Home | History | Annotate | Download | only in mips
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef  V8_MIPS_CONSTANTS_H_
     29 #define  V8_MIPS_CONSTANTS_H_
     30 
     31 #include "checks.h"
     32 
     33 // UNIMPLEMENTED_ macro for MIPS.
     34 #define UNIMPLEMENTED_MIPS()                                                  \
     35   v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n",    \
     36                        __FILE__, __LINE__, __func__)
     37 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
     38 
     39 
     40 // Defines constants and accessor classes to assemble, disassemble and
     41 // simulate MIPS32 instructions.
     42 //
     43 // See: MIPS32 Architecture For Programmers
     44 //      Volume II: The MIPS32 Instruction Set
     45 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
     46 
     47 namespace assembler {
     48 namespace mips {
     49 
     50 // -----------------------------------------------------------------------------
     51 // Registers and FPURegister.
     52 
     53 // Number of general purpose registers.
     54 static const int kNumRegisters = 32;
     55 static const int kInvalidRegister = -1;
     56 
     57 // Number of registers with HI, LO, and pc.
     58 static const int kNumSimuRegisters = 35;
     59 
     60 // In the simulator, the PC register is simulated as the 34th register.
     61 static const int kPCRegister = 34;
     62 
     63 // Number coprocessor registers.
     64 static const int kNumFPURegister = 32;
     65 static const int kInvalidFPURegister = -1;
     66 
     67 // Helper functions for converting between register numbers and names.
     68 class Registers {
     69  public:
     70   // Return the name of the register.
     71   static const char* Name(int reg);
     72 
     73   // Lookup the register number for the name provided.
     74   static int Number(const char* name);
     75 
     76   struct RegisterAlias {
     77     int reg;
     78     const char *name;
     79   };
     80 
     81   static const int32_t kMaxValue = 0x7fffffff;
     82   static const int32_t kMinValue = 0x80000000;
     83 
     84  private:
     85 
     86   static const char* names_[kNumSimuRegisters];
     87   static const RegisterAlias aliases_[];
     88 };
     89 
     90 // Helper functions for converting between register numbers and names.
     91 class FPURegister {
     92  public:
     93   // Return the name of the register.
     94   static const char* Name(int reg);
     95 
     96   // Lookup the register number for the name provided.
     97   static int Number(const char* name);
     98 
     99   struct RegisterAlias {
    100     int creg;
    101     const char *name;
    102   };
    103 
    104  private:
    105 
    106   static const char* names_[kNumFPURegister];
    107   static const RegisterAlias aliases_[];
    108 };
    109 
    110 
    111 // -----------------------------------------------------------------------------
    112 // Instructions encoding constants.
    113 
    114 // On MIPS all instructions are 32 bits.
    115 typedef int32_t Instr;
    116 
    117 typedef unsigned char byte_;
    118 
    119 // Special Software Interrupt codes when used in the presence of the MIPS
    120 // simulator.
    121 enum SoftwareInterruptCodes {
    122   // Transition to C code.
    123   call_rt_redirected = 0xfffff
    124 };
    125 
    126 // ----- Fields offset and length.
    127 static const int kOpcodeShift   = 26;
    128 static const int kOpcodeBits    = 6;
    129 static const int kRsShift       = 21;
    130 static const int kRsBits        = 5;
    131 static const int kRtShift       = 16;
    132 static const int kRtBits        = 5;
    133 static const int kRdShift       = 11;
    134 static const int kRdBits        = 5;
    135 static const int kSaShift       = 6;
    136 static const int kSaBits        = 5;
    137 static const int kFunctionShift = 0;
    138 static const int kFunctionBits  = 6;
    139 
    140 static const int kImm16Shift = 0;
    141 static const int kImm16Bits  = 16;
    142 static const int kImm26Shift = 0;
    143 static const int kImm26Bits  = 26;
    144 
    145 static const int kFsShift       = 11;
    146 static const int kFsBits        = 5;
    147 static const int kFtShift       = 16;
    148 static const int kFtBits        = 5;
    149 
    150 // ----- Miscellianous useful masks.
    151 // Instruction bit masks.
    152 static const int  kOpcodeMask   = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
    153 static const int  kImm16Mask    = ((1 << kImm16Bits) - 1) << kImm16Shift;
    154 static const int  kImm26Mask    = ((1 << kImm26Bits) - 1) << kImm26Shift;
    155 static const int  kRsFieldMask  = ((1 << kRsBits) - 1) << kRsShift;
    156 static const int  kRtFieldMask  = ((1 << kRtBits) - 1) << kRtShift;
    157 static const int  kRdFieldMask  = ((1 << kRdBits) - 1) << kRdShift;
    158 static const int  kSaFieldMask  = ((1 << kSaBits) - 1) << kSaShift;
    159 static const int  kFunctionFieldMask =
    160     ((1 << kFunctionBits) - 1) << kFunctionShift;
    161 // Misc masks.
    162 static const int  HIMask        =   0xffff << 16;
    163 static const int  LOMask        =   0xffff;
    164 static const int  signMask      =   0x80000000;
    165 
    166 
    167 // ----- MIPS Opcodes and Function Fields.
    168 // We use this presentation to stay close to the table representation in
    169 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
    170 enum Opcode {
    171   SPECIAL   =   0 << kOpcodeShift,
    172   REGIMM    =   1 << kOpcodeShift,
    173 
    174   J         =   ((0 << 3) + 2) << kOpcodeShift,
    175   JAL       =   ((0 << 3) + 3) << kOpcodeShift,
    176   BEQ       =   ((0 << 3) + 4) << kOpcodeShift,
    177   BNE       =   ((0 << 3) + 5) << kOpcodeShift,
    178   BLEZ      =   ((0 << 3) + 6) << kOpcodeShift,
    179   BGTZ      =   ((0 << 3) + 7) << kOpcodeShift,
    180 
    181   ADDI      =   ((1 << 3) + 0) << kOpcodeShift,
    182   ADDIU     =   ((1 << 3) + 1) << kOpcodeShift,
    183   SLTI      =   ((1 << 3) + 2) << kOpcodeShift,
    184   SLTIU     =   ((1 << 3) + 3) << kOpcodeShift,
    185   ANDI      =   ((1 << 3) + 4) << kOpcodeShift,
    186   ORI       =   ((1 << 3) + 5) << kOpcodeShift,
    187   XORI      =   ((1 << 3) + 6) << kOpcodeShift,
    188   LUI       =   ((1 << 3) + 7) << kOpcodeShift,
    189 
    190   COP1      =   ((2 << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class
    191   BEQL      =   ((2 << 3) + 4) << kOpcodeShift,
    192   BNEL      =   ((2 << 3) + 5) << kOpcodeShift,
    193   BLEZL     =   ((2 << 3) + 6) << kOpcodeShift,
    194   BGTZL     =   ((2 << 3) + 7) << kOpcodeShift,
    195 
    196   SPECIAL2  =   ((3 << 3) + 4) << kOpcodeShift,
    197 
    198   LB        =   ((4 << 3) + 0) << kOpcodeShift,
    199   LW        =   ((4 << 3) + 3) << kOpcodeShift,
    200   LBU       =   ((4 << 3) + 4) << kOpcodeShift,
    201   SB        =   ((5 << 3) + 0) << kOpcodeShift,
    202   SW        =   ((5 << 3) + 3) << kOpcodeShift,
    203 
    204   LWC1      =   ((6 << 3) + 1) << kOpcodeShift,
    205   LDC1      =   ((6 << 3) + 5) << kOpcodeShift,
    206 
    207   SWC1      =   ((7 << 3) + 1) << kOpcodeShift,
    208   SDC1      =   ((7 << 3) + 5) << kOpcodeShift
    209 };
    210 
    211 enum SecondaryField {
    212   // SPECIAL Encoding of Function Field.
    213   SLL       =   ((0 << 3) + 0),
    214   SRL       =   ((0 << 3) + 2),
    215   SRA       =   ((0 << 3) + 3),
    216   SLLV      =   ((0 << 3) + 4),
    217   SRLV      =   ((0 << 3) + 6),
    218   SRAV      =   ((0 << 3) + 7),
    219 
    220   JR        =   ((1 << 3) + 0),
    221   JALR      =   ((1 << 3) + 1),
    222   BREAK     =   ((1 << 3) + 5),
    223 
    224   MFHI      =   ((2 << 3) + 0),
    225   MFLO      =   ((2 << 3) + 2),
    226 
    227   MULT      =   ((3 << 3) + 0),
    228   MULTU     =   ((3 << 3) + 1),
    229   DIV       =   ((3 << 3) + 2),
    230   DIVU      =   ((3 << 3) + 3),
    231 
    232   ADD       =   ((4 << 3) + 0),
    233   ADDU      =   ((4 << 3) + 1),
    234   SUB       =   ((4 << 3) + 2),
    235   SUBU      =   ((4 << 3) + 3),
    236   AND       =   ((4 << 3) + 4),
    237   OR        =   ((4 << 3) + 5),
    238   XOR       =   ((4 << 3) + 6),
    239   NOR       =   ((4 << 3) + 7),
    240 
    241   SLT       =   ((5 << 3) + 2),
    242   SLTU      =   ((5 << 3) + 3),
    243 
    244   TGE       =   ((6 << 3) + 0),
    245   TGEU      =   ((6 << 3) + 1),
    246   TLT       =   ((6 << 3) + 2),
    247   TLTU      =   ((6 << 3) + 3),
    248   TEQ       =   ((6 << 3) + 4),
    249   TNE       =   ((6 << 3) + 6),
    250 
    251   // SPECIAL2 Encoding of Function Field.
    252   MUL       =   ((0 << 3) + 2),
    253 
    254   // REGIMM  encoding of rt Field.
    255   BLTZ      =   ((0 << 3) + 0) << 16,
    256   BGEZ      =   ((0 << 3) + 1) << 16,
    257   BLTZAL    =   ((2 << 3) + 0) << 16,
    258   BGEZAL    =   ((2 << 3) + 1) << 16,
    259 
    260   // COP1 Encoding of rs Field.
    261   MFC1      =   ((0 << 3) + 0) << 21,
    262   MFHC1     =   ((0 << 3) + 3) << 21,
    263   MTC1      =   ((0 << 3) + 4) << 21,
    264   MTHC1     =   ((0 << 3) + 7) << 21,
    265   BC1       =   ((1 << 3) + 0) << 21,
    266   S         =   ((2 << 3) + 0) << 21,
    267   D         =   ((2 << 3) + 1) << 21,
    268   W         =   ((2 << 3) + 4) << 21,
    269   L         =   ((2 << 3) + 5) << 21,
    270   PS        =   ((2 << 3) + 6) << 21,
    271   // COP1 Encoding of Function Field When rs=S.
    272   CVT_D_S   =   ((4 << 3) + 1),
    273   CVT_W_S   =   ((4 << 3) + 4),
    274   CVT_L_S   =   ((4 << 3) + 5),
    275   CVT_PS_S  =   ((4 << 3) + 6),
    276   // COP1 Encoding of Function Field When rs=D.
    277   CVT_S_D   =   ((4 << 3) + 0),
    278   CVT_W_D   =   ((4 << 3) + 4),
    279   CVT_L_D   =   ((4 << 3) + 5),
    280   // COP1 Encoding of Function Field When rs=W or L.
    281   CVT_S_W   =   ((4 << 3) + 0),
    282   CVT_D_W   =   ((4 << 3) + 1),
    283   CVT_S_L   =   ((4 << 3) + 0),
    284   CVT_D_L   =   ((4 << 3) + 1),
    285   // COP1 Encoding of Function Field When rs=PS.
    286 
    287   NULLSF    =   0
    288 };
    289 
    290 
    291 // ----- Emulated conditions.
    292 // On MIPS we use this enum to abstract from conditionnal branch instructions.
    293 // the 'U' prefix is used to specify unsigned comparisons.
    294 enum Condition {
    295   // Any value < 0 is considered no_condition.
    296   no_condition  = -1,
    297 
    298   overflow      =  0,
    299   no_overflow   =  1,
    300   Uless         =  2,
    301   Ugreater_equal=  3,
    302   equal         =  4,
    303   not_equal     =  5,
    304   Uless_equal   =  6,
    305   Ugreater      =  7,
    306   negative      =  8,
    307   positive      =  9,
    308   parity_even   = 10,
    309   parity_odd    = 11,
    310   less          = 12,
    311   greater_equal = 13,
    312   less_equal    = 14,
    313   greater       = 15,
    314 
    315   cc_always     = 16,
    316 
    317   // aliases
    318   carry         = Uless,
    319   not_carry     = Ugreater_equal,
    320   zero          = equal,
    321   eq            = equal,
    322   not_zero      = not_equal,
    323   ne            = not_equal,
    324   sign          = negative,
    325   not_sign      = positive,
    326 
    327   cc_default    = no_condition
    328 };
    329 
    330 // ----- Coprocessor conditions.
    331 enum FPUCondition {
    332   F,    // False
    333   UN,   // Unordered
    334   EQ,   // Equal
    335   UEQ,  // Unordered or Equal
    336   OLT,  // Ordered or Less Than
    337   ULT,  // Unordered or Less Than
    338   OLE,  // Ordered or Less Than or Equal
    339   ULE   // Unordered or Less Than or Equal
    340 };
    341 
    342 
    343 // Break 0xfffff, reserved for redirected real time call.
    344 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
    345 // A nop instruction. (Encoding of sll 0 0 0).
    346 const Instr nopInstr = 0;
    347 
    348 class Instruction {
    349  public:
    350   enum {
    351     kInstructionSize = 4,
    352     kInstructionSizeLog2 = 2,
    353     // On MIPS PC cannot actually be directly accessed. We behave as if PC was
    354     // always the value of the current instruction being exectued.
    355     kPCReadOffset = 0
    356   };
    357 
    358   // Get the raw instruction bits.
    359   inline Instr InstructionBits() const {
    360     return *reinterpret_cast<const Instr*>(this);
    361   }
    362 
    363   // Set the raw instruction bits to value.
    364   inline void SetInstructionBits(Instr value) {
    365     *reinterpret_cast<Instr*>(this) = value;
    366   }
    367 
    368   // Read one particular bit out of the instruction bits.
    369   inline int Bit(int nr) const {
    370     return (InstructionBits() >> nr) & 1;
    371   }
    372 
    373   // Read a bit field out of the instruction bits.
    374   inline int Bits(int hi, int lo) const {
    375     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
    376   }
    377 
    378   // Instruction type.
    379   enum Type {
    380     kRegisterType,
    381     kImmediateType,
    382     kJumpType,
    383     kUnsupported = -1
    384   };
    385 
    386   // Get the encoding type of the instruction.
    387   Type InstructionType() const;
    388 
    389 
    390   // Accessors for the different named fields used in the MIPS encoding.
    391   inline Opcode OpcodeField() const {
    392     return static_cast<Opcode>(
    393         Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
    394   }
    395 
    396   inline int RsField() const {
    397     ASSERT(InstructionType() == kRegisterType ||
    398            InstructionType() == kImmediateType);
    399     return Bits(kRsShift + kRsBits - 1, kRsShift);
    400   }
    401 
    402   inline int RtField() const {
    403     ASSERT(InstructionType() == kRegisterType ||
    404            InstructionType() == kImmediateType);
    405     return Bits(kRtShift + kRtBits - 1, kRtShift);
    406   }
    407 
    408   inline int RdField() const {
    409     ASSERT(InstructionType() == kRegisterType);
    410     return Bits(kRdShift + kRdBits - 1, kRdShift);
    411   }
    412 
    413   inline int SaField() const {
    414     ASSERT(InstructionType() == kRegisterType);
    415     return Bits(kSaShift + kSaBits - 1, kSaShift);
    416   }
    417 
    418   inline int FunctionField() const {
    419     ASSERT(InstructionType() == kRegisterType ||
    420            InstructionType() == kImmediateType);
    421     return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
    422   }
    423 
    424   inline int FsField() const {
    425     return Bits(kFsShift + kRsBits - 1, kFsShift);
    426   }
    427 
    428   inline int FtField() const {
    429     return Bits(kFtShift + kRsBits - 1, kFtShift);
    430   }
    431 
    432   // Return the fields at their original place in the instruction encoding.
    433   inline Opcode OpcodeFieldRaw() const {
    434     return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
    435   }
    436 
    437   inline int RsFieldRaw() const {
    438     ASSERT(InstructionType() == kRegisterType ||
    439            InstructionType() == kImmediateType);
    440     return InstructionBits() & kRsFieldMask;
    441   }
    442 
    443   inline int RtFieldRaw() const {
    444     ASSERT(InstructionType() == kRegisterType ||
    445            InstructionType() == kImmediateType);
    446     return InstructionBits() & kRtFieldMask;
    447   }
    448 
    449   inline int RdFieldRaw() const {
    450     ASSERT(InstructionType() == kRegisterType);
    451     return InstructionBits() & kRdFieldMask;
    452   }
    453 
    454   inline int SaFieldRaw() const {
    455     ASSERT(InstructionType() == kRegisterType);
    456     return InstructionBits() & kSaFieldMask;
    457   }
    458 
    459   inline int FunctionFieldRaw() const {
    460     return InstructionBits() & kFunctionFieldMask;
    461   }
    462 
    463   // Get the secondary field according to the opcode.
    464   inline int SecondaryField() const {
    465     Opcode op = OpcodeFieldRaw();
    466     switch (op) {
    467       case SPECIAL:
    468       case SPECIAL2:
    469         return FunctionField();
    470       case COP1:
    471         return RsField();
    472       case REGIMM:
    473         return RtField();
    474       default:
    475         return NULLSF;
    476     }
    477   }
    478 
    479   inline int32_t Imm16Field() const {
    480     ASSERT(InstructionType() == kImmediateType);
    481     return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
    482   }
    483 
    484   inline int32_t Imm26Field() const {
    485     ASSERT(InstructionType() == kJumpType);
    486     return Bits(kImm16Shift + kImm26Bits - 1, kImm26Shift);
    487   }
    488 
    489   // Say if the instruction should not be used in a branch delay slot.
    490   bool IsForbiddenInBranchDelay();
    491   // Say if the instruction 'links'. eg: jal, bal.
    492   bool IsLinkingInstruction();
    493   // Say if the instruction is a break or a trap.
    494   bool IsTrap();
    495 
    496   // Instructions are read of out a code stream. The only way to get a
    497   // reference to an instruction is to convert a pointer. There is no way
    498   // to allocate or create instances of class Instruction.
    499   // Use the At(pc) function to create references to Instruction.
    500   static Instruction* At(byte_* pc) {
    501     return reinterpret_cast<Instruction*>(pc);
    502   }
    503 
    504  private:
    505   // We need to prevent the creation of instances of class Instruction.
    506   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
    507 };
    508 
    509 
    510 // -----------------------------------------------------------------------------
    511 // MIPS assembly various constants.
    512 
    513 static const int kArgsSlotsSize  = 4 * Instruction::kInstructionSize;
    514 static const int kArgsSlotsNum   = 4;
    515 
    516 static const int kBranchReturnOffset = 2 * Instruction::kInstructionSize;
    517 
    518 static const int kDoubleAlignment = 2 * 8;
    519 static const int kDoubleAlignmentMask = kDoubleAlignmentMask - 1;
    520 
    521 
    522 } }   // namespace assembler::mips
    523 
    524 #endif    // #ifndef V8_MIPS_CONSTANTS_H_
    525 
    526