Home | History | Annotate | Download | only in Expressions
      1 /* The contents of this file are subject to the Netscape Public
      2  * License Version 1.1 (the "License"); you may not use this file
      3  * except in compliance with the License. You may obtain a copy of
      4  * the License at http://www.mozilla.org/NPL/
      5  *
      6  * Software distributed under the License is distributed on an "AS
      7  * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
      8  * implied. See the License for the specific language governing
      9  * rights and limitations under the License.
     10  *
     11  * The Original Code is Mozilla Communicator client code, released March
     12  * 31, 1998.
     13  *
     14  * The Initial Developer of the Original Code is Netscape Communications
     15  * Corporation. Portions created by Netscape are
     16  * Copyright (C) 1998 Netscape Communications Corporation. All
     17  * Rights Reserved.
     18  *
     19  * Contributor(s):
     20  *
     21  */
     22 /**
     23     File Name:          11.5.3.js
     24     ECMA Section:       11.5.3 Applying the % operator
     25     Description:
     26 
     27     The binary % operator is said to yield the remainder of its operands from
     28     an implied division; the left operand is the dividend and the right operand
     29     is the divisor. In C and C++, the remainder operator accepts only integral
     30     operands, but in ECMAScript, it also accepts floating-point operands.
     31 
     32     The result of a floating-point remainder operation as computed by the %
     33     operator is not the same as the "remainder" operation defined by IEEE 754.
     34     The IEEE 754 "remainder" operation computes the remainder from a rounding
     35     division, not a truncating division, and so its behavior is not analogous
     36     to that of the usual integer remainder operator. Instead the ECMAScript
     37     language defines % on floating-point operations to behave in a manner
     38     analogous to that of the Java integer remainder operator; this may be
     39     compared with the C library function fmod.
     40 
     41     The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
     42 
     43       If either operand is NaN, the result is NaN.
     44       The sign of the result equals the sign of the dividend.
     45       If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
     46       If the dividend is finite and the divisor is an infinity, the result equals the dividend.
     47       If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
     48       In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
     49       from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
     50       is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
     51       possible without exceeding the magnitude of the true mathematical quotient of n and d.
     52 
     53     Author:             christine (at) netscape.com
     54     Date:               12 november 1997
     55 */
     56     var SECTION = "11.5.3";
     57     var VERSION = "ECMA_1";
     58     startTest();
     59     var testcases = getTestCases();
     60     var BUGNUMBER="111202";
     61 
     62     writeHeaderToLog( SECTION + " Applying the % operator");
     63     test();
     64 
     65 function test() {
     66     for ( tc=0; tc < testcases.length; tc++ ) {
     67         testcases[tc].passed = writeTestCaseResult(
     68                             testcases[tc].expect,
     69                             testcases[tc].actual,
     70                             testcases[tc].description +" = "+
     71                             testcases[tc].actual );
     72 
     73         testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value ";
     74     }
     75     stopTest();
     76     return ( testcases );
     77 }
     78 function getTestCases() {
     79     var array = new Array();
     80     var item = 0;
     81 
     82    // if either operand is NaN, the result is NaN.
     83 
     84     array[item++] = new TestCase( SECTION,    "Number.NaN % Number.NaN",    Number.NaN,     Number.NaN % Number.NaN );
     85     array[item++] = new TestCase( SECTION,    "Number.NaN % 1",             Number.NaN,     Number.NaN % 1 );
     86     array[item++] = new TestCase( SECTION,    "1 % Number.NaN",             Number.NaN,     1 % Number.NaN );
     87 
     88     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NaN",    Number.NaN,     Number.POSITIVE_INFINITY % Number.NaN );
     89     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NaN",    Number.NaN,     Number.NEGATIVE_INFINITY % Number.NaN );
     90 
     91     //  If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
     92     //  dividend is an infinity
     93 
     94     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
     95     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
     96     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
     97     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
     98 
     99     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 0",   Number.NaN,     Number.POSITIVE_INFINITY % 0 );
    100     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 0",   Number.NaN,     Number.NEGATIVE_INFINITY % 0 );
    101     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -0",  Number.NaN,     Number.POSITIVE_INFINITY % -0 );
    102     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -0",  Number.NaN,     Number.NEGATIVE_INFINITY % -0 );
    103 
    104     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 1 ",  Number.NaN,     Number.NEGATIVE_INFINITY % 1 );
    105     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -1 ", Number.NaN,     Number.NEGATIVE_INFINITY % -1 );
    106     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 1 ",  Number.NaN,     Number.POSITIVE_INFINITY % 1 );
    107     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -1 ", Number.NaN,     Number.POSITIVE_INFINITY % -1 );
    108 
    109     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
    110     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
    111     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.POSITIVE_INFINITY % Number.MAX_VALUE );
    112     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
    113 
    114     // divisor is 0
    115     array[item++] = new TestCase( SECTION,    "0 % -0",                         Number.NaN,     0 % -0 );
    116     array[item++] = new TestCase( SECTION,    "-0 % 0",                         Number.NaN,     -0 % 0 );
    117     array[item++] = new TestCase( SECTION,    "-0 % -0",                        Number.NaN,     -0 % -0 );
    118     array[item++] = new TestCase( SECTION,    "0 % 0",                          Number.NaN,     0 % 0 );
    119 
    120     array[item++] = new TestCase( SECTION,    "1 % 0",                          Number.NaN,   1%0 );
    121     array[item++] = new TestCase( SECTION,    "1 % -0",                         Number.NaN,   1%-0 );
    122     array[item++] = new TestCase( SECTION,    "-1 % 0",                         Number.NaN,   -1%0 );
    123     array[item++] = new TestCase( SECTION,    "-1 % -0",                        Number.NaN,   -1%-0 );
    124 
    125     array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % 0",           Number.NaN,   Number.MAX_VALUE%0 );
    126     array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % -0",          Number.NaN,   Number.MAX_VALUE%-0 );
    127     array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % 0",          Number.NaN,   -Number.MAX_VALUE%0 );
    128     array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % -0",         Number.NaN,   -Number.MAX_VALUE%-0 );
    129 
    130     // If the dividend is finite and the divisor is an infinity, the result equals the dividend.
    131 
    132     array[item++] = new TestCase( SECTION,    "1 % Number.NEGATIVE_INFINITY",   1,              1 % Number.NEGATIVE_INFINITY );
    133     array[item++] = new TestCase( SECTION,    "1 % Number.POSITIVE_INFINITY",   1,              1 % Number.POSITIVE_INFINITY );
    134     array[item++] = new TestCase( SECTION,    "-1 % Number.POSITIVE_INFINITY",  -1,             -1 % Number.POSITIVE_INFINITY );
    135     array[item++] = new TestCase( SECTION,    "-1 % Number.NEGATIVE_INFINITY",  -1,             -1 % Number.NEGATIVE_INFINITY );
    136 
    137     array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % Number.NEGATIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
    138     array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % Number.POSITIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.POSITIVE_INFINITY );
    139     array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % Number.POSITIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
    140     array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
    141 
    142     array[item++] = new TestCase( SECTION,    "0 % Number.POSITIVE_INFINITY",   0, 0 % Number.POSITIVE_INFINITY );
    143     array[item++] = new TestCase( SECTION,    "0 % Number.NEGATIVE_INFINITY",   0, 0 % Number.NEGATIVE_INFINITY );
    144     array[item++] = new TestCase( SECTION,    "-0 % Number.POSITIVE_INFINITY",  -0,   -0 % Number.POSITIVE_INFINITY );
    145     array[item++] = new TestCase( SECTION,    "-0 % Number.NEGATIVE_INFINITY",  -0,   -0 % Number.NEGATIVE_INFINITY );
    146 
    147     // If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
    148 
    149     array[item++] = new TestCase( SECTION,    "0 % 1",                          0,              0 % 1 );
    150     array[item++] = new TestCase( SECTION,    "0 % -1",                        -0,              0 % -1 );
    151     array[item++] = new TestCase( SECTION,    "-0 % 1",                        -0,              -0 % 1 );
    152     array[item++] = new TestCase( SECTION,    "-0 % -1",                       0,               -0 % -1 );
    153 
    154 //        In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
    155 //      from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
    156 //      is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
    157 //      possible without exceeding the magnitude of the true mathematical quotient of n and d.
    158 
    159     return ( array );
    160 }
    161