1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 /* ThreadPool */ 18 19 #include "sles_allinclusive.h" 20 21 // Entry point for each worker thread 22 23 static void *ThreadPool_start(void *context) 24 { 25 ThreadPool *tp = (ThreadPool *) context; 26 assert(NULL != tp); 27 for (;;) { 28 Closure *pClosure = ThreadPool_remove(tp); 29 // closure is NULL when thread pool is being destroyed 30 if (NULL == pClosure) 31 break; 32 void (*handler)(void *, int); 33 handler = pClosure->mHandler; 34 void *context = pClosure->mContext; 35 int parameter = pClosure->mParameter; 36 free(pClosure); 37 assert(NULL != handler); 38 (*handler)(context, parameter); 39 } 40 return NULL; 41 } 42 43 #define INITIALIZED_NONE 0 44 #define INITIALIZED_MUTEX 1 45 #define INITIALIZED_CONDNOTFULL 2 46 #define INITIALIZED_CONDNOTEMPTY 4 47 #define INITIALIZED_ALL 7 48 49 static void ThreadPool_deinit_internal(ThreadPool *tp, unsigned initialized, unsigned nThreads); 50 51 // Initialize a ThreadPool 52 // maxClosures defaults to CLOSURE_TYPICAL if 0 53 // maxThreads defaults to THREAD_TYPICAL if 0 54 55 SLresult ThreadPool_init(ThreadPool *tp, unsigned maxClosures, unsigned maxThreads) 56 { 57 assert(NULL != tp); 58 memset(tp, 0, sizeof(ThreadPool)); 59 tp->mShutdown = SL_BOOLEAN_FALSE; 60 unsigned initialized = INITIALIZED_NONE; // which objects were successfully initialized 61 unsigned nThreads = 0; // number of threads successfully created 62 int err; 63 SLresult result; 64 65 // initialize mutex and condition variables 66 err = pthread_mutex_init(&tp->mMutex, (const pthread_mutexattr_t *) NULL); 67 result = err_to_result(err); 68 if (SL_RESULT_SUCCESS != result) 69 goto fail; 70 initialized |= INITIALIZED_MUTEX; 71 err = pthread_cond_init(&tp->mCondNotFull, (const pthread_condattr_t *) NULL); 72 result = err_to_result(err); 73 if (SL_RESULT_SUCCESS != result) 74 goto fail; 75 initialized |= INITIALIZED_CONDNOTFULL; 76 err = pthread_cond_init(&tp->mCondNotEmpty, (const pthread_condattr_t *) NULL); 77 result = err_to_result(err); 78 if (SL_RESULT_SUCCESS != result) 79 goto fail; 80 initialized |= INITIALIZED_CONDNOTEMPTY; 81 82 // use default values for parameters, if not specified explicitly 83 tp->mWaitingNotFull = 0; 84 tp->mWaitingNotEmpty = 0; 85 if (0 == maxClosures) 86 maxClosures = CLOSURE_TYPICAL; 87 tp->mMaxClosures = maxClosures; 88 if (0 == maxThreads) 89 maxThreads = THREAD_TYPICAL; 90 tp->mMaxThreads = maxThreads; 91 92 // initialize circular buffer for closures 93 if (CLOSURE_TYPICAL >= maxClosures) { 94 tp->mClosureArray = tp->mClosureTypical; 95 } else { 96 tp->mClosureArray = (Closure **) malloc((maxClosures + 1) * sizeof(Closure *)); 97 if (NULL == tp->mClosureArray) { 98 result = SL_RESULT_RESOURCE_ERROR; 99 goto fail; 100 } 101 } 102 tp->mClosureFront = tp->mClosureArray; 103 tp->mClosureRear = tp->mClosureArray; 104 105 // initialize thread pool 106 if (THREAD_TYPICAL >= maxThreads) { 107 tp->mThreadArray = tp->mThreadTypical; 108 } else { 109 tp->mThreadArray = (pthread_t *) malloc(maxThreads * sizeof(pthread_t)); 110 if (NULL == tp->mThreadArray) { 111 result = SL_RESULT_RESOURCE_ERROR; 112 goto fail; 113 } 114 } 115 unsigned i; 116 for (i = 0; i < maxThreads; ++i) { 117 int err = pthread_create(&tp->mThreadArray[i], (const pthread_attr_t *) NULL, 118 ThreadPool_start, tp); 119 result = err_to_result(err); 120 if (SL_RESULT_SUCCESS != result) 121 goto fail; 122 ++nThreads; 123 } 124 tp->mInitialized = initialized; 125 126 // done 127 return SL_RESULT_SUCCESS; 128 129 // here on any kind of error 130 fail: 131 ThreadPool_deinit_internal(tp, initialized, nThreads); 132 return result; 133 } 134 135 static void ThreadPool_deinit_internal(ThreadPool *tp, unsigned initialized, unsigned nThreads) 136 { 137 int ok; 138 139 assert(NULL != tp); 140 // Destroy all threads 141 if (0 < nThreads) { 142 assert(INITIALIZED_ALL == initialized); 143 ok = pthread_mutex_lock(&tp->mMutex); 144 assert(0 == ok); 145 tp->mShutdown = SL_BOOLEAN_TRUE; 146 ok = pthread_cond_broadcast(&tp->mCondNotEmpty); 147 assert(0 == ok); 148 ok = pthread_cond_broadcast(&tp->mCondNotFull); 149 assert(0 == ok); 150 ok = pthread_mutex_unlock(&tp->mMutex); 151 assert(0 == ok); 152 unsigned i; 153 for (i = 0; i < nThreads; ++i) { 154 ok = pthread_join(tp->mThreadArray[i], (void **) NULL); 155 assert(ok == 0); 156 } 157 158 // Empty out the circular buffer of closures 159 ok = pthread_mutex_lock(&tp->mMutex); 160 assert(0 == ok); 161 assert(0 == tp->mWaitingNotEmpty); 162 Closure **oldFront = tp->mClosureFront; 163 while (oldFront != tp->mClosureRear) { 164 Closure **newFront = oldFront; 165 if (++newFront == &tp->mClosureArray[tp->mMaxClosures + 1]) 166 newFront = tp->mClosureArray; 167 Closure *pClosure = *oldFront; 168 assert(NULL != pClosure); 169 *oldFront = NULL; 170 tp->mClosureFront = newFront; 171 ok = pthread_mutex_unlock(&tp->mMutex); 172 assert(0 == ok); 173 free(pClosure); 174 ok = pthread_mutex_lock(&tp->mMutex); 175 assert(0 == ok); 176 } 177 ok = pthread_mutex_unlock(&tp->mMutex); 178 assert(0 == ok); 179 // Note that we can't be sure when mWaitingNotFull will drop to zero 180 } 181 182 // destroy the mutex and condition variables 183 if (initialized & INITIALIZED_CONDNOTEMPTY) { 184 ok = pthread_cond_destroy(&tp->mCondNotEmpty); 185 assert(0 == ok); 186 } 187 if (initialized & INITIALIZED_CONDNOTFULL) { 188 ok = pthread_cond_destroy(&tp->mCondNotFull); 189 assert(0 == ok); 190 } 191 if (initialized & INITIALIZED_MUTEX) { 192 ok = pthread_mutex_destroy(&tp->mMutex); 193 assert(0 == ok); 194 } 195 tp->mInitialized = INITIALIZED_NONE; 196 197 // release the closure circular buffer 198 if (tp->mClosureTypical != tp->mClosureArray && NULL != tp->mClosureArray) { 199 free(tp->mClosureArray); 200 tp->mClosureArray = NULL; 201 } 202 203 // release the thread pool 204 if (tp->mThreadTypical != tp->mThreadArray && NULL != tp->mThreadArray) { 205 free(tp->mThreadArray); 206 tp->mThreadArray = NULL; 207 } 208 209 } 210 211 void ThreadPool_deinit(ThreadPool *tp) 212 { 213 ThreadPool_deinit_internal(tp, tp->mInitialized, tp->mMaxThreads); 214 } 215 216 // Enqueue a closure to be executed later by a worker thread 217 SLresult ThreadPool_add(ThreadPool *tp, void (*handler)(void *, int), void *context, int parameter) 218 { 219 assert(NULL != tp); 220 assert(NULL != handler); 221 Closure *closure = (Closure *) malloc(sizeof(Closure)); 222 if (NULL == closure) 223 return SL_RESULT_RESOURCE_ERROR; 224 closure->mHandler = handler; 225 closure->mContext = context; 226 closure->mParameter = parameter; 227 int ok; 228 ok = pthread_mutex_lock(&tp->mMutex); 229 assert(0 == ok); 230 // can't enqueue while thread pool shutting down 231 if (tp->mShutdown) { 232 ok = pthread_mutex_unlock(&tp->mMutex); 233 assert(0 == ok); 234 free(closure); 235 return SL_RESULT_PRECONDITIONS_VIOLATED; 236 } 237 for (;;) { 238 Closure **oldRear = tp->mClosureRear; 239 Closure **newRear = oldRear; 240 if (++newRear == &tp->mClosureArray[tp->mMaxClosures + 1]) 241 newRear = tp->mClosureArray; 242 // if closure circular buffer is full, then wait for it to become non-full 243 if (newRear == tp->mClosureFront) { 244 ++tp->mWaitingNotFull; 245 ok = pthread_cond_wait(&tp->mCondNotFull, &tp->mMutex); 246 assert(0 == ok); 247 // can't enqueue while thread pool shutting down 248 if (tp->mShutdown) { 249 assert(0 < tp->mWaitingNotFull); 250 --tp->mWaitingNotFull; 251 ok = pthread_mutex_unlock(&tp->mMutex); 252 assert(0 == ok); 253 free(closure); 254 return SL_RESULT_PRECONDITIONS_VIOLATED; 255 } 256 continue; 257 } 258 assert(NULL == *oldRear); 259 *oldRear = closure; 260 tp->mClosureRear = newRear; 261 // if a worker thread was waiting to dequeue, then suggest that it try again 262 if (0 < tp->mWaitingNotEmpty) { 263 --tp->mWaitingNotEmpty; 264 ok = pthread_cond_signal(&tp->mCondNotEmpty); 265 assert(0 == ok); 266 } 267 break; 268 } 269 ok = pthread_mutex_unlock(&tp->mMutex); 270 assert(0 == ok); 271 return SL_RESULT_SUCCESS; 272 } 273 274 // Called by a worker thread when it is ready to accept the next closure to execute 275 Closure *ThreadPool_remove(ThreadPool *tp) 276 { 277 Closure *pClosure; 278 int ok; 279 ok = pthread_mutex_lock(&tp->mMutex); 280 assert(0 == ok); 281 for (;;) { 282 Closure **oldFront = tp->mClosureFront; 283 // if closure circular buffer is empty, then wait for it to become non-empty 284 if (oldFront == tp->mClosureRear) { 285 ++tp->mWaitingNotEmpty; 286 ok = pthread_cond_wait(&tp->mCondNotEmpty, &tp->mMutex); 287 assert(0 == ok); 288 // fail if thread pool is shutting down 289 if (tp->mShutdown) { 290 assert(0 < tp->mWaitingNotEmpty); 291 --tp->mWaitingNotEmpty; 292 pClosure = NULL; 293 break; 294 } 295 // try again 296 continue; 297 } 298 // dequeue the closure at front of circular buffer 299 Closure **newFront = oldFront; 300 if (++newFront == &tp->mClosureArray[tp->mMaxClosures + 1]) 301 newFront = tp->mClosureArray; 302 pClosure = *oldFront; 303 assert(NULL != pClosure); 304 *oldFront = NULL; 305 tp->mClosureFront = newFront; 306 // if a client thread was waiting to enqueue, then suggest that it try again 307 if (0 < tp->mWaitingNotFull) { 308 --tp->mWaitingNotFull; 309 ok = pthread_cond_signal(&tp->mCondNotFull); 310 assert(0 == ok); 311 } 312 break; 313 } 314 ok = pthread_mutex_unlock(&tp->mMutex); 315 assert(0 == ok); 316 return pClosure; 317 } 318