Home | History | Annotate | Download | only in mips
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2010 the V8 project authors. All rights reserved.
     34 
     35 
     36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
     37 #define V8_MIPS_ASSEMBLER_MIPS_H_
     38 
     39 #include <stdio.h>
     40 #include "assembler.h"
     41 #include "constants-mips.h"
     42 #include "serialize.h"
     43 
     44 using namespace assembler::mips;
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 // CPU Registers.
     50 //
     51 // 1) We would prefer to use an enum, but enum values are assignment-
     52 // compatible with int, which has caused code-generation bugs.
     53 //
     54 // 2) We would prefer to use a class instead of a struct but we don't like
     55 // the register initialization to depend on the particular initialization
     56 // order (which appears to be different on OS X, Linux, and Windows for the
     57 // installed versions of C++ we tried). Using a struct permits C-style
     58 // "initialization". Also, the Register objects cannot be const as this
     59 // forces initialization stubs in MSVC, making us dependent on initialization
     60 // order.
     61 //
     62 // 3) By not using an enum, we are possibly preventing the compiler from
     63 // doing certain constant folds, which may significantly reduce the
     64 // code generated for some assembly instructions (because they boil down
     65 // to a few constants). If this is a problem, we could change the code
     66 // such that we use an enum in optimized mode, and the struct in debug
     67 // mode. This way we get the compile-time error checking in debug mode
     68 // and best performance in optimized code.
     69 
     70 
     71 // -----------------------------------------------------------------------------
     72 // Implementation of Register and FPURegister
     73 
     74 // Core register.
     75 struct Register {
     76   bool is_valid() const  { return 0 <= code_ && code_ < kNumRegisters; }
     77   bool is(Register reg) const  { return code_ == reg.code_; }
     78   int code() const  {
     79     ASSERT(is_valid());
     80     return code_;
     81   }
     82   int bit() const  {
     83     ASSERT(is_valid());
     84     return 1 << code_;
     85   }
     86 
     87   // Unfortunately we can't make this private in a struct.
     88   int code_;
     89 };
     90 
     91 extern const Register no_reg;
     92 
     93 extern const Register zero_reg;
     94 extern const Register at;
     95 extern const Register v0;
     96 extern const Register v1;
     97 extern const Register a0;
     98 extern const Register a1;
     99 extern const Register a2;
    100 extern const Register a3;
    101 extern const Register t0;
    102 extern const Register t1;
    103 extern const Register t2;
    104 extern const Register t3;
    105 extern const Register t4;
    106 extern const Register t5;
    107 extern const Register t6;
    108 extern const Register t7;
    109 extern const Register s0;
    110 extern const Register s1;
    111 extern const Register s2;
    112 extern const Register s3;
    113 extern const Register s4;
    114 extern const Register s5;
    115 extern const Register s6;
    116 extern const Register s7;
    117 extern const Register t8;
    118 extern const Register t9;
    119 extern const Register k0;
    120 extern const Register k1;
    121 extern const Register gp;
    122 extern const Register sp;
    123 extern const Register s8_fp;
    124 extern const Register ra;
    125 
    126 int ToNumber(Register reg);
    127 
    128 Register ToRegister(int num);
    129 
    130 // Coprocessor register.
    131 struct FPURegister {
    132   bool is_valid() const  { return 0 <= code_ && code_ < kNumFPURegister ; }
    133   bool is(FPURegister creg) const  { return code_ == creg.code_; }
    134   int code() const  {
    135     ASSERT(is_valid());
    136     return code_;
    137   }
    138   int bit() const  {
    139     ASSERT(is_valid());
    140     return 1 << code_;
    141   }
    142 
    143   // Unfortunately we can't make this private in a struct.
    144   int code_;
    145 };
    146 
    147 extern const FPURegister no_creg;
    148 
    149 extern const FPURegister f0;
    150 extern const FPURegister f1;
    151 extern const FPURegister f2;
    152 extern const FPURegister f3;
    153 extern const FPURegister f4;
    154 extern const FPURegister f5;
    155 extern const FPURegister f6;
    156 extern const FPURegister f7;
    157 extern const FPURegister f8;
    158 extern const FPURegister f9;
    159 extern const FPURegister f10;
    160 extern const FPURegister f11;
    161 extern const FPURegister f12;  // arg
    162 extern const FPURegister f13;
    163 extern const FPURegister f14;  // arg
    164 extern const FPURegister f15;
    165 extern const FPURegister f16;
    166 extern const FPURegister f17;
    167 extern const FPURegister f18;
    168 extern const FPURegister f19;
    169 extern const FPURegister f20;
    170 extern const FPURegister f21;
    171 extern const FPURegister f22;
    172 extern const FPURegister f23;
    173 extern const FPURegister f24;
    174 extern const FPURegister f25;
    175 extern const FPURegister f26;
    176 extern const FPURegister f27;
    177 extern const FPURegister f28;
    178 extern const FPURegister f29;
    179 extern const FPURegister f30;
    180 extern const FPURegister f31;
    181 
    182 
    183 // Returns the equivalent of !cc.
    184 // Negation of the default no_condition (-1) results in a non-default
    185 // no_condition value (-2). As long as tests for no_condition check
    186 // for condition < 0, this will work as expected.
    187 inline Condition NegateCondition(Condition cc);
    188 
    189 inline Condition ReverseCondition(Condition cc) {
    190   switch (cc) {
    191     case Uless:
    192       return Ugreater;
    193     case Ugreater:
    194       return Uless;
    195     case Ugreater_equal:
    196       return Uless_equal;
    197     case Uless_equal:
    198       return Ugreater_equal;
    199     case less:
    200       return greater;
    201     case greater:
    202       return less;
    203     case greater_equal:
    204       return less_equal;
    205     case less_equal:
    206       return greater_equal;
    207     default:
    208       return cc;
    209   };
    210 }
    211 
    212 
    213 enum Hint {
    214   no_hint = 0
    215 };
    216 
    217 inline Hint NegateHint(Hint hint) {
    218   return no_hint;
    219 }
    220 
    221 
    222 // -----------------------------------------------------------------------------
    223 // Machine instruction Operands.
    224 
    225 // Class Operand represents a shifter operand in data processing instructions.
    226 class Operand BASE_EMBEDDED {
    227  public:
    228   // Immediate.
    229   INLINE(explicit Operand(int32_t immediate,
    230          RelocInfo::Mode rmode = RelocInfo::NONE));
    231   INLINE(explicit Operand(const ExternalReference& f));
    232   INLINE(explicit Operand(const char* s));
    233   INLINE(explicit Operand(Object** opp));
    234   INLINE(explicit Operand(Context** cpp));
    235   explicit Operand(Handle<Object> handle);
    236   INLINE(explicit Operand(Smi* value));
    237 
    238   // Register.
    239   INLINE(explicit Operand(Register rm));
    240 
    241   // Return true if this is a register operand.
    242   INLINE(bool is_reg() const);
    243 
    244   Register rm() const { return rm_; }
    245 
    246  private:
    247   Register rm_;
    248   int32_t imm32_;  // Valid if rm_ == no_reg
    249   RelocInfo::Mode rmode_;
    250 
    251   friend class Assembler;
    252   friend class MacroAssembler;
    253 };
    254 
    255 
    256 // On MIPS we have only one adressing mode with base_reg + offset.
    257 // Class MemOperand represents a memory operand in load and store instructions.
    258 class MemOperand : public Operand {
    259  public:
    260 
    261   explicit MemOperand(Register rn, int16_t offset = 0);
    262 
    263  private:
    264   int16_t offset_;
    265 
    266   friend class Assembler;
    267 };
    268 
    269 
    270 class Assembler : public Malloced {
    271  public:
    272   // Create an assembler. Instructions and relocation information are emitted
    273   // into a buffer, with the instructions starting from the beginning and the
    274   // relocation information starting from the end of the buffer. See CodeDesc
    275   // for a detailed comment on the layout (globals.h).
    276   //
    277   // If the provided buffer is NULL, the assembler allocates and grows its own
    278   // buffer, and buffer_size determines the initial buffer size. The buffer is
    279   // owned by the assembler and deallocated upon destruction of the assembler.
    280   //
    281   // If the provided buffer is not NULL, the assembler uses the provided buffer
    282   // for code generation and assumes its size to be buffer_size. If the buffer
    283   // is too small, a fatal error occurs. No deallocation of the buffer is done
    284   // upon destruction of the assembler.
    285   Assembler(void* buffer, int buffer_size);
    286   ~Assembler();
    287 
    288   // GetCode emits any pending (non-emitted) code and fills the descriptor
    289   // desc. GetCode() is idempotent; it returns the same result if no other
    290   // Assembler functions are invoked in between GetCode() calls.
    291   void GetCode(CodeDesc* desc);
    292 
    293   // Label operations & relative jumps (PPUM Appendix D).
    294   //
    295   // Takes a branch opcode (cc) and a label (L) and generates
    296   // either a backward branch or a forward branch and links it
    297   // to the label fixup chain. Usage:
    298   //
    299   // Label L;    // unbound label
    300   // j(cc, &L);  // forward branch to unbound label
    301   // bind(&L);   // bind label to the current pc
    302   // j(cc, &L);  // backward branch to bound label
    303   // bind(&L);   // illegal: a label may be bound only once
    304   //
    305   // Note: The same Label can be used for forward and backward branches
    306   // but it may be bound only once.
    307   void bind(Label* L);  // binds an unbound label L to the current code position
    308 
    309   // Returns the branch offset to the given label from the current code position
    310   // Links the label to the current position if it is still unbound
    311   // Manages the jump elimination optimization if the second parameter is true.
    312   int32_t branch_offset(Label* L, bool jump_elimination_allowed);
    313   int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
    314     int32_t o = branch_offset(L, jump_elimination_allowed);
    315     ASSERT((o & 3) == 0);   // Assert the offset is aligned.
    316     return o >> 2;
    317   }
    318 
    319   // Puts a labels target address at the given position.
    320   // The high 8 bits are set to zero.
    321   void label_at_put(Label* L, int at_offset);
    322 
    323   // Size of an instruction.
    324   static const int kInstrSize = sizeof(Instr);
    325 
    326   // Difference between address of current opcode and target address offset.
    327   static const int kBranchPCOffset = 4;
    328 
    329   // Read/Modify the code target address in the branch/call instruction at pc.
    330   static Address target_address_at(Address pc);
    331   static void set_target_address_at(Address pc, Address target);
    332 
    333   // This sets the branch destination (which gets loaded at the call address).
    334   // This is for calls and branches within generated code.
    335   inline static void set_target_at(Address instruction_payload,
    336                                    Address target) {
    337     set_target_address_at(instruction_payload, target);
    338   }
    339 
    340   // This sets the branch destination.
    341   // This is for calls and branches to runtime code.
    342   inline static void set_external_target_at(Address instruction_payload,
    343                                             Address target) {
    344     set_target_address_at(instruction_payload, target);
    345   }
    346 
    347   static const int kCallTargetSize = 3 * kPointerSize;
    348   static const int kExternalTargetSize = 3 * kPointerSize;
    349 
    350   // Distance between the instruction referring to the address of the call
    351   // target and the return address.
    352   static const int kCallTargetAddressOffset = 4 * kInstrSize;
    353 
    354   // Distance between start of patched return sequence and the emitted address
    355   // to jump to.
    356   static const int kPatchReturnSequenceAddressOffset = kInstrSize;
    357 
    358 
    359   // ---------------------------------------------------------------------------
    360   // Code generation.
    361 
    362   void nop() { sll(zero_reg, zero_reg, 0); }
    363 
    364 
    365   //------- Branch and jump  instructions --------
    366   // We don't use likely variant of instructions.
    367   void b(int16_t offset);
    368   void b(Label* L) { b(branch_offset(L, false)>>2); }
    369   void bal(int16_t offset);
    370   void bal(Label* L) { bal(branch_offset(L, false)>>2); }
    371 
    372   void beq(Register rs, Register rt, int16_t offset);
    373   void beq(Register rs, Register rt, Label* L) {
    374     beq(rs, rt, branch_offset(L, false) >> 2);
    375   }
    376   void bgez(Register rs, int16_t offset);
    377   void bgezal(Register rs, int16_t offset);
    378   void bgtz(Register rs, int16_t offset);
    379   void blez(Register rs, int16_t offset);
    380   void bltz(Register rs, int16_t offset);
    381   void bltzal(Register rs, int16_t offset);
    382   void bne(Register rs, Register rt, int16_t offset);
    383   void bne(Register rs, Register rt, Label* L) {
    384     bne(rs, rt, branch_offset(L, false)>>2);
    385   }
    386 
    387   // Never use the int16_t b(l)cond version with a branch offset
    388   // instead of using the Label* version. See Twiki for infos.
    389 
    390   // Jump targets must be in the current 256 MB-aligned region. ie 28 bits.
    391   void j(int32_t target);
    392   void jal(int32_t target);
    393   void jalr(Register rs, Register rd = ra);
    394   void jr(Register target);
    395 
    396 
    397   //-------Data-processing-instructions---------
    398 
    399   // Arithmetic.
    400   void add(Register rd, Register rs, Register rt);
    401   void addu(Register rd, Register rs, Register rt);
    402   void sub(Register rd, Register rs, Register rt);
    403   void subu(Register rd, Register rs, Register rt);
    404   void mult(Register rs, Register rt);
    405   void multu(Register rs, Register rt);
    406   void div(Register rs, Register rt);
    407   void divu(Register rs, Register rt);
    408   void mul(Register rd, Register rs, Register rt);
    409 
    410   void addi(Register rd, Register rs, int32_t j);
    411   void addiu(Register rd, Register rs, int32_t j);
    412 
    413   // Logical.
    414   void and_(Register rd, Register rs, Register rt);
    415   void or_(Register rd, Register rs, Register rt);
    416   void xor_(Register rd, Register rs, Register rt);
    417   void nor(Register rd, Register rs, Register rt);
    418 
    419   void andi(Register rd, Register rs, int32_t j);
    420   void ori(Register rd, Register rs, int32_t j);
    421   void xori(Register rd, Register rs, int32_t j);
    422   void lui(Register rd, int32_t j);
    423 
    424   // Shifts.
    425   void sll(Register rd, Register rt, uint16_t sa);
    426   void sllv(Register rd, Register rt, Register rs);
    427   void srl(Register rd, Register rt, uint16_t sa);
    428   void srlv(Register rd, Register rt, Register rs);
    429   void sra(Register rt, Register rd, uint16_t sa);
    430   void srav(Register rt, Register rd, Register rs);
    431 
    432 
    433   //------------Memory-instructions-------------
    434 
    435   void lb(Register rd, const MemOperand& rs);
    436   void lbu(Register rd, const MemOperand& rs);
    437   void lw(Register rd, const MemOperand& rs);
    438   void sb(Register rd, const MemOperand& rs);
    439   void sw(Register rd, const MemOperand& rs);
    440 
    441 
    442   //-------------Misc-instructions--------------
    443 
    444   // Break / Trap instructions.
    445   void break_(uint32_t code);
    446   void tge(Register rs, Register rt, uint16_t code);
    447   void tgeu(Register rs, Register rt, uint16_t code);
    448   void tlt(Register rs, Register rt, uint16_t code);
    449   void tltu(Register rs, Register rt, uint16_t code);
    450   void teq(Register rs, Register rt, uint16_t code);
    451   void tne(Register rs, Register rt, uint16_t code);
    452 
    453   // Move from HI/LO register.
    454   void mfhi(Register rd);
    455   void mflo(Register rd);
    456 
    457   // Set on less than.
    458   void slt(Register rd, Register rs, Register rt);
    459   void sltu(Register rd, Register rs, Register rt);
    460   void slti(Register rd, Register rs, int32_t j);
    461   void sltiu(Register rd, Register rs, int32_t j);
    462 
    463 
    464   //--------Coprocessor-instructions----------------
    465 
    466   // Load, store, and move.
    467   void lwc1(FPURegister fd, const MemOperand& src);
    468   void ldc1(FPURegister fd, const MemOperand& src);
    469 
    470   void swc1(FPURegister fs, const MemOperand& dst);
    471   void sdc1(FPURegister fs, const MemOperand& dst);
    472 
    473   // When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be
    474   // executed first, followed by the MTHC1.
    475   void mtc1(FPURegister fs, Register rt);
    476   void mthc1(FPURegister fs, Register rt);
    477   void mfc1(FPURegister fs, Register rt);
    478   void mfhc1(FPURegister fs, Register rt);
    479 
    480   // Conversion.
    481   void cvt_w_s(FPURegister fd, FPURegister fs);
    482   void cvt_w_d(FPURegister fd, FPURegister fs);
    483 
    484   void cvt_l_s(FPURegister fd, FPURegister fs);
    485   void cvt_l_d(FPURegister fd, FPURegister fs);
    486 
    487   void cvt_s_w(FPURegister fd, FPURegister fs);
    488   void cvt_s_l(FPURegister fd, FPURegister fs);
    489   void cvt_s_d(FPURegister fd, FPURegister fs);
    490 
    491   void cvt_d_w(FPURegister fd, FPURegister fs);
    492   void cvt_d_l(FPURegister fd, FPURegister fs);
    493   void cvt_d_s(FPURegister fd, FPURegister fs);
    494 
    495   // Conditions and branches.
    496   void c(FPUCondition cond, SecondaryField fmt,
    497          FPURegister ft, FPURegister fs, uint16_t cc = 0);
    498 
    499   void bc1f(int16_t offset, uint16_t cc = 0);
    500   void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
    501   void bc1t(int16_t offset, uint16_t cc = 0);
    502   void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
    503 
    504 
    505   // Check the code size generated from label to here.
    506   int InstructionsGeneratedSince(Label* l) {
    507     return (pc_offset() - l->pos()) / kInstrSize;
    508   }
    509 
    510   // Debugging.
    511 
    512   // Mark address of the ExitJSFrame code.
    513   void RecordJSReturn();
    514 
    515   // Record a comment relocation entry that can be used by a disassembler.
    516   // Use --debug_code to enable.
    517   void RecordComment(const char* msg);
    518 
    519   void RecordPosition(int pos);
    520   void RecordStatementPosition(int pos);
    521   void WriteRecordedPositions();
    522 
    523   int32_t pc_offset() const { return pc_ - buffer_; }
    524   int32_t current_position() const { return current_position_; }
    525   int32_t current_statement_position() const { return current_position_; }
    526 
    527   // Check if there is less than kGap bytes available in the buffer.
    528   // If this is the case, we need to grow the buffer before emitting
    529   // an instruction or relocation information.
    530   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
    531 
    532   // Get the number of bytes available in the buffer.
    533   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
    534 
    535  protected:
    536   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
    537 
    538   // Read/patch instructions.
    539   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
    540   void instr_at_put(byte* pc, Instr instr) {
    541     *reinterpret_cast<Instr*>(pc) = instr;
    542   }
    543   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
    544   void instr_at_put(int pos, Instr instr) {
    545     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
    546   }
    547 
    548   // Check if an instruction is a branch of some kind.
    549   bool is_branch(Instr instr);
    550 
    551   // Decode branch instruction at pos and return branch target pos.
    552   int target_at(int32_t pos);
    553 
    554   // Patch branch instruction at pos to branch to given branch target pos.
    555   void target_at_put(int32_t pos, int32_t target_pos);
    556 
    557   // Say if we need to relocate with this mode.
    558   bool MustUseAt(RelocInfo::Mode rmode);
    559 
    560   // Record reloc info for current pc_.
    561   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
    562 
    563  private:
    564   // Code buffer:
    565   // The buffer into which code and relocation info are generated.
    566   byte* buffer_;
    567   int buffer_size_;
    568   // True if the assembler owns the buffer, false if buffer is external.
    569   bool own_buffer_;
    570 
    571   // Buffer size and constant pool distance are checked together at regular
    572   // intervals of kBufferCheckInterval emitted bytes.
    573   static const int kBufferCheckInterval = 1*KB/2;
    574 
    575   // Code generation.
    576   // The relocation writer's position is at least kGap bytes below the end of
    577   // the generated instructions. This is so that multi-instruction sequences do
    578   // not have to check for overflow. The same is true for writes of large
    579   // relocation info entries.
    580   static const int kGap = 32;
    581   byte* pc_;  // The program counter - moves forward.
    582 
    583   // Relocation information generation.
    584   // Each relocation is encoded as a variable size value.
    585   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
    586   RelocInfoWriter reloc_info_writer;
    587 
    588   // The bound position, before this we cannot do instruction elimination.
    589   int last_bound_pos_;
    590 
    591   // Source position information.
    592   int current_position_;
    593   int current_statement_position_;
    594   int written_position_;
    595   int written_statement_position_;
    596 
    597   // Code emission.
    598   inline void CheckBuffer();
    599   void GrowBuffer();
    600   inline void emit(Instr x);
    601 
    602   // Instruction generation.
    603   // We have 3 different kind of encoding layout on MIPS.
    604   // However due to many different types of objects encoded in the same fields
    605   // we have quite a few aliases for each mode.
    606   // Using the same structure to refer to Register and FPURegister would spare a
    607   // few aliases, but mixing both does not look clean to me.
    608   // Anyway we could surely implement this differently.
    609 
    610   void GenInstrRegister(Opcode opcode,
    611                         Register rs,
    612                         Register rt,
    613                         Register rd,
    614                         uint16_t sa = 0,
    615                         SecondaryField func = NULLSF);
    616 
    617   void GenInstrRegister(Opcode opcode,
    618                         SecondaryField fmt,
    619                         FPURegister ft,
    620                         FPURegister fs,
    621                         FPURegister fd,
    622                         SecondaryField func = NULLSF);
    623 
    624   void GenInstrRegister(Opcode opcode,
    625                         SecondaryField fmt,
    626                         Register rt,
    627                         FPURegister fs,
    628                         FPURegister fd,
    629                         SecondaryField func = NULLSF);
    630 
    631 
    632   void GenInstrImmediate(Opcode opcode,
    633                          Register rs,
    634                          Register rt,
    635                          int32_t  j);
    636   void GenInstrImmediate(Opcode opcode,
    637                          Register rs,
    638                          SecondaryField SF,
    639                          int32_t  j);
    640   void GenInstrImmediate(Opcode opcode,
    641                          Register r1,
    642                          FPURegister r2,
    643                          int32_t  j);
    644 
    645 
    646   void GenInstrJump(Opcode opcode,
    647                      uint32_t address);
    648 
    649 
    650   // Labels.
    651   void print(Label* L);
    652   void bind_to(Label* L, int pos);
    653   void link_to(Label* L, Label* appendix);
    654   void next(Label* L);
    655 
    656   friend class RegExpMacroAssemblerMIPS;
    657   friend class RelocInfo;
    658 };
    659 
    660 } }  // namespace v8::internal
    661 
    662 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
    663 
    664