
    661     else {
    662         a >>= 32;
    663     }
    664     shiftCount += countLeadingZeros32( a );
    665     return shiftCount;
    666 
    667 }
    668 
    669 /*----------------------------------------------------------------------------
    670 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
    671 | is equal to the 128-bit value formed by concatenating `b0' and `b1'.
    672 | Otherwise, returns 0.
    673 *----------------------------------------------------------------------------*/
    674 
    675 INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
    676 {
    677 
    678     return ( a0 == b0 ) && ( a1 == b1 );
    679 
    680 }
    681 
    682 /*----------------------------------------------------------------------------
    683 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
    684 | than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
    685 | Otherwise, returns 0.
    686 *----------------------------------------------------------------------------*/
    687 
    688 INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
    689 {
    690 
    691     return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
    692 
    693 }
    694 
    695 /*----------------------------------------------------------------------------
    696 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
    697 | than the 128-bit value formed by concatenating `b0' and `b1'.  Otherwise,
    698 | returns 0.
    699 *----------------------------------------------------------------------------*/
    700 
    701 INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
    702 {
    703 
    704     return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
    705 
    706 }
    707 
    708 /*----------------------------------------------------------------------------
    709 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
    710 | not equal to the 128-bit value formed by concatenating `b0' and `b1'.
    711 | Otherwise, returns 0.
    712 *----------------------------------------------------------------------------*/
    713 
    714 INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
    715 {
    716 
    717     return ( a0 != b0 ) || ( a1 != b1 );
    718 
    719 }
    720