Home | History | Annotate | Download | only in smooth
      1 /***************************************************************************/
      2 /*                                                                         */
      3 /*  ftgrays.c                                                              */
      4 /*                                                                         */
      5 /*    A new `perfect' anti-aliasing renderer (body).                       */
      6 /*                                                                         */
      7 /*  Copyright 2000-2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009, 2010 by */
      8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
      9 /*                                                                         */
     10 /*  This file is part of the FreeType project, and may only be used,       */
     11 /*  modified, and distributed under the terms of the FreeType project      */
     12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
     13 /*  this file you indicate that you have read the license and              */
     14 /*  understand and accept it fully.                                        */
     15 /*                                                                         */
     16 /***************************************************************************/
     17 
     18   /*************************************************************************/
     19   /*                                                                       */
     20   /* This file can be compiled without the rest of the FreeType engine, by */
     21   /* defining the _STANDALONE_ macro when compiling it.  You also need to  */
     22   /* put the files `ftgrays.h' and `ftimage.h' into the current            */
     23   /* compilation directory.  Typically, you could do something like        */
     24   /*                                                                       */
     25   /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
     26   /*                                                                       */
     27   /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
     28   /*   same directory                                                      */
     29   /*                                                                       */
     30   /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in        */
     31   /*                                                                       */
     32   /*     cc -c -D_STANDALONE_ ftgrays.c                                    */
     33   /*                                                                       */
     34   /* The renderer can be initialized with a call to                        */
     35   /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
     36   /* with a call to `ft_gray_raster.raster_render'.                        */
     37   /*                                                                       */
     38   /* See the comments and documentation in the file `ftimage.h' for more   */
     39   /* details on how the raster works.                                      */
     40   /*                                                                       */
     41   /*************************************************************************/
     42 
     43   /*************************************************************************/
     44   /*                                                                       */
     45   /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
     46   /* algorithm used here is _very_ different from the one in the standard  */
     47   /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
     48   /* coverage of the outline on each pixel cell.                           */
     49   /*                                                                       */
     50   /* It is based on ideas that I initially found in Raph Levien's          */
     51   /* excellent LibArt graphics library (see http://www.levien.com/libart   */
     52   /* for more information, though the web pages do not tell anything       */
     53   /* about the renderer; you'll have to dive into the source code to       */
     54   /* understand how it works).                                             */
     55   /*                                                                       */
     56   /* Note, however, that this is a _very_ different implementation         */
     57   /* compared to Raph's.  Coverage information is stored in a very         */
     58   /* different way, and I don't use sorted vector paths.  Also, it doesn't */
     59   /* use floating point values.                                            */
     60   /*                                                                       */
     61   /* This renderer has the following advantages:                           */
     62   /*                                                                       */
     63   /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
     64   /*   callback function that will be called by the renderer to draw gray  */
     65   /*   spans on any target surface.  You can thus do direct composition on */
     66   /*   any kind of bitmap, provided that you give the renderer the right   */
     67   /*   callback.                                                           */
     68   /*                                                                       */
     69   /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
     70   /*   each pixel cell.                                                    */
     71   /*                                                                       */
     72   /* - It performs a single pass on the outline (the `standard' FT2        */
     73   /*   renderer makes two passes).                                         */
     74   /*                                                                       */
     75   /* - It can easily be modified to render to _any_ number of gray levels  */
     76   /*   cheaply.                                                            */
     77   /*                                                                       */
     78   /* - For small (< 20) pixel sizes, it is faster than the standard        */
     79   /*   renderer.                                                           */
     80   /*                                                                       */
     81   /*************************************************************************/
     82 
     83 
     84   /*************************************************************************/
     85   /*                                                                       */
     86   /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
     87   /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
     88   /* messages during execution.                                            */
     89   /*                                                                       */
     90 #undef  FT_COMPONENT
     91 #define FT_COMPONENT  trace_smooth
     92 
     93 
     94 #ifdef _STANDALONE_
     95 
     96 
     97   /* define this to dump debugging information */
     98 /* #define FT_DEBUG_LEVEL_TRACE */
     99 
    100 
    101 #ifdef FT_DEBUG_LEVEL_TRACE
    102 #include <stdio.h>
    103 #include <stdarg.h>
    104 #endif
    105 
    106 #include <stddef.h>
    107 #include <string.h>
    108 #include <setjmp.h>
    109 #include <limits.h>
    110 #define FT_UINT_MAX  UINT_MAX
    111 #define FT_INT_MAX   INT_MAX
    112 
    113 #define ft_memset   memset
    114 
    115 #define ft_setjmp   setjmp
    116 #define ft_longjmp  longjmp
    117 #define ft_jmp_buf  jmp_buf
    118 
    119 typedef ptrdiff_t  FT_PtrDist;
    120 
    121 
    122 #define ErrRaster_Invalid_Mode      -2
    123 #define ErrRaster_Invalid_Outline   -1
    124 #define ErrRaster_Invalid_Argument  -3
    125 #define ErrRaster_Memory_Overflow   -4
    126 
    127 #define FT_BEGIN_HEADER
    128 #define FT_END_HEADER
    129 
    130 #include "ftimage.h"
    131 #include "ftgrays.h"
    132 
    133 
    134   /* This macro is used to indicate that a function parameter is unused. */
    135   /* Its purpose is simply to reduce compiler warnings.  Note also that  */
    136   /* simply defining it as `(void)x' doesn't avoid warnings with certain */
    137   /* ANSI compilers (e.g. LCC).                                          */
    138 #define FT_UNUSED( x )  (x) = (x)
    139 
    140 
    141   /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
    142 
    143 #ifdef FT_DEBUG_LEVEL_TRACE
    144 
    145   void
    146   FT_Message( const char*  fmt,
    147               ... )
    148   {
    149     va_list  ap;
    150 
    151 
    152     va_start( ap, fmt );
    153     vfprintf( stderr, fmt, ap );
    154     va_end( ap );
    155   }
    156 
    157   /* we don't handle tracing levels in stand-alone mode; */
    158 #ifndef FT_TRACE5
    159 #define FT_TRACE5( varformat )  FT_Message varformat
    160 #endif
    161 #ifndef FT_TRACE7
    162 #define FT_TRACE7( varformat )  FT_Message varformat
    163 #endif
    164 #ifndef FT_ERROR
    165 #define FT_ERROR( varformat )   FT_Message varformat
    166 #endif
    167 
    168 #else /* !FT_DEBUG_LEVEL_TRACE */
    169 
    170 #define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
    171 #define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
    172 #define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
    173 
    174 #endif /* !FT_DEBUG_LEVEL_TRACE */
    175 
    176 
    177 #define FT_DEFINE_OUTLINE_FUNCS( class_,               \
    178                                  move_to_, line_to_,   \
    179                                  conic_to_, cubic_to_, \
    180                                  shift_, delta_ )      \
    181           static const FT_Outline_Funcs class_ =       \
    182           {                                            \
    183             move_to_,                                  \
    184             line_to_,                                  \
    185             conic_to_,                                 \
    186             cubic_to_,                                 \
    187             shift_,                                    \
    188             delta_                                     \
    189          };
    190 
    191 #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
    192                                 raster_new_, raster_reset_,       \
    193                                 raster_set_mode_, raster_render_, \
    194                                 raster_done_ )                    \
    195           const FT_Raster_Funcs class_ =                          \
    196           {                                                       \
    197             glyph_format_,                                        \
    198             raster_new_,                                          \
    199             raster_reset_,                                        \
    200             raster_set_mode_,                                     \
    201             raster_render_,                                       \
    202             raster_done_                                          \
    203          };
    204 
    205 #else /* !_STANDALONE_ */
    206 
    207 
    208 #include <ft2build.h>
    209 #include "ftgrays.h"
    210 #include FT_INTERNAL_OBJECTS_H
    211 #include FT_INTERNAL_DEBUG_H
    212 #include FT_OUTLINE_H
    213 
    214 #include "ftsmerrs.h"
    215 
    216 #include "ftspic.h"
    217 
    218 #define ErrRaster_Invalid_Mode      Smooth_Err_Cannot_Render_Glyph
    219 #define ErrRaster_Invalid_Outline   Smooth_Err_Invalid_Outline
    220 #define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
    221 #define ErrRaster_Invalid_Argument  Smooth_Err_Invalid_Argument
    222 
    223 #endif /* !_STANDALONE_ */
    224 
    225 #ifndef FT_MEM_SET
    226 #define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
    227 #endif
    228 
    229 #ifndef FT_MEM_ZERO
    230 #define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
    231 #endif
    232 
    233   /* as usual, for the speed hungry :-) */
    234 
    235 #ifndef FT_STATIC_RASTER
    236 
    237 #define RAS_ARG   PWorker  worker
    238 #define RAS_ARG_  PWorker  worker,
    239 
    240 #define RAS_VAR   worker
    241 #define RAS_VAR_  worker,
    242 
    243 #else /* FT_STATIC_RASTER */
    244 
    245 #define RAS_ARG   /* empty */
    246 #define RAS_ARG_  /* empty */
    247 #define RAS_VAR   /* empty */
    248 #define RAS_VAR_  /* empty */
    249 
    250 #endif /* FT_STATIC_RASTER */
    251 
    252 
    253   /* must be at least 6 bits! */
    254 #define PIXEL_BITS  8
    255 
    256 #define ONE_PIXEL       ( 1L << PIXEL_BITS )
    257 #define PIXEL_MASK      ( -1L << PIXEL_BITS )
    258 #define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
    259 #define SUBPIXELS( x )  ( (TPos)(x) << PIXEL_BITS )
    260 #define FLOOR( x )      ( (x) & -ONE_PIXEL )
    261 #define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
    262 #define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
    263 
    264 #if PIXEL_BITS >= 6
    265 #define UPSCALE( x )    ( (x) << ( PIXEL_BITS - 6 ) )
    266 #define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
    267 #else
    268 #define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
    269 #define DOWNSCALE( x )  ( (x) << ( 6 - PIXEL_BITS ) )
    270 #endif
    271 
    272 
    273   /*************************************************************************/
    274   /*                                                                       */
    275   /*   TYPE DEFINITIONS                                                    */
    276   /*                                                                       */
    277 
    278   /* don't change the following types to FT_Int or FT_Pos, since we might */
    279   /* need to define them to "float" or "double" when experimenting with   */
    280   /* new algorithms                                                       */
    281 
    282   typedef long  TCoord;   /* integer scanline/pixel coordinate */
    283   typedef long  TPos;     /* sub-pixel coordinate              */
    284 
    285   /* determine the type used to store cell areas.  This normally takes at */
    286   /* least PIXEL_BITS*2 + 1 bits.  On 16-bit systems, we need to use      */
    287   /* `long' instead of `int', otherwise bad things happen                 */
    288 
    289 #if PIXEL_BITS <= 7
    290 
    291   typedef int  TArea;
    292 
    293 #else /* PIXEL_BITS >= 8 */
    294 
    295   /* approximately determine the size of integers using an ANSI-C header */
    296 #if FT_UINT_MAX == 0xFFFFU
    297   typedef long  TArea;
    298 #else
    299   typedef int   TArea;
    300 #endif
    301 
    302 #endif /* PIXEL_BITS >= 8 */
    303 
    304 
    305   /* maximal number of gray spans in a call to the span callback */
    306 #define FT_MAX_GRAY_SPANS  32
    307 
    308 
    309   typedef struct TCell_*  PCell;
    310 
    311   typedef struct  TCell_
    312   {
    313     TPos   x;     /* same with TWorker.ex */
    314     TCoord cover; /* same with TWorker.cover */
    315     TArea  area;
    316     PCell  next;
    317 
    318   } TCell;
    319 
    320 
    321   typedef struct  TWorker_
    322   {
    323     TCoord  ex, ey;
    324     TPos    min_ex, max_ex;
    325     TPos    min_ey, max_ey;
    326     TPos    count_ex, count_ey;
    327 
    328     TArea   area;
    329     TCoord  cover;
    330     int     invalid;
    331 
    332     PCell   cells;
    333     FT_PtrDist  max_cells;
    334     FT_PtrDist  num_cells;
    335 
    336     TCoord  cx, cy;
    337     TPos    x,  y;
    338 
    339     TPos    last_ey;
    340 
    341     FT_Vector   bez_stack[32 * 3 + 1];
    342     int         lev_stack[32];
    343 
    344     FT_Outline  outline;
    345     FT_Bitmap   target;
    346     FT_BBox     clip_box;
    347 
    348     FT_Span     gray_spans[FT_MAX_GRAY_SPANS];
    349     int         num_gray_spans;
    350 
    351     FT_Raster_Span_Func  render_span;
    352     void*                render_span_data;
    353     int                  span_y;
    354 
    355     int  band_size;
    356     int  band_shoot;
    357     int  conic_level;
    358     int  cubic_level;
    359 
    360     ft_jmp_buf  jump_buffer;
    361 
    362     void*       buffer;
    363     long        buffer_size;
    364 
    365     PCell*     ycells;
    366     TPos       ycount;
    367 
    368   } TWorker, *PWorker;
    369 
    370 
    371 #ifndef FT_STATIC_RASTER
    372 #define ras  (*worker)
    373 #else
    374   static TWorker  ras;
    375 #endif
    376 
    377 
    378   typedef struct TRaster_
    379   {
    380     void*    buffer;
    381     long     buffer_size;
    382     int      band_size;
    383     void*    memory;
    384     PWorker  worker;
    385 
    386   } TRaster, *PRaster;
    387 
    388 
    389 
    390   /*************************************************************************/
    391   /*                                                                       */
    392   /* Initialize the cells table.                                           */
    393   /*                                                                       */
    394   static void
    395   gray_init_cells( RAS_ARG_ void*  buffer,
    396                    long            byte_size )
    397   {
    398     ras.buffer      = buffer;
    399     ras.buffer_size = byte_size;
    400 
    401     ras.ycells      = (PCell*) buffer;
    402     ras.cells       = NULL;
    403     ras.max_cells   = 0;
    404     ras.num_cells   = 0;
    405     ras.area        = 0;
    406     ras.cover       = 0;
    407     ras.invalid     = 1;
    408   }
    409 
    410 
    411   /*************************************************************************/
    412   /*                                                                       */
    413   /* Compute the outline bounding box.                                     */
    414   /*                                                                       */
    415   static void
    416   gray_compute_cbox( RAS_ARG )
    417   {
    418     FT_Outline*  outline = &ras.outline;
    419     FT_Vector*   vec     = outline->points;
    420     FT_Vector*   limit   = vec + outline->n_points;
    421 
    422 
    423     if ( outline->n_points <= 0 )
    424     {
    425       ras.min_ex = ras.max_ex = 0;
    426       ras.min_ey = ras.max_ey = 0;
    427       return;
    428     }
    429 
    430     ras.min_ex = ras.max_ex = vec->x;
    431     ras.min_ey = ras.max_ey = vec->y;
    432 
    433     vec++;
    434 
    435     for ( ; vec < limit; vec++ )
    436     {
    437       TPos  x = vec->x;
    438       TPos  y = vec->y;
    439 
    440 
    441       if ( x < ras.min_ex ) ras.min_ex = x;
    442       if ( x > ras.max_ex ) ras.max_ex = x;
    443       if ( y < ras.min_ey ) ras.min_ey = y;
    444       if ( y > ras.max_ey ) ras.max_ey = y;
    445     }
    446 
    447     /* truncate the bounding box to integer pixels */
    448     ras.min_ex = ras.min_ex >> 6;
    449     ras.min_ey = ras.min_ey >> 6;
    450     ras.max_ex = ( ras.max_ex + 63 ) >> 6;
    451     ras.max_ey = ( ras.max_ey + 63 ) >> 6;
    452   }
    453 
    454 
    455   /*************************************************************************/
    456   /*                                                                       */
    457   /* Record the current cell in the table.                                 */
    458   /*                                                                       */
    459   static PCell
    460   gray_find_cell( RAS_ARG )
    461   {
    462     PCell  *pcell, cell;
    463     TPos    x = ras.ex;
    464 
    465 
    466     if ( x > ras.count_ex )
    467       x = ras.count_ex;
    468 
    469     pcell = &ras.ycells[ras.ey];
    470     for (;;)
    471     {
    472       cell = *pcell;
    473       if ( cell == NULL || cell->x > x )
    474         break;
    475 
    476       if ( cell->x == x )
    477         goto Exit;
    478 
    479       pcell = &cell->next;
    480     }
    481 
    482     if ( ras.num_cells >= ras.max_cells )
    483       ft_longjmp( ras.jump_buffer, 1 );
    484 
    485     cell        = ras.cells + ras.num_cells++;
    486     cell->x     = x;
    487     cell->area  = 0;
    488     cell->cover = 0;
    489 
    490     cell->next  = *pcell;
    491     *pcell      = cell;
    492 
    493   Exit:
    494     return cell;
    495   }
    496 
    497 
    498   static void
    499   gray_record_cell( RAS_ARG )
    500   {
    501     if ( !ras.invalid && ( ras.area | ras.cover ) )
    502     {
    503       PCell  cell = gray_find_cell( RAS_VAR );
    504 
    505 
    506       cell->area  += ras.area;
    507       cell->cover += ras.cover;
    508     }
    509   }
    510 
    511 
    512   /*************************************************************************/
    513   /*                                                                       */
    514   /* Set the current cell to a new position.                               */
    515   /*                                                                       */
    516   static void
    517   gray_set_cell( RAS_ARG_ TCoord  ex,
    518                           TCoord  ey )
    519   {
    520     /* Move the cell pointer to a new position.  We set the `invalid'      */
    521     /* flag to indicate that the cell isn't part of those we're interested */
    522     /* in during the render phase.  This means that:                       */
    523     /*                                                                     */
    524     /* . the new vertical position must be within min_ey..max_ey-1.        */
    525     /* . the new horizontal position must be strictly less than max_ex     */
    526     /*                                                                     */
    527     /* Note that if a cell is to the left of the clipping region, it is    */
    528     /* actually set to the (min_ex-1) horizontal position.                 */
    529 
    530     /* All cells that are on the left of the clipping region go to the */
    531     /* min_ex - 1 horizontal position.                                 */
    532     ey -= ras.min_ey;
    533 
    534     if ( ex > ras.max_ex )
    535       ex = ras.max_ex;
    536 
    537     ex -= ras.min_ex;
    538     if ( ex < 0 )
    539       ex = -1;
    540 
    541     /* are we moving to a different cell ? */
    542     if ( ex != ras.ex || ey != ras.ey )
    543     {
    544       /* record the current one if it is valid */
    545       if ( !ras.invalid )
    546         gray_record_cell( RAS_VAR );
    547 
    548       ras.area  = 0;
    549       ras.cover = 0;
    550     }
    551 
    552     ras.ex      = ex;
    553     ras.ey      = ey;
    554     ras.invalid = ( (unsigned)ey >= (unsigned)ras.count_ey ||
    555                               ex >= ras.count_ex           );
    556   }
    557 
    558 
    559   /*************************************************************************/
    560   /*                                                                       */
    561   /* Start a new contour at a given cell.                                  */
    562   /*                                                                       */
    563   static void
    564   gray_start_cell( RAS_ARG_ TCoord  ex,
    565                             TCoord  ey )
    566   {
    567     if ( ex > ras.max_ex )
    568       ex = (TCoord)( ras.max_ex );
    569 
    570     if ( ex < ras.min_ex )
    571       ex = (TCoord)( ras.min_ex - 1 );
    572 
    573     ras.area    = 0;
    574     ras.cover   = 0;
    575     ras.ex      = ex - ras.min_ex;
    576     ras.ey      = ey - ras.min_ey;
    577     ras.last_ey = SUBPIXELS( ey );
    578     ras.invalid = 0;
    579 
    580     gray_set_cell( RAS_VAR_ ex, ey );
    581   }
    582 
    583 
    584   /*************************************************************************/
    585   /*                                                                       */
    586   /* Render a scanline as one or more cells.                               */
    587   /*                                                                       */
    588   static void
    589   gray_render_scanline( RAS_ARG_ TCoord  ey,
    590                                  TPos    x1,
    591                                  TCoord  y1,
    592                                  TPos    x2,
    593                                  TCoord  y2 )
    594   {
    595     TCoord  ex1, ex2, fx1, fx2, delta, mod, lift, rem;
    596     long    p, first, dx;
    597     int     incr;
    598 
    599 
    600     dx = x2 - x1;
    601 
    602     ex1 = TRUNC( x1 );
    603     ex2 = TRUNC( x2 );
    604     fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
    605     fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
    606 
    607     /* trivial case.  Happens often */
    608     if ( y1 == y2 )
    609     {
    610       gray_set_cell( RAS_VAR_ ex2, ey );
    611       return;
    612     }
    613 
    614     /* everything is located in a single cell.  That is easy! */
    615     /*                                                        */
    616     if ( ex1 == ex2 )
    617     {
    618       delta      = y2 - y1;
    619       ras.area  += (TArea)(( fx1 + fx2 ) * delta);
    620       ras.cover += delta;
    621       return;
    622     }
    623 
    624     /* ok, we'll have to render a run of adjacent cells on the same */
    625     /* scanline...                                                  */
    626     /*                                                              */
    627     p     = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
    628     first = ONE_PIXEL;
    629     incr  = 1;
    630 
    631     if ( dx < 0 )
    632     {
    633       p     = fx1 * ( y2 - y1 );
    634       first = 0;
    635       incr  = -1;
    636       dx    = -dx;
    637     }
    638 
    639     delta = (TCoord)( p / dx );
    640     mod   = (TCoord)( p % dx );
    641     if ( mod < 0 )
    642     {
    643       delta--;
    644       mod += (TCoord)dx;
    645     }
    646 
    647     ras.area  += (TArea)(( fx1 + first ) * delta);
    648     ras.cover += delta;
    649 
    650     ex1 += incr;
    651     gray_set_cell( RAS_VAR_ ex1, ey );
    652     y1  += delta;
    653 
    654     if ( ex1 != ex2 )
    655     {
    656       p    = ONE_PIXEL * ( y2 - y1 + delta );
    657       lift = (TCoord)( p / dx );
    658       rem  = (TCoord)( p % dx );
    659       if ( rem < 0 )
    660       {
    661         lift--;
    662         rem += (TCoord)dx;
    663       }
    664 
    665       mod -= (int)dx;
    666 
    667       while ( ex1 != ex2 )
    668       {
    669         delta = lift;
    670         mod  += rem;
    671         if ( mod >= 0 )
    672         {
    673           mod -= (TCoord)dx;
    674           delta++;
    675         }
    676 
    677         ras.area  += (TArea)(ONE_PIXEL * delta);
    678         ras.cover += delta;
    679         y1        += delta;
    680         ex1       += incr;
    681         gray_set_cell( RAS_VAR_ ex1, ey );
    682       }
    683     }
    684 
    685     delta      = y2 - y1;
    686     ras.area  += (TArea)(( fx2 + ONE_PIXEL - first ) * delta);
    687     ras.cover += delta;
    688   }
    689 
    690 
    691   /*************************************************************************/
    692   /*                                                                       */
    693   /* Render a given line as a series of scanlines.                         */
    694   /*                                                                       */
    695   static void
    696   gray_render_line( RAS_ARG_ TPos  to_x,
    697                              TPos  to_y )
    698   {
    699     TCoord  ey1, ey2, fy1, fy2, mod;
    700     TPos    dx, dy, x, x2;
    701     long    p, first;
    702     int     delta, rem, lift, incr;
    703 
    704 
    705     ey1 = TRUNC( ras.last_ey );
    706     ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
    707     fy1 = (TCoord)( ras.y - ras.last_ey );
    708     fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
    709 
    710     dx = to_x - ras.x;
    711     dy = to_y - ras.y;
    712 
    713     /* XXX: we should do something about the trivial case where dx == 0, */
    714     /*      as it happens very often!                                    */
    715 
    716     /* perform vertical clipping */
    717     {
    718       TCoord  min, max;
    719 
    720 
    721       min = ey1;
    722       max = ey2;
    723       if ( ey1 > ey2 )
    724       {
    725         min = ey2;
    726         max = ey1;
    727       }
    728       if ( min >= ras.max_ey || max < ras.min_ey )
    729         goto End;
    730     }
    731 
    732     /* everything is on a single scanline */
    733     if ( ey1 == ey2 )
    734     {
    735       gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
    736       goto End;
    737     }
    738 
    739     /* vertical line - avoid calling gray_render_scanline */
    740     incr = 1;
    741 
    742     if ( dx == 0 )
    743     {
    744       TCoord  ex     = TRUNC( ras.x );
    745       TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
    746       TArea   area;
    747 
    748 
    749       first = ONE_PIXEL;
    750       if ( dy < 0 )
    751       {
    752         first = 0;
    753         incr  = -1;
    754       }
    755 
    756       delta      = (int)( first - fy1 );
    757       ras.area  += (TArea)two_fx * delta;
    758       ras.cover += delta;
    759       ey1       += incr;
    760 
    761       gray_set_cell( RAS_VAR_ ex, ey1 );
    762 
    763       delta = (int)( first + first - ONE_PIXEL );
    764       area  = (TArea)two_fx * delta;
    765       while ( ey1 != ey2 )
    766       {
    767         ras.area  += area;
    768         ras.cover += delta;
    769         ey1       += incr;
    770 
    771         gray_set_cell( RAS_VAR_ ex, ey1 );
    772       }
    773 
    774       delta      = (int)( fy2 - ONE_PIXEL + first );
    775       ras.area  += (TArea)two_fx * delta;
    776       ras.cover += delta;
    777 
    778       goto End;
    779     }
    780 
    781     /* ok, we have to render several scanlines */
    782     p     = ( ONE_PIXEL - fy1 ) * dx;
    783     first = ONE_PIXEL;
    784     incr  = 1;
    785 
    786     if ( dy < 0 )
    787     {
    788       p     = fy1 * dx;
    789       first = 0;
    790       incr  = -1;
    791       dy    = -dy;
    792     }
    793 
    794     delta = (int)( p / dy );
    795     mod   = (int)( p % dy );
    796     if ( mod < 0 )
    797     {
    798       delta--;
    799       mod += (TCoord)dy;
    800     }
    801 
    802     x = ras.x + delta;
    803     gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
    804 
    805     ey1 += incr;
    806     gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    807 
    808     if ( ey1 != ey2 )
    809     {
    810       p     = ONE_PIXEL * dx;
    811       lift  = (int)( p / dy );
    812       rem   = (int)( p % dy );
    813       if ( rem < 0 )
    814       {
    815         lift--;
    816         rem += (int)dy;
    817       }
    818       mod -= (int)dy;
    819 
    820       while ( ey1 != ey2 )
    821       {
    822         delta = lift;
    823         mod  += rem;
    824         if ( mod >= 0 )
    825         {
    826           mod -= (int)dy;
    827           delta++;
    828         }
    829 
    830         x2 = x + delta;
    831         gray_render_scanline( RAS_VAR_ ey1, x,
    832                                        (TCoord)( ONE_PIXEL - first ), x2,
    833                                        (TCoord)first );
    834         x = x2;
    835 
    836         ey1 += incr;
    837         gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    838       }
    839     }
    840 
    841     gray_render_scanline( RAS_VAR_ ey1, x,
    842                                    (TCoord)( ONE_PIXEL - first ), to_x,
    843                                    fy2 );
    844 
    845   End:
    846     ras.x       = to_x;
    847     ras.y       = to_y;
    848     ras.last_ey = SUBPIXELS( ey2 );
    849   }
    850 
    851 
    852   static void
    853   gray_split_conic( FT_Vector*  base )
    854   {
    855     TPos  a, b;
    856 
    857 
    858     base[4].x = base[2].x;
    859     b = base[1].x;
    860     a = base[3].x = ( base[2].x + b ) / 2;
    861     b = base[1].x = ( base[0].x + b ) / 2;
    862     base[2].x = ( a + b ) / 2;
    863 
    864     base[4].y = base[2].y;
    865     b = base[1].y;
    866     a = base[3].y = ( base[2].y + b ) / 2;
    867     b = base[1].y = ( base[0].y + b ) / 2;
    868     base[2].y = ( a + b ) / 2;
    869   }
    870 
    871 
    872   static void
    873   gray_render_conic( RAS_ARG_ const FT_Vector*  control,
    874                               const FT_Vector*  to )
    875   {
    876     TPos        dx, dy;
    877     int         top, level;
    878     int*        levels;
    879     FT_Vector*  arc;
    880 
    881 
    882     dx = DOWNSCALE( ras.x ) + to->x - ( control->x << 1 );
    883     if ( dx < 0 )
    884       dx = -dx;
    885     dy = DOWNSCALE( ras.y ) + to->y - ( control->y << 1 );
    886     if ( dy < 0 )
    887       dy = -dy;
    888     if ( dx < dy )
    889       dx = dy;
    890 
    891     level = 1;
    892     dx = dx / ras.conic_level;
    893     while ( dx > 0 )
    894     {
    895       dx >>= 2;
    896       level++;
    897     }
    898 
    899     /* a shortcut to speed things up */
    900     if ( level <= 1 )
    901     {
    902       /* we compute the mid-point directly in order to avoid */
    903       /* calling gray_split_conic()                          */
    904       TPos  to_x, to_y, mid_x, mid_y;
    905 
    906 
    907       to_x  = UPSCALE( to->x );
    908       to_y  = UPSCALE( to->y );
    909       mid_x = ( ras.x + to_x + 2 * UPSCALE( control->x ) ) / 4;
    910       mid_y = ( ras.y + to_y + 2 * UPSCALE( control->y ) ) / 4;
    911 
    912       gray_render_line( RAS_VAR_ mid_x, mid_y );
    913       gray_render_line( RAS_VAR_ to_x, to_y );
    914 
    915       return;
    916     }
    917 
    918     arc       = ras.bez_stack;
    919     levels    = ras.lev_stack;
    920     top       = 0;
    921     levels[0] = level;
    922 
    923     arc[0].x = UPSCALE( to->x );
    924     arc[0].y = UPSCALE( to->y );
    925     arc[1].x = UPSCALE( control->x );
    926     arc[1].y = UPSCALE( control->y );
    927     arc[2].x = ras.x;
    928     arc[2].y = ras.y;
    929 
    930     while ( top >= 0 )
    931     {
    932       level = levels[top];
    933       if ( level > 1 )
    934       {
    935         /* check that the arc crosses the current band */
    936         TPos  min, max, y;
    937 
    938 
    939         min = max = arc[0].y;
    940 
    941         y = arc[1].y;
    942         if ( y < min ) min = y;
    943         if ( y > max ) max = y;
    944 
    945         y = arc[2].y;
    946         if ( y < min ) min = y;
    947         if ( y > max ) max = y;
    948 
    949         if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
    950           goto Draw;
    951 
    952         gray_split_conic( arc );
    953         arc += 2;
    954         top++;
    955         levels[top] = levels[top - 1] = level - 1;
    956         continue;
    957       }
    958 
    959     Draw:
    960       {
    961         TPos  to_x, to_y, mid_x, mid_y;
    962 
    963 
    964         to_x  = arc[0].x;
    965         to_y  = arc[0].y;
    966         mid_x = ( ras.x + to_x + 2 * arc[1].x ) / 4;
    967         mid_y = ( ras.y + to_y + 2 * arc[1].y ) / 4;
    968 
    969         gray_render_line( RAS_VAR_ mid_x, mid_y );
    970         gray_render_line( RAS_VAR_ to_x, to_y );
    971 
    972         top--;
    973         arc -= 2;
    974       }
    975     }
    976 
    977     return;
    978   }
    979 
    980 
    981   static void
    982   gray_split_cubic( FT_Vector*  base )
    983   {
    984     TPos  a, b, c, d;
    985 
    986 
    987     base[6].x = base[3].x;
    988     c = base[1].x;
    989     d = base[2].x;
    990     base[1].x = a = ( base[0].x + c ) / 2;
    991     base[5].x = b = ( base[3].x + d ) / 2;
    992     c = ( c + d ) / 2;
    993     base[2].x = a = ( a + c ) / 2;
    994     base[4].x = b = ( b + c ) / 2;
    995     base[3].x = ( a + b ) / 2;
    996 
    997     base[6].y = base[3].y;
    998     c = base[1].y;
    999     d = base[2].y;
   1000     base[1].y = a = ( base[0].y + c ) / 2;
   1001     base[5].y = b = ( base[3].y + d ) / 2;
   1002     c = ( c + d ) / 2;
   1003     base[2].y = a = ( a + c ) / 2;
   1004     base[4].y = b = ( b + c ) / 2;
   1005     base[3].y = ( a + b ) / 2;
   1006   }
   1007 
   1008 
   1009   static void
   1010   gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
   1011                               const FT_Vector*  control2,
   1012                               const FT_Vector*  to )
   1013   {
   1014     int         top, level;
   1015     int*        levels;
   1016     FT_Vector*  arc;
   1017     int         mid_x = ( DOWNSCALE( ras.x ) + to->x +
   1018                           3 * (control1->x + control2->x ) ) / 8;
   1019     int         mid_y = ( DOWNSCALE( ras.y ) + to->y +
   1020                           3 * (control1->y + control2->y ) ) / 8;
   1021     TPos        dx = DOWNSCALE( ras.x ) + to->x - ( mid_x << 1 );
   1022     TPos        dy = DOWNSCALE( ras.y ) + to->y - ( mid_y << 1 );
   1023 
   1024 
   1025     if ( dx < 0 )
   1026       dx = -dx;
   1027     if ( dy < 0 )
   1028       dy = -dy;
   1029     if ( dx < dy )
   1030       dx = dy;
   1031 
   1032     level = 1;
   1033     dx /= ras.cubic_level;
   1034     while ( dx > 0 )
   1035     {
   1036       dx >>= 2;
   1037       level++;
   1038     }
   1039 
   1040     if ( level <= 1 )
   1041     {
   1042       TPos  to_x, to_y;
   1043 
   1044 
   1045       to_x  = UPSCALE( to->x );
   1046       to_y  = UPSCALE( to->y );
   1047 
   1048       /* Recalculation of midpoint is needed only if */
   1049       /* UPSCALE and DOWNSCALE have any effect.      */
   1050 
   1051 #if ( PIXEL_BITS != 6 )
   1052       mid_x = ( ras.x + to_x +
   1053                 3 * UPSCALE( control1->x + control2->x ) ) / 8;
   1054       mid_y = ( ras.y + to_y +
   1055                 3 * UPSCALE( control1->y + control2->y ) ) / 8;
   1056 #endif
   1057 
   1058       gray_render_line( RAS_VAR_ mid_x, mid_y );
   1059       gray_render_line( RAS_VAR_ to_x, to_y );
   1060 
   1061       return;
   1062     }
   1063 
   1064     arc      = ras.bez_stack;
   1065     arc[0].x = UPSCALE( to->x );
   1066     arc[0].y = UPSCALE( to->y );
   1067     arc[1].x = UPSCALE( control2->x );
   1068     arc[1].y = UPSCALE( control2->y );
   1069     arc[2].x = UPSCALE( control1->x );
   1070     arc[2].y = UPSCALE( control1->y );
   1071     arc[3].x = ras.x;
   1072     arc[3].y = ras.y;
   1073 
   1074     levels    = ras.lev_stack;
   1075     top       = 0;
   1076     levels[0] = level;
   1077 
   1078     while ( top >= 0 )
   1079     {
   1080       level = levels[top];
   1081       if ( level > 1 )
   1082       {
   1083         /* check that the arc crosses the current band */
   1084         TPos  min, max, y;
   1085 
   1086 
   1087         min = max = arc[0].y;
   1088         y = arc[1].y;
   1089         if ( y < min ) min = y;
   1090         if ( y > max ) max = y;
   1091         y = arc[2].y;
   1092         if ( y < min ) min = y;
   1093         if ( y > max ) max = y;
   1094         y = arc[3].y;
   1095         if ( y < min ) min = y;
   1096         if ( y > max ) max = y;
   1097         if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 )
   1098           goto Draw;
   1099         gray_split_cubic( arc );
   1100         arc += 3;
   1101         top ++;
   1102         levels[top] = levels[top - 1] = level - 1;
   1103         continue;
   1104       }
   1105 
   1106     Draw:
   1107       {
   1108         TPos  to_x, to_y;
   1109 
   1110 
   1111         to_x  = arc[0].x;
   1112         to_y  = arc[0].y;
   1113         mid_x = ( ras.x + to_x + 3 * ( arc[1].x + arc[2].x ) ) / 8;
   1114         mid_y = ( ras.y + to_y + 3 * ( arc[1].y + arc[2].y ) ) / 8;
   1115 
   1116         gray_render_line( RAS_VAR_ mid_x, mid_y );
   1117         gray_render_line( RAS_VAR_ to_x, to_y );
   1118         top --;
   1119         arc -= 3;
   1120       }
   1121     }
   1122 
   1123     return;
   1124   }
   1125 
   1126 
   1127 
   1128   static int
   1129   gray_move_to( const FT_Vector*  to,
   1130                 PWorker           worker )
   1131   {
   1132     TPos  x, y;
   1133 
   1134 
   1135     /* record current cell, if any */
   1136     gray_record_cell( RAS_VAR );
   1137 
   1138     /* start to a new position */
   1139     x = UPSCALE( to->x );
   1140     y = UPSCALE( to->y );
   1141 
   1142     gray_start_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
   1143 
   1144     worker->x = x;
   1145     worker->y = y;
   1146     return 0;
   1147   }
   1148 
   1149 
   1150   static int
   1151   gray_line_to( const FT_Vector*  to,
   1152                 PWorker           worker )
   1153   {
   1154     gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
   1155     return 0;
   1156   }
   1157 
   1158 
   1159   static int
   1160   gray_conic_to( const FT_Vector*  control,
   1161                  const FT_Vector*  to,
   1162                  PWorker           worker )
   1163   {
   1164     gray_render_conic( RAS_VAR_ control, to );
   1165     return 0;
   1166   }
   1167 
   1168 
   1169   static int
   1170   gray_cubic_to( const FT_Vector*  control1,
   1171                  const FT_Vector*  control2,
   1172                  const FT_Vector*  to,
   1173                  PWorker           worker )
   1174   {
   1175     gray_render_cubic( RAS_VAR_ control1, control2, to );
   1176     return 0;
   1177   }
   1178 
   1179 
   1180   static void
   1181   gray_render_span( int             y,
   1182                     int             count,
   1183                     const FT_Span*  spans,
   1184                     PWorker         worker )
   1185   {
   1186     unsigned char*  p;
   1187     FT_Bitmap*      map = &worker->target;
   1188 
   1189 
   1190     /* first of all, compute the scanline offset */
   1191     p = (unsigned char*)map->buffer - y * map->pitch;
   1192     if ( map->pitch >= 0 )
   1193       p += (unsigned)( ( map->rows - 1 ) * map->pitch );
   1194 
   1195     for ( ; count > 0; count--, spans++ )
   1196     {
   1197       unsigned char  coverage = spans->coverage;
   1198 
   1199 
   1200       if ( coverage )
   1201       {
   1202         /* For small-spans it is faster to do it by ourselves than
   1203          * calling `memset'.  This is mainly due to the cost of the
   1204          * function call.
   1205          */
   1206         if ( spans->len >= 8 )
   1207           FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
   1208         else
   1209         {
   1210           unsigned char*  q = p + spans->x;
   1211 
   1212 
   1213           switch ( spans->len )
   1214           {
   1215           case 7: *q++ = (unsigned char)coverage;
   1216           case 6: *q++ = (unsigned char)coverage;
   1217           case 5: *q++ = (unsigned char)coverage;
   1218           case 4: *q++ = (unsigned char)coverage;
   1219           case 3: *q++ = (unsigned char)coverage;
   1220           case 2: *q++ = (unsigned char)coverage;
   1221           case 1: *q   = (unsigned char)coverage;
   1222           default:
   1223             ;
   1224           }
   1225         }
   1226       }
   1227     }
   1228   }
   1229 
   1230 
   1231   static void
   1232   gray_hline( RAS_ARG_ TCoord  x,
   1233                        TCoord  y,
   1234                        TPos    area,
   1235                        TCoord  acount )
   1236   {
   1237     FT_Span*  span;
   1238     int       count;
   1239     int       coverage;
   1240 
   1241 
   1242     /* compute the coverage line's coverage, depending on the    */
   1243     /* outline fill rule                                         */
   1244     /*                                                           */
   1245     /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
   1246     /*                                                           */
   1247     coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
   1248                                                     /* use range 0..256 */
   1249     if ( coverage < 0 )
   1250       coverage = -coverage;
   1251 
   1252     if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
   1253     {
   1254       coverage &= 511;
   1255 
   1256       if ( coverage > 256 )
   1257         coverage = 512 - coverage;
   1258       else if ( coverage == 256 )
   1259         coverage = 255;
   1260     }
   1261     else
   1262     {
   1263       /* normal non-zero winding rule */
   1264       if ( coverage >= 256 )
   1265         coverage = 255;
   1266     }
   1267 
   1268     y += (TCoord)ras.min_ey;
   1269     x += (TCoord)ras.min_ex;
   1270 
   1271     /* FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
   1272     if ( x >= 32767 )
   1273       x = 32767;
   1274 
   1275     /* FT_Span.y is an integer, so limit our coordinates appropriately */
   1276     if ( y >= FT_INT_MAX )
   1277       y = FT_INT_MAX;
   1278 
   1279     if ( coverage )
   1280     {
   1281       /* see whether we can add this span to the current list */
   1282       count = ras.num_gray_spans;
   1283       span  = ras.gray_spans + count - 1;
   1284       if ( count > 0                          &&
   1285            ras.span_y == y                    &&
   1286            (int)span->x + span->len == (int)x &&
   1287            span->coverage == coverage         )
   1288       {
   1289         span->len = (unsigned short)( span->len + acount );
   1290         return;
   1291       }
   1292 
   1293       if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
   1294       {
   1295         if ( ras.render_span && count > 0 )
   1296           ras.render_span( ras.span_y, count, ras.gray_spans,
   1297                            ras.render_span_data );
   1298 
   1299 #ifdef FT_DEBUG_LEVEL_TRACE
   1300 
   1301         if ( count > 0 )
   1302         {
   1303           int  n;
   1304 
   1305 
   1306           FT_TRACE7(( "y = %3d ", ras.span_y ));
   1307           span = ras.gray_spans;
   1308           for ( n = 0; n < count; n++, span++ )
   1309             FT_TRACE7(( "[%d..%d]:%02x ",
   1310                         span->x, span->x + span->len - 1, span->coverage ));
   1311           FT_TRACE7(( "\n" ));
   1312         }
   1313 
   1314 #endif /* FT_DEBUG_LEVEL_TRACE */
   1315 
   1316         ras.num_gray_spans = 0;
   1317         ras.span_y         = (int)y;
   1318 
   1319         count = 0;
   1320         span  = ras.gray_spans;
   1321       }
   1322       else
   1323         span++;
   1324 
   1325       /* add a gray span to the current list */
   1326       span->x        = (short)x;
   1327       span->len      = (unsigned short)acount;
   1328       span->coverage = (unsigned char)coverage;
   1329 
   1330       ras.num_gray_spans++;
   1331     }
   1332   }
   1333 
   1334 
   1335 #ifdef FT_DEBUG_LEVEL_TRACE
   1336 
   1337   /* to be called while in the debugger --                                */
   1338   /* this function causes a compiler warning since it is unused otherwise */
   1339   static void
   1340   gray_dump_cells( RAS_ARG )
   1341   {
   1342     int  yindex;
   1343 
   1344 
   1345     for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1346     {
   1347       PCell  cell;
   1348 
   1349 
   1350       printf( "%3d:", yindex );
   1351 
   1352       for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
   1353         printf( " (%3ld, c:%4ld, a:%6d)", cell->x, cell->cover, cell->area );
   1354       printf( "\n" );
   1355     }
   1356   }
   1357 
   1358 #endif /* FT_DEBUG_LEVEL_TRACE */
   1359 
   1360 
   1361   static void
   1362   gray_sweep( RAS_ARG_ const FT_Bitmap*  target )
   1363   {
   1364     int  yindex;
   1365 
   1366     FT_UNUSED( target );
   1367 
   1368 
   1369     if ( ras.num_cells == 0 )
   1370       return;
   1371 
   1372     ras.num_gray_spans = 0;
   1373 
   1374     FT_TRACE7(( "gray_sweep: start\n" ));
   1375 
   1376     for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1377     {
   1378       PCell   cell  = ras.ycells[yindex];
   1379       TCoord  cover = 0;
   1380       TCoord  x     = 0;
   1381 
   1382 
   1383       for ( ; cell != NULL; cell = cell->next )
   1384       {
   1385         TPos  area;
   1386 
   1387 
   1388         if ( cell->x > x && cover != 0 )
   1389           gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
   1390                       cell->x - x );
   1391 
   1392         cover += cell->cover;
   1393         area   = cover * ( ONE_PIXEL * 2 ) - cell->area;
   1394 
   1395         if ( area != 0 && cell->x >= 0 )
   1396           gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
   1397 
   1398         x = cell->x + 1;
   1399       }
   1400 
   1401       if ( cover != 0 )
   1402         gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
   1403                     ras.count_ex - x );
   1404     }
   1405 
   1406     if ( ras.render_span && ras.num_gray_spans > 0 )
   1407       ras.render_span( ras.span_y, ras.num_gray_spans,
   1408                        ras.gray_spans, ras.render_span_data );
   1409 
   1410     FT_TRACE7(( "gray_sweep: end\n" ));
   1411   }
   1412 
   1413 
   1414 #ifdef _STANDALONE_
   1415 
   1416   /*************************************************************************/
   1417   /*                                                                       */
   1418   /*  The following function should only compile in stand-alone mode,      */
   1419   /*  i.e., when building this component without the rest of FreeType.     */
   1420   /*                                                                       */
   1421   /*************************************************************************/
   1422 
   1423   /*************************************************************************/
   1424   /*                                                                       */
   1425   /* <Function>                                                            */
   1426   /*    FT_Outline_Decompose                                               */
   1427   /*                                                                       */
   1428   /* <Description>                                                         */
   1429   /*    Walk over an outline's structure to decompose it into individual   */
   1430   /*    segments and Bzier arcs.  This function is also able to emit      */
   1431   /*    `move to' and `close to' operations to indicate the start and end  */
   1432   /*    of new contours in the outline.                                    */
   1433   /*                                                                       */
   1434   /* <Input>                                                               */
   1435   /*    outline        :: A pointer to the source target.                  */
   1436   /*                                                                       */
   1437   /*    func_interface :: A table of `emitters', i.e., function pointers   */
   1438   /*                      called during decomposition to indicate path     */
   1439   /*                      operations.                                      */
   1440   /*                                                                       */
   1441   /* <InOut>                                                               */
   1442   /*    user           :: A typeless pointer which is passed to each       */
   1443   /*                      emitter during the decomposition.  It can be     */
   1444   /*                      used to store the state during the               */
   1445   /*                      decomposition.                                   */
   1446   /*                                                                       */
   1447   /* <Return>                                                              */
   1448   /*    Error code.  0 means success.                                      */
   1449   /*                                                                       */
   1450   static int
   1451   FT_Outline_Decompose( const FT_Outline*        outline,
   1452                         const FT_Outline_Funcs*  func_interface,
   1453                         void*                    user )
   1454   {
   1455 #undef SCALED
   1456 #define SCALED( x )  ( ( (x) << shift ) - delta )
   1457 
   1458     FT_Vector   v_last;
   1459     FT_Vector   v_control;
   1460     FT_Vector   v_start;
   1461 
   1462     FT_Vector*  point;
   1463     FT_Vector*  limit;
   1464     char*       tags;
   1465 
   1466     int         error;
   1467 
   1468     int   n;         /* index of contour in outline     */
   1469     int   first;     /* index of first point in contour */
   1470     char  tag;       /* current point's state           */
   1471 
   1472     int   shift;
   1473     TPos  delta;
   1474 
   1475 
   1476     if ( !outline || !func_interface )
   1477       return ErrRaster_Invalid_Argument;
   1478 
   1479     shift = func_interface->shift;
   1480     delta = func_interface->delta;
   1481     first = 0;
   1482 
   1483     for ( n = 0; n < outline->n_contours; n++ )
   1484     {
   1485       int  last;  /* index of last point in contour */
   1486 
   1487 
   1488       FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
   1489 
   1490       last  = outline->contours[n];
   1491       if ( last < 0 )
   1492         goto Invalid_Outline;
   1493       limit = outline->points + last;
   1494 
   1495       v_start   = outline->points[first];
   1496       v_start.x = SCALED( v_start.x );
   1497       v_start.y = SCALED( v_start.y );
   1498 
   1499       v_last   = outline->points[last];
   1500       v_last.x = SCALED( v_last.x );
   1501       v_last.y = SCALED( v_last.y );
   1502 
   1503       v_control = v_start;
   1504 
   1505       point = outline->points + first;
   1506       tags  = outline->tags   + first;
   1507       tag   = FT_CURVE_TAG( tags[0] );
   1508 
   1509       /* A contour cannot start with a cubic control point! */
   1510       if ( tag == FT_CURVE_TAG_CUBIC )
   1511         goto Invalid_Outline;
   1512 
   1513       /* check first point to determine origin */
   1514       if ( tag == FT_CURVE_TAG_CONIC )
   1515       {
   1516         /* first point is conic control.  Yes, this happens. */
   1517         if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
   1518         {
   1519           /* start at last point if it is on the curve */
   1520           v_start = v_last;
   1521           limit--;
   1522         }
   1523         else
   1524         {
   1525           /* if both first and last points are conic,         */
   1526           /* start at their middle and record its position    */
   1527           /* for closure                                      */
   1528           v_start.x = ( v_start.x + v_last.x ) / 2;
   1529           v_start.y = ( v_start.y + v_last.y ) / 2;
   1530 
   1531           v_last = v_start;
   1532         }
   1533         point--;
   1534         tags--;
   1535       }
   1536 
   1537       FT_TRACE5(( "  move to (%.2f, %.2f)\n",
   1538                   v_start.x / 64.0, v_start.y / 64.0 ));
   1539       error = func_interface->move_to( &v_start, user );
   1540       if ( error )
   1541         goto Exit;
   1542 
   1543       while ( point < limit )
   1544       {
   1545         point++;
   1546         tags++;
   1547 
   1548         tag = FT_CURVE_TAG( tags[0] );
   1549         switch ( tag )
   1550         {
   1551         case FT_CURVE_TAG_ON:  /* emit a single line_to */
   1552           {
   1553             FT_Vector  vec;
   1554 
   1555 
   1556             vec.x = SCALED( point->x );
   1557             vec.y = SCALED( point->y );
   1558 
   1559             FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1560                         vec.x / 64.0, vec.y / 64.0 ));
   1561             error = func_interface->line_to( &vec, user );
   1562             if ( error )
   1563               goto Exit;
   1564             continue;
   1565           }
   1566 
   1567         case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
   1568           v_control.x = SCALED( point->x );
   1569           v_control.y = SCALED( point->y );
   1570 
   1571         Do_Conic:
   1572           if ( point < limit )
   1573           {
   1574             FT_Vector  vec;
   1575             FT_Vector  v_middle;
   1576 
   1577 
   1578             point++;
   1579             tags++;
   1580             tag = FT_CURVE_TAG( tags[0] );
   1581 
   1582             vec.x = SCALED( point->x );
   1583             vec.y = SCALED( point->y );
   1584 
   1585             if ( tag == FT_CURVE_TAG_ON )
   1586             {
   1587               FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1588                           " with control (%.2f, %.2f)\n",
   1589                           vec.x / 64.0, vec.y / 64.0,
   1590                           v_control.x / 64.0, v_control.y / 64.0 ));
   1591               error = func_interface->conic_to( &v_control, &vec, user );
   1592               if ( error )
   1593                 goto Exit;
   1594               continue;
   1595             }
   1596 
   1597             if ( tag != FT_CURVE_TAG_CONIC )
   1598               goto Invalid_Outline;
   1599 
   1600             v_middle.x = ( v_control.x + vec.x ) / 2;
   1601             v_middle.y = ( v_control.y + vec.y ) / 2;
   1602 
   1603             FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1604                         " with control (%.2f, %.2f)\n",
   1605                         v_middle.x / 64.0, v_middle.y / 64.0,
   1606                         v_control.x / 64.0, v_control.y / 64.0 ));
   1607             error = func_interface->conic_to( &v_control, &v_middle, user );
   1608             if ( error )
   1609               goto Exit;
   1610 
   1611             v_control = vec;
   1612             goto Do_Conic;
   1613           }
   1614 
   1615           FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1616                       " with control (%.2f, %.2f)\n",
   1617                       v_start.x / 64.0, v_start.y / 64.0,
   1618                       v_control.x / 64.0, v_control.y / 64.0 ));
   1619           error = func_interface->conic_to( &v_control, &v_start, user );
   1620           goto Close;
   1621 
   1622         default:  /* FT_CURVE_TAG_CUBIC */
   1623           {
   1624             FT_Vector  vec1, vec2;
   1625 
   1626 
   1627             if ( point + 1 > limit                             ||
   1628                  FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
   1629               goto Invalid_Outline;
   1630 
   1631             point += 2;
   1632             tags  += 2;
   1633 
   1634             vec1.x = SCALED( point[-2].x );
   1635             vec1.y = SCALED( point[-2].y );
   1636 
   1637             vec2.x = SCALED( point[-1].x );
   1638             vec2.y = SCALED( point[-1].y );
   1639 
   1640             if ( point <= limit )
   1641             {
   1642               FT_Vector  vec;
   1643 
   1644 
   1645               vec.x = SCALED( point->x );
   1646               vec.y = SCALED( point->y );
   1647 
   1648               FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1649                           " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1650                           vec.x / 64.0, vec.y / 64.0,
   1651                           vec1.x / 64.0, vec1.y / 64.0,
   1652                           vec2.x / 64.0, vec2.y / 64.0 ));
   1653               error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
   1654               if ( error )
   1655                 goto Exit;
   1656               continue;
   1657             }
   1658 
   1659             FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1660                         " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1661                         v_start.x / 64.0, v_start.y / 64.0,
   1662                         vec1.x / 64.0, vec1.y / 64.0,
   1663                         vec2.x / 64.0, vec2.y / 64.0 ));
   1664             error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
   1665             goto Close;
   1666           }
   1667         }
   1668       }
   1669 
   1670       /* close the contour with a line segment */
   1671       FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1672                   v_start.x / 64.0, v_start.y / 64.0 ));
   1673       error = func_interface->line_to( &v_start, user );
   1674 
   1675    Close:
   1676       if ( error )
   1677         goto Exit;
   1678 
   1679       first = last + 1;
   1680     }
   1681 
   1682     FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
   1683     return 0;
   1684 
   1685   Exit:
   1686     FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
   1687     return error;
   1688 
   1689   Invalid_Outline:
   1690     return ErrRaster_Invalid_Outline;
   1691   }
   1692 
   1693 #endif /* _STANDALONE_ */
   1694 
   1695 
   1696   typedef struct  TBand_
   1697   {
   1698     TPos  min, max;
   1699 
   1700   } TBand;
   1701 
   1702     FT_DEFINE_OUTLINE_FUNCS(func_interface,
   1703       (FT_Outline_MoveTo_Func) gray_move_to,
   1704       (FT_Outline_LineTo_Func) gray_line_to,
   1705       (FT_Outline_ConicTo_Func)gray_conic_to,
   1706       (FT_Outline_CubicTo_Func)gray_cubic_to,
   1707       0,
   1708       0
   1709     )
   1710 
   1711   static int
   1712   gray_convert_glyph_inner( RAS_ARG )
   1713   {
   1714 
   1715     volatile int  error = 0;
   1716 
   1717 #ifdef FT_CONFIG_OPTION_PIC
   1718       FT_Outline_Funcs func_interface;
   1719       Init_Class_func_interface(&func_interface);
   1720 #endif
   1721 
   1722     if ( ft_setjmp( ras.jump_buffer ) == 0 )
   1723     {
   1724       error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
   1725       gray_record_cell( RAS_VAR );
   1726     }
   1727     else
   1728       error = ErrRaster_Memory_Overflow;
   1729 
   1730     return error;
   1731   }
   1732 
   1733 
   1734   static int
   1735   gray_convert_glyph( RAS_ARG )
   1736   {
   1737     TBand            bands[40];
   1738     TBand* volatile  band;
   1739     int volatile     n, num_bands;
   1740     TPos volatile    min, max, max_y;
   1741     FT_BBox*         clip;
   1742 
   1743 
   1744     /* Set up state in the raster object */
   1745     gray_compute_cbox( RAS_VAR );
   1746 
   1747     /* clip to target bitmap, exit if nothing to do */
   1748     clip = &ras.clip_box;
   1749 
   1750     if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
   1751          ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
   1752       return 0;
   1753 
   1754     if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
   1755     if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
   1756 
   1757     if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
   1758     if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
   1759 
   1760     ras.count_ex = ras.max_ex - ras.min_ex;
   1761     ras.count_ey = ras.max_ey - ras.min_ey;
   1762 
   1763     /* simple heuristic used to speed up the bezier decomposition -- see */
   1764     /* the code in gray_render_conic() and gray_render_cubic() for more  */
   1765     /* details                                                           */
   1766     ras.conic_level = 32;
   1767     ras.cubic_level = 16;
   1768 
   1769     {
   1770       int  level = 0;
   1771 
   1772 
   1773       if ( ras.count_ex > 24 || ras.count_ey > 24 )
   1774         level++;
   1775       if ( ras.count_ex > 120 || ras.count_ey > 120 )
   1776         level++;
   1777 
   1778       ras.conic_level <<= level;
   1779       ras.cubic_level <<= level;
   1780     }
   1781 
   1782     /* set up vertical bands */
   1783     num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
   1784     if ( num_bands == 0 )
   1785       num_bands = 1;
   1786     if ( num_bands >= 39 )
   1787       num_bands = 39;
   1788 
   1789     ras.band_shoot = 0;
   1790 
   1791     min   = ras.min_ey;
   1792     max_y = ras.max_ey;
   1793 
   1794     for ( n = 0; n < num_bands; n++, min = max )
   1795     {
   1796       max = min + ras.band_size;
   1797       if ( n == num_bands - 1 || max > max_y )
   1798         max = max_y;
   1799 
   1800       bands[0].min = min;
   1801       bands[0].max = max;
   1802       band         = bands;
   1803 
   1804       while ( band >= bands )
   1805       {
   1806         TPos  bottom, top, middle;
   1807         int   error;
   1808 
   1809         {
   1810           PCell  cells_max;
   1811           int    yindex;
   1812           long   cell_start, cell_end, cell_mod;
   1813 
   1814 
   1815           ras.ycells = (PCell*)ras.buffer;
   1816           ras.ycount = band->max - band->min;
   1817 
   1818           cell_start = sizeof ( PCell ) * ras.ycount;
   1819           cell_mod   = cell_start % sizeof ( TCell );
   1820           if ( cell_mod > 0 )
   1821             cell_start += sizeof ( TCell ) - cell_mod;
   1822 
   1823           cell_end  = ras.buffer_size;
   1824           cell_end -= cell_end % sizeof( TCell );
   1825 
   1826           cells_max = (PCell)( (char*)ras.buffer + cell_end );
   1827           ras.cells = (PCell)( (char*)ras.buffer + cell_start );
   1828           if ( ras.cells >= cells_max )
   1829             goto ReduceBands;
   1830 
   1831           ras.max_cells = cells_max - ras.cells;
   1832           if ( ras.max_cells < 2 )
   1833             goto ReduceBands;
   1834 
   1835           for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1836             ras.ycells[yindex] = NULL;
   1837         }
   1838 
   1839         ras.num_cells = 0;
   1840         ras.invalid   = 1;
   1841         ras.min_ey    = band->min;
   1842         ras.max_ey    = band->max;
   1843         ras.count_ey  = band->max - band->min;
   1844 
   1845         error = gray_convert_glyph_inner( RAS_VAR );
   1846 
   1847         if ( !error )
   1848         {
   1849           gray_sweep( RAS_VAR_ &ras.target );
   1850           band--;
   1851           continue;
   1852         }
   1853         else if ( error != ErrRaster_Memory_Overflow )
   1854           return 1;
   1855 
   1856       ReduceBands:
   1857         /* render pool overflow; we will reduce the render band by half */
   1858         bottom = band->min;
   1859         top    = band->max;
   1860         middle = bottom + ( ( top - bottom ) >> 1 );
   1861 
   1862         /* This is too complex for a single scanline; there must */
   1863         /* be some problems.                                     */
   1864         if ( middle == bottom )
   1865         {
   1866 #ifdef FT_DEBUG_LEVEL_TRACE
   1867           FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
   1868 #endif
   1869           return 1;
   1870         }
   1871 
   1872         if ( bottom-top >= ras.band_size )
   1873           ras.band_shoot++;
   1874 
   1875         band[1].min = bottom;
   1876         band[1].max = middle;
   1877         band[0].min = middle;
   1878         band[0].max = top;
   1879         band++;
   1880       }
   1881     }
   1882 
   1883     if ( ras.band_shoot > 8 && ras.band_size > 16 )
   1884       ras.band_size = ras.band_size / 2;
   1885 
   1886     return 0;
   1887   }
   1888 
   1889 
   1890   static int
   1891   gray_raster_render( PRaster                  raster,
   1892                       const FT_Raster_Params*  params )
   1893   {
   1894     const FT_Outline*  outline    = (const FT_Outline*)params->source;
   1895     const FT_Bitmap*   target_map = params->target;
   1896     PWorker            worker;
   1897 
   1898 
   1899     if ( !raster || !raster->buffer || !raster->buffer_size )
   1900       return ErrRaster_Invalid_Argument;
   1901 
   1902     if ( !outline )
   1903       return ErrRaster_Invalid_Outline;
   1904 
   1905     /* return immediately if the outline is empty */
   1906     if ( outline->n_points == 0 || outline->n_contours <= 0 )
   1907       return 0;
   1908 
   1909     if ( !outline->contours || !outline->points )
   1910       return ErrRaster_Invalid_Outline;
   1911 
   1912     if ( outline->n_points !=
   1913            outline->contours[outline->n_contours - 1] + 1 )
   1914       return ErrRaster_Invalid_Outline;
   1915 
   1916     worker = raster->worker;
   1917 
   1918     /* if direct mode is not set, we must have a target bitmap */
   1919     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1920     {
   1921       if ( !target_map )
   1922         return ErrRaster_Invalid_Argument;
   1923 
   1924       /* nothing to do */
   1925       if ( !target_map->width || !target_map->rows )
   1926         return 0;
   1927 
   1928       if ( !target_map->buffer )
   1929         return ErrRaster_Invalid_Argument;
   1930     }
   1931 
   1932     /* this version does not support monochrome rendering */
   1933     if ( !( params->flags & FT_RASTER_FLAG_AA ) )
   1934       return ErrRaster_Invalid_Mode;
   1935 
   1936     /* compute clipping box */
   1937     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1938     {
   1939       /* compute clip box from target pixmap */
   1940       ras.clip_box.xMin = 0;
   1941       ras.clip_box.yMin = 0;
   1942       ras.clip_box.xMax = target_map->width;
   1943       ras.clip_box.yMax = target_map->rows;
   1944     }
   1945     else if ( params->flags & FT_RASTER_FLAG_CLIP )
   1946       ras.clip_box = params->clip_box;
   1947     else
   1948     {
   1949       ras.clip_box.xMin = -32768L;
   1950       ras.clip_box.yMin = -32768L;
   1951       ras.clip_box.xMax =  32767L;
   1952       ras.clip_box.yMax =  32767L;
   1953     }
   1954 
   1955     gray_init_cells( RAS_VAR_ raster->buffer, raster->buffer_size );
   1956 
   1957     ras.outline        = *outline;
   1958     ras.num_cells      = 0;
   1959     ras.invalid        = 1;
   1960     ras.band_size      = raster->band_size;
   1961     ras.num_gray_spans = 0;
   1962 
   1963     if ( params->flags & FT_RASTER_FLAG_DIRECT )
   1964     {
   1965       ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
   1966       ras.render_span_data = params->user;
   1967     }
   1968     else
   1969     {
   1970       ras.target           = *target_map;
   1971       ras.render_span      = (FT_Raster_Span_Func)gray_render_span;
   1972       ras.render_span_data = &ras;
   1973     }
   1974 
   1975     return gray_convert_glyph( RAS_VAR );
   1976   }
   1977 
   1978 
   1979   /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
   1980   /****                         a static object.                   *****/
   1981 
   1982 #ifdef _STANDALONE_
   1983 
   1984   static int
   1985   gray_raster_new( void*       memory,
   1986                    FT_Raster*  araster )
   1987   {
   1988     static TRaster  the_raster;
   1989 
   1990     FT_UNUSED( memory );
   1991 
   1992 
   1993     *araster = (FT_Raster)&the_raster;
   1994     FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
   1995 
   1996     return 0;
   1997   }
   1998 
   1999 
   2000   static void
   2001   gray_raster_done( FT_Raster  raster )
   2002   {
   2003     /* nothing */
   2004     FT_UNUSED( raster );
   2005   }
   2006 
   2007 #else /* !_STANDALONE_ */
   2008 
   2009   static int
   2010   gray_raster_new( FT_Memory   memory,
   2011                    FT_Raster*  araster )
   2012   {
   2013     FT_Error  error;
   2014     PRaster   raster = NULL;
   2015 
   2016 
   2017     *araster = 0;
   2018     if ( !FT_ALLOC( raster, sizeof ( TRaster ) ) )
   2019     {
   2020       raster->memory = memory;
   2021       *araster = (FT_Raster)raster;
   2022     }
   2023 
   2024     return error;
   2025   }
   2026 
   2027 
   2028   static void
   2029   gray_raster_done( FT_Raster  raster )
   2030   {
   2031     FT_Memory  memory = (FT_Memory)((PRaster)raster)->memory;
   2032 
   2033 
   2034     FT_FREE( raster );
   2035   }
   2036 
   2037 #endif /* !_STANDALONE_ */
   2038 
   2039 
   2040   static void
   2041   gray_raster_reset( FT_Raster  raster,
   2042                      char*      pool_base,
   2043                      long       pool_size )
   2044   {
   2045     PRaster  rast = (PRaster)raster;
   2046 
   2047 
   2048     if ( raster )
   2049     {
   2050       if ( pool_base && pool_size >= (long)sizeof ( TWorker ) + 2048 )
   2051       {
   2052         PWorker  worker = (PWorker)pool_base;
   2053 
   2054 
   2055         rast->worker      = worker;
   2056         rast->buffer      = pool_base +
   2057                               ( ( sizeof ( TWorker ) + sizeof ( TCell ) - 1 ) &
   2058                                 ~( sizeof ( TCell ) - 1 ) );
   2059         rast->buffer_size = (long)( ( pool_base + pool_size ) -
   2060                                     (char*)rast->buffer ) &
   2061                                       ~( sizeof ( TCell ) - 1 );
   2062         rast->band_size   = (int)( rast->buffer_size /
   2063                                      ( sizeof ( TCell ) * 8 ) );
   2064       }
   2065       else
   2066       {
   2067         rast->buffer      = NULL;
   2068         rast->buffer_size = 0;
   2069         rast->worker      = NULL;
   2070       }
   2071     }
   2072   }
   2073 
   2074 
   2075   FT_DEFINE_RASTER_FUNCS(ft_grays_raster,
   2076     FT_GLYPH_FORMAT_OUTLINE,
   2077 
   2078     (FT_Raster_New_Func)     gray_raster_new,
   2079     (FT_Raster_Reset_Func)   gray_raster_reset,
   2080     (FT_Raster_Set_Mode_Func)0,
   2081     (FT_Raster_Render_Func)  gray_raster_render,
   2082     (FT_Raster_Done_Func)    gray_raster_done
   2083   )
   2084 
   2085 
   2086 /* END */
   2087 
   2088 
   2089 /* Local Variables: */
   2090 /* coding: utf-8    */
   2091 /* End:             */
   2092