Home | History | Annotate | Download | only in jpeg
      1 /*
      2  * jdcoefct.c
      3  *
      4  * Copyright (C) 1994-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the coefficient buffer controller for decompression.
      9  * This controller is the top level of the JPEG decompressor proper.
     10  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
     11  *
     12  * In buffered-image mode, this controller is the interface between
     13  * input-oriented processing and output-oriented processing.
     14  * Also, the input side (only) is used when reading a file for transcoding.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 
     21 /* Block smoothing is only applicable for progressive JPEG, so: */
     22 #ifndef D_PROGRESSIVE_SUPPORTED
     23 #undef BLOCK_SMOOTHING_SUPPORTED
     24 #endif
     25 
     26 /* Private buffer controller object */
     27 
     28 typedef struct {
     29   struct jpeg_d_coef_controller pub; /* public fields */
     30 
     31   /* These variables keep track of the current location of the input side. */
     32   /* cinfo->input_iMCU_row is also used for this. */
     33   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
     34   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
     35   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
     36 
     37   /* The output side's location is represented by cinfo->output_iMCU_row. */
     38 
     39   /* In single-pass modes, it's sufficient to buffer just one MCU.
     40    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
     41    * and let the entropy decoder write into that workspace each time.
     42    * (On 80x86, the workspace is FAR even though it's not really very big;
     43    * this is to keep the module interfaces unchanged when a large coefficient
     44    * buffer is necessary.)
     45    * In multi-pass modes, this array points to the current MCU's blocks
     46    * within the virtual arrays; it is used only by the input side.
     47    */
     48   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
     49 
     50 #ifdef D_MULTISCAN_FILES_SUPPORTED
     51   /* In multi-pass modes, we need a virtual block array for each component. */
     52   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
     53 #endif
     54 
     55 #ifdef BLOCK_SMOOTHING_SUPPORTED
     56   /* When doing block smoothing, we latch coefficient Al values here */
     57   int * coef_bits_latch;
     58 #define SAVED_COEFS  6		/* we save coef_bits[0..5] */
     59 #endif
     60 } my_coef_controller;
     61 
     62 typedef my_coef_controller * my_coef_ptr;
     63 
     64 /* Forward declarations */
     65 METHODDEF(int) decompress_onepass
     66 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     67 #ifdef D_MULTISCAN_FILES_SUPPORTED
     68 METHODDEF(int) decompress_data
     69 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     70 #endif
     71 #ifdef BLOCK_SMOOTHING_SUPPORTED
     72 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
     73 METHODDEF(int) decompress_smooth_data
     74 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     75 #endif
     76 
     77 
     78 LOCAL(void)
     79 start_iMCU_row (j_decompress_ptr cinfo)
     80 /* Reset within-iMCU-row counters for a new row (input side) */
     81 {
     82   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     83 
     84   /* In an interleaved scan, an MCU row is the same as an iMCU row.
     85    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
     86    * But at the bottom of the image, process only what's left.
     87    */
     88   if (cinfo->comps_in_scan > 1) {
     89     coef->MCU_rows_per_iMCU_row = 1;
     90   } else {
     91     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
     92       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
     93     else
     94       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
     95   }
     96 
     97   coef->MCU_ctr = 0;
     98   coef->MCU_vert_offset = 0;
     99 }
    100 
    101 
    102 /*
    103  * Initialize for an input processing pass.
    104  */
    105 
    106 METHODDEF(void)
    107 start_input_pass (j_decompress_ptr cinfo)
    108 {
    109   cinfo->input_iMCU_row = 0;
    110   start_iMCU_row(cinfo);
    111 }
    112 
    113 
    114 /*
    115  * Initialize for an output processing pass.
    116  */
    117 
    118 METHODDEF(void)
    119 start_output_pass (j_decompress_ptr cinfo)
    120 {
    121 #ifdef BLOCK_SMOOTHING_SUPPORTED
    122   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    123 
    124   /* If multipass, check to see whether to use block smoothing on this pass */
    125   if (coef->pub.coef_arrays != NULL) {
    126     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
    127       coef->pub.decompress_data = decompress_smooth_data;
    128     else
    129       coef->pub.decompress_data = decompress_data;
    130   }
    131 #endif
    132   cinfo->output_iMCU_row = 0;
    133 }
    134 
    135 
    136 /*
    137  * Decompress and return some data in the single-pass case.
    138  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    139  * Input and output must run in lockstep since we have only a one-MCU buffer.
    140  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    141  *
    142  * NB: output_buf contains a plane for each component in image,
    143  * which we index according to the component's SOF position.
    144  */
    145 
    146 METHODDEF(int)
    147 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    148 {
    149   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    150   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    151   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
    152   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    153   int blkn, ci, xindex, yindex, yoffset, useful_width;
    154   JSAMPARRAY output_ptr;
    155   JDIMENSION start_col, output_col;
    156   jpeg_component_info *compptr;
    157   inverse_DCT_method_ptr inverse_DCT;
    158 
    159 #ifdef ANDROID_TILE_BASED_DECODE
    160   if (cinfo->tile_decode) {
    161     last_MCU_col =
    162         (cinfo->coef->MCU_column_right_boundary -
    163          cinfo->coef->MCU_column_left_boundary) - 1;
    164   }
    165 #endif
    166 
    167   /* Loop to process as much as one whole iMCU row */
    168   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    169        yoffset++) {
    170     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
    171 	 MCU_col_num++) {
    172       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
    173       if (MCU_col_num < coef->pub.MCU_columns_to_skip) {
    174         (*cinfo->entropy->decode_mcu_discard_coef) (cinfo);
    175         continue;
    176       } else {
    177         jzero_far((void FAR *) coef->MCU_buffer[0],
    178 		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
    179         if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    180 	  /* Suspension forced; update state counters and exit */
    181 	  coef->MCU_vert_offset = yoffset;
    182 	  coef->MCU_ctr = MCU_col_num;
    183 	  return JPEG_SUSPENDED;
    184         }
    185       }
    186       /* Determine where data should go in output_buf and do the IDCT thing.
    187        * We skip dummy blocks at the right and bottom edges (but blkn gets
    188        * incremented past them!).  Note the inner loop relies on having
    189        * allocated the MCU_buffer[] blocks sequentially.
    190        */
    191       blkn = 0;			/* index of current DCT block within MCU */
    192       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    193 	compptr = cinfo->cur_comp_info[ci];
    194 	/* Don't bother to IDCT an uninteresting component. */
    195 	if (! compptr->component_needed) {
    196 	  blkn += compptr->MCU_blocks;
    197 	  continue;
    198 	}
    199 	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
    200 	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    201 						    : compptr->last_col_width;
    202 	output_ptr = output_buf[compptr->component_index] +
    203 	  yoffset * compptr->DCT_scaled_size;
    204 	start_col = MCU_col_num * compptr->MCU_sample_width;
    205 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    206 	  if (cinfo->input_iMCU_row < last_iMCU_row ||
    207 	      yoffset+yindex < compptr->last_row_height) {
    208 	    output_col = start_col;
    209 	    for (xindex = 0; xindex < useful_width; xindex++) {
    210 	      (*inverse_DCT) (cinfo, compptr,
    211 		        (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
    212 		        output_ptr, output_col);
    213 	      output_col += compptr->DCT_scaled_size;
    214 	    }
    215 	  }
    216 	  blkn += compptr->MCU_width;
    217 	  output_ptr += compptr->DCT_scaled_size;
    218 	}
    219       }
    220     }
    221     /* Completed an MCU row, but perhaps not an iMCU row */
    222     coef->MCU_ctr = 0;
    223   }
    224   /* Completed the iMCU row, advance counters for next one */
    225   cinfo->output_iMCU_row++;
    226   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    227     start_iMCU_row(cinfo);
    228     return JPEG_ROW_COMPLETED;
    229   }
    230   /* Completed the scan */
    231   (*cinfo->inputctl->finish_input_pass) (cinfo);
    232   return JPEG_SCAN_COMPLETED;
    233 }
    234 
    235 
    236 /*
    237  * Dummy consume-input routine for single-pass operation.
    238  */
    239 
    240 METHODDEF(int)
    241 dummy_consume_data (j_decompress_ptr cinfo)
    242 {
    243   return JPEG_SUSPENDED;	/* Always indicate nothing was done */
    244 }
    245 
    246 #ifdef D_MULTISCAN_FILES_SUPPORTED
    247 /*
    248  * Consume input data and store it in the full-image coefficient buffer.
    249  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
    250  * ie, v_samp_factor block rows for each component in the scan.
    251  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    252  */
    253 
    254 METHODDEF(int)
    255 consume_data (j_decompress_ptr cinfo)
    256 {
    257   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    258   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    259   int blkn, ci, xindex, yindex, yoffset;
    260   JDIMENSION start_col;
    261   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    262   JBLOCKROW buffer_ptr;
    263   jpeg_component_info *compptr;
    264 
    265   /* Align the virtual buffers for the components used in this scan. */
    266   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    267     compptr = cinfo->cur_comp_info[ci];
    268     buffer[ci] = (*cinfo->mem->access_virt_barray)
    269       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    270        cinfo->tile_decode ? 0 : cinfo->input_iMCU_row * compptr->v_samp_factor,
    271        (JDIMENSION) compptr->v_samp_factor, TRUE);
    272     /* Note: entropy decoder expects buffer to be zeroed,
    273      * but this is handled automatically by the memory manager
    274      * because we requested a pre-zeroed array.
    275      */
    276   }
    277   unsigned int MCUs_per_row = cinfo->MCUs_per_row;
    278 #ifdef ANDROID_TILE_BASED_DECODE
    279   if (cinfo->tile_decode) {
    280     MCUs_per_row = jmin(MCUs_per_row,
    281         (cinfo->coef->column_right_boundary - cinfo->coef->column_left_boundary)
    282         * cinfo->entropy->index->MCU_sample_size * cinfo->max_h_samp_factor);
    283   }
    284 #endif
    285 
    286   /* Loop to process one whole iMCU row */
    287   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    288        yoffset++) {
    289 #ifdef ANDROID_TILE_BASED_DECODE
    290     if (cinfo->tile_decode) {
    291       huffman_scan_header scan_header =
    292             cinfo->entropy->index->scan[cinfo->input_scan_number];
    293       int col_offset = cinfo->coef->column_left_boundary;
    294       (*cinfo->entropy->configure_huffman_decoder) (cinfo,
    295               scan_header.offset[cinfo->input_iMCU_row]
    296               [col_offset + yoffset * scan_header.MCUs_per_row]);
    297     }
    298 #endif
    299     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < MCUs_per_row;
    300 	 MCU_col_num++) {
    301       /* Construct list of pointers to DCT blocks belonging to this MCU */
    302       blkn = 0;			/* index of current DCT block within MCU */
    303       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    304         compptr = cinfo->cur_comp_info[ci];
    305         start_col = MCU_col_num * compptr->MCU_width;
    306         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    307           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    308           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    309             coef->MCU_buffer[blkn++] = buffer_ptr++;
    310 #ifdef ANDROID_TILE_BASED_DECODE
    311             if (cinfo->tile_decode && cinfo->input_scan_number == 0) {
    312               // need to do pre-zero ourself.
    313               jzero_far((void FAR *) coef->MCU_buffer[blkn-1],
    314                         (size_t) (SIZEOF(JBLOCK)));
    315             }
    316 #endif
    317           }
    318         }
    319       }
    320       /* Try to fetch the MCU. */
    321       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    322 	/* Suspension forced; update state counters and exit */
    323 	coef->MCU_vert_offset = yoffset;
    324 	coef->MCU_ctr = MCU_col_num;
    325 	return JPEG_SUSPENDED;
    326       }
    327     }
    328     /* Completed an MCU row, but perhaps not an iMCU row */
    329     coef->MCU_ctr = 0;
    330   }
    331   /* Completed the iMCU row, advance counters for next one */
    332   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    333     start_iMCU_row(cinfo);
    334     return JPEG_ROW_COMPLETED;
    335   }
    336   /* Completed the scan */
    337   (*cinfo->inputctl->finish_input_pass) (cinfo);
    338   return JPEG_SCAN_COMPLETED;
    339 }
    340 
    341 /*
    342  * Consume input data and store it in the coefficient buffer.
    343  * Read one fully interleaved MCU row ("iMCU" row) per call.
    344  */
    345 
    346 METHODDEF(int)
    347 consume_data_multi_scan (j_decompress_ptr cinfo)
    348 {
    349   huffman_index *index = cinfo->entropy->index;
    350   int i, retcode, ci;
    351   int mcu = cinfo->input_iMCU_row;
    352   jinit_phuff_decoder(cinfo);
    353   for (i = 0; i < index->scan_count; i++) {
    354     (*cinfo->inputctl->finish_input_pass) (cinfo);
    355     jset_input_stream_position(cinfo, index->scan[i].bitstream_offset);
    356     cinfo->output_iMCU_row = mcu;
    357     cinfo->unread_marker = 0;
    358     // Consume SOS and DHT headers
    359     retcode = (*cinfo->inputctl->consume_markers) (cinfo, index, i);
    360     cinfo->input_iMCU_row = mcu;
    361     cinfo->input_scan_number = i;
    362     cinfo->entropy->index = index;
    363     // Consume scan block data
    364     consume_data(cinfo);
    365   }
    366   cinfo->input_iMCU_row = mcu + 1;
    367   cinfo->input_scan_number = 0;
    368   cinfo->output_scan_number = 0;
    369   return JPEG_ROW_COMPLETED;
    370 }
    371 
    372 /*
    373  * Same as consume_data, expect for saving the Huffman decode information
    374  * - bitstream offset and DC coefficient to index.
    375  */
    376 
    377 METHODDEF(int)
    378 consume_data_build_huffman_index_baseline (j_decompress_ptr cinfo,
    379         huffman_index *index, int current_scan)
    380 {
    381   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    382   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    383   int ci, xindex, yindex, yoffset;
    384   JDIMENSION start_col;
    385   JBLOCKROW buffer_ptr;
    386 
    387   huffman_scan_header *scan_header = index->scan + current_scan;
    388   scan_header->MCU_rows_per_iMCU_row = coef->MCU_rows_per_iMCU_row;
    389 
    390   size_t allocate_size = coef->MCU_rows_per_iMCU_row
    391       * jdiv_round_up(cinfo->MCUs_per_row, index->MCU_sample_size)
    392       * sizeof(huffman_offset_data);
    393   scan_header->offset[cinfo->input_iMCU_row] =
    394         (huffman_offset_data*)malloc(allocate_size);
    395   index->mem_used += allocate_size;
    396 
    397   huffman_offset_data *offset_data = scan_header->offset[cinfo->input_iMCU_row];
    398 
    399   /* Loop to process one whole iMCU row */
    400   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    401        yoffset++) {
    402     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
    403 	 MCU_col_num++) {
    404       // Record huffman bit offset
    405       if (MCU_col_num % index->MCU_sample_size == 0) {
    406         (*cinfo->entropy->get_huffman_decoder_configuration)
    407                 (cinfo, offset_data);
    408         ++offset_data;
    409       }
    410 
    411       /* Try to fetch the MCU. */
    412       if (! (*cinfo->entropy->decode_mcu_discard_coef) (cinfo)) {
    413         /* Suspension forced; update state counters and exit */
    414         coef->MCU_vert_offset = yoffset;
    415         coef->MCU_ctr = MCU_col_num;
    416         return JPEG_SUSPENDED;
    417       }
    418     }
    419     /* Completed an MCU row, but perhaps not an iMCU row */
    420     coef->MCU_ctr = 0;
    421   }
    422   /* Completed the iMCU row, advance counters for next one */
    423   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    424     start_iMCU_row(cinfo);
    425     return JPEG_ROW_COMPLETED;
    426   }
    427   /* Completed the scan */
    428   (*cinfo->inputctl->finish_input_pass) (cinfo);
    429   return JPEG_SCAN_COMPLETED;
    430 }
    431 
    432 /*
    433  * Same as consume_data, expect for saving the Huffman decode information
    434  * - bitstream offset and DC coefficient to index.
    435  */
    436 
    437 METHODDEF(int)
    438 consume_data_build_huffman_index_progressive (j_decompress_ptr cinfo,
    439         huffman_index *index, int current_scan)
    440 {
    441   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    442   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    443   int blkn, ci, xindex, yindex, yoffset;
    444   JDIMENSION start_col;
    445   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    446   JBLOCKROW buffer_ptr;
    447   jpeg_component_info *compptr;
    448 
    449   int factor = 4; // maximum factor is 4.
    450   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    451     factor = jmin(factor, cinfo->cur_comp_info[ci]->h_samp_factor);
    452 
    453   int sample_size = index->MCU_sample_size * factor;
    454   huffman_scan_header *scan_header = index->scan + current_scan;
    455   scan_header->MCU_rows_per_iMCU_row = coef->MCU_rows_per_iMCU_row;
    456   scan_header->MCUs_per_row = jdiv_round_up(cinfo->MCUs_per_row, sample_size);
    457   scan_header->comps_in_scan = cinfo->comps_in_scan;
    458 
    459   size_t allocate_size = coef->MCU_rows_per_iMCU_row
    460       * scan_header->MCUs_per_row * sizeof(huffman_offset_data);
    461   scan_header->offset[cinfo->input_iMCU_row] =
    462         (huffman_offset_data*)malloc(allocate_size);
    463   index->mem_used += allocate_size;
    464 
    465   huffman_offset_data *offset_data = scan_header->offset[cinfo->input_iMCU_row];
    466 
    467   /* Align the virtual buffers for the components used in this scan. */
    468   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    469     compptr = cinfo->cur_comp_info[ci];
    470     buffer[ci] = (*cinfo->mem->access_virt_barray)
    471       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    472        0, // Only need one row buffer
    473        (JDIMENSION) compptr->v_samp_factor, TRUE);
    474   }
    475   /* Loop to process one whole iMCU row */
    476   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    477        yoffset++) {
    478     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
    479 	 MCU_col_num++) {
    480       /* For each MCU, we loop through different color components.
    481        * Then, for each color component we will get a list of pointers to DCT
    482        * blocks in the virtual buffer.
    483        */
    484       blkn = 0; /* index of current DCT block within MCU */
    485       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    486         compptr = cinfo->cur_comp_info[ci];
    487         start_col = MCU_col_num * compptr->MCU_width;
    488         /* Get the list of pointers to DCT blocks in
    489          * the virtual buffer in a color component of the MCU.
    490          */
    491         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    492           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    493           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    494             coef->MCU_buffer[blkn++] = buffer_ptr++;
    495             if (cinfo->input_scan_number == 0) {
    496               // need to do pre-zero by ourself.
    497               jzero_far((void FAR *) coef->MCU_buffer[blkn-1],
    498                         (size_t) (SIZEOF(JBLOCK)));
    499             }
    500           }
    501         }
    502       }
    503       // Record huffman bit offset
    504       if (MCU_col_num % sample_size == 0) {
    505         (*cinfo->entropy->get_huffman_decoder_configuration)
    506                 (cinfo, offset_data);
    507         ++offset_data;
    508       }
    509       /* Try to fetch the MCU. */
    510       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    511 	/* Suspension forced; update state counters and exit */
    512 	coef->MCU_vert_offset = yoffset;
    513 	coef->MCU_ctr = MCU_col_num;
    514 	return JPEG_SUSPENDED;
    515       }
    516     }
    517     /* Completed an MCU row, but perhaps not an iMCU row */
    518     coef->MCU_ctr = 0;
    519   }
    520   (*cinfo->entropy->get_huffman_decoder_configuration)
    521         (cinfo, &scan_header->prev_MCU_offset);
    522   /* Completed the iMCU row, advance counters for next one */
    523   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    524     start_iMCU_row(cinfo);
    525     return JPEG_ROW_COMPLETED;
    526   }
    527   /* Completed the scan */
    528   (*cinfo->inputctl->finish_input_pass) (cinfo);
    529   return JPEG_SCAN_COMPLETED;
    530 }
    531 
    532 /*
    533  * Decompress and return some data in the multi-pass case.
    534  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    535  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    536  *
    537  * NB: output_buf contains a plane for each component in image.
    538  */
    539 
    540 METHODDEF(int)
    541 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    542 {
    543   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    544   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    545   JDIMENSION block_num;
    546   int ci, block_row, block_rows;
    547   JBLOCKARRAY buffer;
    548   JBLOCKROW buffer_ptr;
    549   JSAMPARRAY output_ptr;
    550   JDIMENSION output_col;
    551   jpeg_component_info *compptr;
    552   inverse_DCT_method_ptr inverse_DCT;
    553 
    554   /* Force some input to be done if we are getting ahead of the input. */
    555   while (cinfo->input_scan_number < cinfo->output_scan_number ||
    556 	 (cinfo->input_scan_number == cinfo->output_scan_number &&
    557 	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
    558     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    559       return JPEG_SUSPENDED;
    560   }
    561 
    562   /* OK, output from the virtual arrays. */
    563   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    564        ci++, compptr++) {
    565     /* Don't bother to IDCT an uninteresting component. */
    566     if (! compptr->component_needed)
    567       continue;
    568     /* Align the virtual buffer for this component. */
    569     buffer = (*cinfo->mem->access_virt_barray)
    570       ((j_common_ptr) cinfo, coef->whole_image[ci],
    571        cinfo->tile_decode ? 0 : cinfo->output_iMCU_row * compptr->v_samp_factor,
    572        (JDIMENSION) compptr->v_samp_factor, FALSE);
    573     /* Count non-dummy DCT block rows in this iMCU row. */
    574     if (cinfo->output_iMCU_row < last_iMCU_row)
    575       block_rows = compptr->v_samp_factor;
    576     else {
    577       /* NB: can't use last_row_height here; it is input-side-dependent! */
    578       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    579       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    580     }
    581     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    582     output_ptr = output_buf[ci];
    583     int width_in_blocks = compptr->width_in_blocks;
    584     int start_block = 0;
    585 #if ANDROID_TILE_BASED_DECODE
    586     if (cinfo->tile_decode) {
    587       width_in_blocks = jmin(width_in_blocks,
    588         (cinfo->coef->MCU_column_right_boundary -
    589          cinfo->coef->MCU_column_left_boundary) *
    590          cinfo->max_h_samp_factor /
    591          compptr->h_samp_factor);
    592       start_block = coef->pub.MCU_columns_to_skip *
    593         cinfo->max_h_samp_factor / compptr->h_samp_factor;
    594     }
    595 #endif
    596     /* Loop over all DCT blocks to be processed. */
    597     for (block_row = 0; block_row < block_rows; block_row++) {
    598       buffer_ptr = buffer[block_row];
    599       output_col = start_block * compptr->DCT_scaled_size;
    600       buffer_ptr += start_block;
    601       for (block_num = start_block; block_num < width_in_blocks; block_num++) {
    602 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
    603 			output_ptr, output_col);
    604 	buffer_ptr++;
    605 	output_col += compptr->DCT_scaled_size;
    606       }
    607       output_ptr += compptr->DCT_scaled_size;
    608     }
    609   }
    610 
    611   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    612     return JPEG_ROW_COMPLETED;
    613   return JPEG_SCAN_COMPLETED;
    614 }
    615 
    616 #endif /* D_MULTISCAN_FILES_SUPPORTED */
    617 
    618 
    619 #ifdef BLOCK_SMOOTHING_SUPPORTED
    620 
    621 /*
    622  * This code applies interblock smoothing as described by section K.8
    623  * of the JPEG standard: the first 5 AC coefficients are estimated from
    624  * the DC values of a DCT block and its 8 neighboring blocks.
    625  * We apply smoothing only for progressive JPEG decoding, and only if
    626  * the coefficients it can estimate are not yet known to full precision.
    627  */
    628 
    629 /* Natural-order array positions of the first 5 zigzag-order coefficients */
    630 #define Q01_POS  1
    631 #define Q10_POS  8
    632 #define Q20_POS  16
    633 #define Q11_POS  9
    634 #define Q02_POS  2
    635 
    636 /*
    637  * Determine whether block smoothing is applicable and safe.
    638  * We also latch the current states of the coef_bits[] entries for the
    639  * AC coefficients; otherwise, if the input side of the decompressor
    640  * advances into a new scan, we might think the coefficients are known
    641  * more accurately than they really are.
    642  */
    643 
    644 LOCAL(boolean)
    645 smoothing_ok (j_decompress_ptr cinfo)
    646 {
    647   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    648   boolean smoothing_useful = FALSE;
    649   int ci, coefi;
    650   jpeg_component_info *compptr;
    651   JQUANT_TBL * qtable;
    652   int * coef_bits;
    653   int * coef_bits_latch;
    654 
    655   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
    656     return FALSE;
    657 
    658   /* Allocate latch area if not already done */
    659   if (coef->coef_bits_latch == NULL)
    660     coef->coef_bits_latch = (int *)
    661       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    662 				  cinfo->num_components *
    663 				  (SAVED_COEFS * SIZEOF(int)));
    664   coef_bits_latch = coef->coef_bits_latch;
    665 
    666   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    667        ci++, compptr++) {
    668     /* All components' quantization values must already be latched. */
    669     if ((qtable = compptr->quant_table) == NULL)
    670       return FALSE;
    671     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
    672     if (qtable->quantval[0] == 0 ||
    673 	qtable->quantval[Q01_POS] == 0 ||
    674 	qtable->quantval[Q10_POS] == 0 ||
    675 	qtable->quantval[Q20_POS] == 0 ||
    676 	qtable->quantval[Q11_POS] == 0 ||
    677 	qtable->quantval[Q02_POS] == 0)
    678       return FALSE;
    679     /* DC values must be at least partly known for all components. */
    680     coef_bits = cinfo->coef_bits[ci];
    681     if (coef_bits[0] < 0)
    682       return FALSE;
    683     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
    684     for (coefi = 1; coefi <= 5; coefi++) {
    685       coef_bits_latch[coefi] = coef_bits[coefi];
    686       if (coef_bits[coefi] != 0)
    687 	smoothing_useful = TRUE;
    688     }
    689     coef_bits_latch += SAVED_COEFS;
    690   }
    691 
    692   return smoothing_useful;
    693 }
    694 
    695 
    696 /*
    697  * Variant of decompress_data for use when doing block smoothing.
    698  */
    699 
    700 METHODDEF(int)
    701 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    702 {
    703   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    704   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    705   JDIMENSION block_num, last_block_column;
    706   int ci, block_row, block_rows, access_rows;
    707   JBLOCKARRAY buffer;
    708   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
    709   JSAMPARRAY output_ptr;
    710   JDIMENSION output_col;
    711   jpeg_component_info *compptr;
    712   inverse_DCT_method_ptr inverse_DCT;
    713   boolean first_row, last_row;
    714   JBLOCK workspace;
    715   int *coef_bits;
    716   JQUANT_TBL *quanttbl;
    717   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
    718   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
    719   int Al, pred;
    720 
    721   /* Force some input to be done if we are getting ahead of the input. */
    722   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
    723 	 ! cinfo->inputctl->eoi_reached) {
    724     if (cinfo->input_scan_number == cinfo->output_scan_number) {
    725       /* If input is working on current scan, we ordinarily want it to
    726        * have completed the current row.  But if input scan is DC,
    727        * we want it to keep one row ahead so that next block row's DC
    728        * values are up to date.
    729        */
    730       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
    731       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
    732 	break;
    733     }
    734     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    735       return JPEG_SUSPENDED;
    736   }
    737 
    738   /* OK, output from the virtual arrays. */
    739   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    740        ci++, compptr++) {
    741     /* Don't bother to IDCT an uninteresting component. */
    742     if (! compptr->component_needed)
    743       continue;
    744     /* Count non-dummy DCT block rows in this iMCU row. */
    745     if (cinfo->output_iMCU_row < last_iMCU_row) {
    746       block_rows = compptr->v_samp_factor;
    747       access_rows = block_rows * 2; /* this and next iMCU row */
    748       last_row = FALSE;
    749     } else {
    750       /* NB: can't use last_row_height here; it is input-side-dependent! */
    751       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    752       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    753       access_rows = block_rows; /* this iMCU row only */
    754       last_row = TRUE;
    755     }
    756     /* Align the virtual buffer for this component. */
    757     if (cinfo->output_iMCU_row > 0) {
    758       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
    759       buffer = (*cinfo->mem->access_virt_barray)
    760 	((j_common_ptr) cinfo, coef->whole_image[ci],
    761 	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
    762 	 (JDIMENSION) access_rows, FALSE);
    763       buffer += compptr->v_samp_factor;	/* point to current iMCU row */
    764       first_row = FALSE;
    765     } else {
    766       buffer = (*cinfo->mem->access_virt_barray)
    767 	((j_common_ptr) cinfo, coef->whole_image[ci],
    768 	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
    769       first_row = TRUE;
    770     }
    771     /* Fetch component-dependent info */
    772     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
    773     quanttbl = compptr->quant_table;
    774     Q00 = quanttbl->quantval[0];
    775     Q01 = quanttbl->quantval[Q01_POS];
    776     Q10 = quanttbl->quantval[Q10_POS];
    777     Q20 = quanttbl->quantval[Q20_POS];
    778     Q11 = quanttbl->quantval[Q11_POS];
    779     Q02 = quanttbl->quantval[Q02_POS];
    780     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    781     output_ptr = output_buf[ci];
    782     /* Loop over all DCT blocks to be processed. */
    783     for (block_row = 0; block_row < block_rows; block_row++) {
    784       buffer_ptr = buffer[block_row];
    785       if (first_row && block_row == 0)
    786 	prev_block_row = buffer_ptr;
    787       else
    788 	prev_block_row = buffer[block_row-1];
    789       if (last_row && block_row == block_rows-1)
    790 	next_block_row = buffer_ptr;
    791       else
    792 	next_block_row = buffer[block_row+1];
    793       /* We fetch the surrounding DC values using a sliding-register approach.
    794        * Initialize all nine here so as to do the right thing on narrow pics.
    795        */
    796       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
    797       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
    798       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
    799       output_col = 0;
    800       last_block_column = compptr->width_in_blocks - 1;
    801       for (block_num = 0; block_num <= last_block_column; block_num++) {
    802 	/* Fetch current DCT block into workspace so we can modify it. */
    803 	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
    804 	/* Update DC values */
    805 	if (block_num < last_block_column) {
    806 	  DC3 = (int) prev_block_row[1][0];
    807 	  DC6 = (int) buffer_ptr[1][0];
    808 	  DC9 = (int) next_block_row[1][0];
    809 	}
    810 	/* Compute coefficient estimates per K.8.
    811 	 * An estimate is applied only if coefficient is still zero,
    812 	 * and is not known to be fully accurate.
    813 	 */
    814 	/* AC01 */
    815 	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
    816 	  num = 36 * Q00 * (DC4 - DC6);
    817 	  if (num >= 0) {
    818 	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
    819 	    if (Al > 0 && pred >= (1<<Al))
    820 	      pred = (1<<Al)-1;
    821 	  } else {
    822 	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
    823 	    if (Al > 0 && pred >= (1<<Al))
    824 	      pred = (1<<Al)-1;
    825 	    pred = -pred;
    826 	  }
    827 	  workspace[1] = (JCOEF) pred;
    828 	}
    829 	/* AC10 */
    830 	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
    831 	  num = 36 * Q00 * (DC2 - DC8);
    832 	  if (num >= 0) {
    833 	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
    834 	    if (Al > 0 && pred >= (1<<Al))
    835 	      pred = (1<<Al)-1;
    836 	  } else {
    837 	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
    838 	    if (Al > 0 && pred >= (1<<Al))
    839 	      pred = (1<<Al)-1;
    840 	    pred = -pred;
    841 	  }
    842 	  workspace[8] = (JCOEF) pred;
    843 	}
    844 	/* AC20 */
    845 	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
    846 	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
    847 	  if (num >= 0) {
    848 	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
    849 	    if (Al > 0 && pred >= (1<<Al))
    850 	      pred = (1<<Al)-1;
    851 	  } else {
    852 	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
    853 	    if (Al > 0 && pred >= (1<<Al))
    854 	      pred = (1<<Al)-1;
    855 	    pred = -pred;
    856 	  }
    857 	  workspace[16] = (JCOEF) pred;
    858 	}
    859 	/* AC11 */
    860 	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
    861 	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
    862 	  if (num >= 0) {
    863 	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
    864 	    if (Al > 0 && pred >= (1<<Al))
    865 	      pred = (1<<Al)-1;
    866 	  } else {
    867 	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
    868 	    if (Al > 0 && pred >= (1<<Al))
    869 	      pred = (1<<Al)-1;
    870 	    pred = -pred;
    871 	  }
    872 	  workspace[9] = (JCOEF) pred;
    873 	}
    874 	/* AC02 */
    875 	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
    876 	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
    877 	  if (num >= 0) {
    878 	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
    879 	    if (Al > 0 && pred >= (1<<Al))
    880 	      pred = (1<<Al)-1;
    881 	  } else {
    882 	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
    883 	    if (Al > 0 && pred >= (1<<Al))
    884 	      pred = (1<<Al)-1;
    885 	    pred = -pred;
    886 	  }
    887 	  workspace[2] = (JCOEF) pred;
    888 	}
    889 	/* OK, do the IDCT */
    890 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
    891 			output_ptr, output_col);
    892 	/* Advance for next column */
    893 	DC1 = DC2; DC2 = DC3;
    894 	DC4 = DC5; DC5 = DC6;
    895 	DC7 = DC8; DC8 = DC9;
    896 	buffer_ptr++, prev_block_row++, next_block_row++;
    897 	output_col += compptr->DCT_scaled_size;
    898       }
    899       output_ptr += compptr->DCT_scaled_size;
    900     }
    901   }
    902 
    903   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    904     return JPEG_ROW_COMPLETED;
    905   return JPEG_SCAN_COMPLETED;
    906 }
    907 
    908 #endif /* BLOCK_SMOOTHING_SUPPORTED */
    909 
    910 
    911 /*
    912  * Initialize coefficient buffer controller.
    913  */
    914 
    915 GLOBAL(void)
    916 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
    917 {
    918   my_coef_ptr coef;
    919 
    920   coef = (my_coef_ptr)
    921     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    922 				SIZEOF(my_coef_controller));
    923   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
    924   coef->pub.start_input_pass = start_input_pass;
    925   coef->pub.start_output_pass = start_output_pass;
    926   coef->pub.column_left_boundary = 0;
    927   coef->pub.column_right_boundary = 0;
    928   coef->pub.MCU_columns_to_skip = 0;
    929 #ifdef BLOCK_SMOOTHING_SUPPORTED
    930   coef->coef_bits_latch = NULL;
    931 #endif
    932 
    933 #ifdef ANDROID_TILE_BASED_DECODE
    934   if (cinfo->tile_decode) {
    935     if (cinfo->progressive_mode) {
    936       /* Allocate one iMCU row virtual array, coef->whole_image[ci],
    937        * for each color component, padded to a multiple of h_samp_factor
    938        * DCT blocks in the horizontal direction.
    939        */
    940       int ci, access_rows;
    941       jpeg_component_info *compptr;
    942 
    943       for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    944 	   ci++, compptr++) {
    945         access_rows = compptr->v_samp_factor;
    946         coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    947 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
    948 	   (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    949 				(long) compptr->h_samp_factor),
    950 	   (JDIMENSION) compptr->v_samp_factor, // one iMCU row
    951 	   (JDIMENSION) access_rows);
    952       }
    953       coef->pub.consume_data_build_huffman_index =
    954             consume_data_build_huffman_index_progressive;
    955       coef->pub.consume_data = consume_data_multi_scan;
    956       coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
    957       coef->pub.decompress_data = decompress_onepass;
    958     } else {
    959       /* We only need a single-MCU buffer. */
    960       JBLOCKROW buffer;
    961       int i;
    962 
    963       buffer = (JBLOCKROW)
    964       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    965 				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    966       for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
    967         coef->MCU_buffer[i] = buffer + i;
    968       }
    969       coef->pub.consume_data_build_huffman_index =
    970             consume_data_build_huffman_index_baseline;
    971       coef->pub.consume_data = dummy_consume_data;
    972       coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
    973       coef->pub.decompress_data = decompress_onepass;
    974     }
    975     return;
    976   }
    977 #endif
    978 
    979   /* Create the coefficient buffer. */
    980   if (need_full_buffer) {
    981 #ifdef D_MULTISCAN_FILES_SUPPORTED
    982     /* Allocate a full-image virtual array for each component, */
    983     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    984     /* Note we ask for a pre-zeroed array. */
    985     int ci, access_rows;
    986     jpeg_component_info *compptr;
    987 
    988     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    989 	 ci++, compptr++) {
    990       access_rows = compptr->v_samp_factor;
    991 #ifdef BLOCK_SMOOTHING_SUPPORTED
    992       /* If block smoothing could be used, need a bigger window */
    993       if (cinfo->progressive_mode)
    994 	access_rows *= 3;
    995 #endif
    996       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    997 	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
    998 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    999 				(long) compptr->h_samp_factor),
   1000 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
   1001 				(long) compptr->v_samp_factor),
   1002 	 (JDIMENSION) access_rows);
   1003     }
   1004     coef->pub.consume_data = consume_data;
   1005     coef->pub.decompress_data = decompress_data;
   1006     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
   1007 #else
   1008     ERREXIT(cinfo, JERR_NOT_COMPILED);
   1009 #endif
   1010   } else {
   1011     /* We only need a single-MCU buffer. */
   1012     JBLOCKROW buffer;
   1013     int i;
   1014 
   1015     buffer = (JBLOCKROW)
   1016       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1017 		  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
   1018     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
   1019       coef->MCU_buffer[i] = buffer + i;
   1020     }
   1021     coef->pub.consume_data = dummy_consume_data;
   1022     coef->pub.decompress_data = decompress_onepass;
   1023     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
   1024   }
   1025 }
   1026