Home | History | Annotate | Download | only in libtommath
      1 /* LibTomMath, multiple-precision integer library -- Tom St Denis
      2  *
      3  * LibTomMath is a library that provides multiple-precision
      4  * integer arithmetic as well as number theoretic functionality.
      5  *
      6  * The library was designed directly after the MPI library by
      7  * Michael Fromberger but has been written from scratch with
      8  * additional optimizations in place.
      9  *
     10  * The library is free for all purposes without any express
     11  * guarantee it works.
     12  *
     13  * Tom St Denis, tomstdenis (at) gmail.com, http://math.libtomcrypt.com
     14  */
     15 #ifndef BN_H_
     16 #define BN_H_
     17 
     18 #include <stdio.h>
     19 #include <string.h>
     20 #include <stdlib.h>
     21 #include <ctype.h>
     22 #include <limits.h>
     23 
     24 #include "tommath_class.h"
     25 
     26 #ifndef MIN
     27    #define MIN(x,y) ((x)<(y)?(x):(y))
     28 #endif
     29 
     30 #ifndef MAX
     31    #define MAX(x,y) ((x)>(y)?(x):(y))
     32 #endif
     33 
     34 #ifdef __cplusplus
     35 extern "C" {
     36 
     37 /* C++ compilers don't like assigning void * to mp_digit * */
     38 #define  OPT_CAST(x)  (x *)
     39 
     40 #else
     41 
     42 /* C on the other hand doesn't care */
     43 #define  OPT_CAST(x)
     44 
     45 #endif
     46 
     47 
     48 /* detect 64-bit mode if possible */
     49 #if defined(__x86_64__)
     50    #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
     51       #define MP_64BIT
     52    #endif
     53 #endif
     54 
     55 /* some default configurations.
     56  *
     57  * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
     58  * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
     59  *
     60  * At the very least a mp_digit must be able to hold 7 bits
     61  * [any size beyond that is ok provided it doesn't overflow the data type]
     62  */
     63 #ifdef MP_8BIT
     64    typedef unsigned char      mp_digit;
     65    typedef unsigned short     mp_word;
     66 #elif defined(MP_16BIT)
     67    typedef unsigned short     mp_digit;
     68    typedef unsigned long      mp_word;
     69 #elif defined(MP_64BIT)
     70    /* for GCC only on supported platforms */
     71 #ifndef CRYPT
     72    typedef unsigned long long ulong64;
     73    typedef signed long long   long64;
     74 #endif
     75 
     76    typedef unsigned long      mp_digit;
     77    typedef unsigned long      mp_word __attribute__ ((mode(TI)));
     78 
     79    #define DIGIT_BIT          60
     80 #else
     81    /* this is the default case, 28-bit digits */
     82 
     83    /* this is to make porting into LibTomCrypt easier :-) */
     84 #ifndef CRYPT
     85    #if defined(_MSC_VER) || defined(__BORLANDC__)
     86       typedef unsigned __int64   ulong64;
     87       typedef signed __int64     long64;
     88    #else
     89       typedef unsigned long long ulong64;
     90       typedef signed long long   long64;
     91    #endif
     92 #endif
     93 
     94    typedef unsigned long      mp_digit;
     95    typedef ulong64            mp_word;
     96 
     97 #ifdef MP_31BIT
     98    /* this is an extension that uses 31-bit digits */
     99    #define DIGIT_BIT          31
    100 #else
    101    /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
    102    #define DIGIT_BIT          28
    103    #define MP_28BIT
    104 #endif
    105 #endif
    106 
    107 /* define heap macros */
    108 #ifndef CRYPT
    109    /* default to libc stuff */
    110    #ifndef XMALLOC
    111        #define XMALLOC  malloc
    112        #define XFREE    free
    113        #define XREALLOC realloc
    114        #define XCALLOC  calloc
    115    #else
    116       /* prototypes for our heap functions */
    117       extern void *XMALLOC(size_t n);
    118       extern void *XREALLOC(void *p, size_t n);
    119       extern void *XCALLOC(size_t n, size_t s);
    120       extern void XFREE(void *p);
    121    #endif
    122 #endif
    123 
    124 
    125 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
    126 #ifndef DIGIT_BIT
    127    #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
    128 #endif
    129 
    130 #define MP_DIGIT_BIT     DIGIT_BIT
    131 #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
    132 #define MP_DIGIT_MAX     MP_MASK
    133 
    134 /* equalities */
    135 #define MP_LT        -1   /* less than */
    136 #define MP_EQ         0   /* equal to */
    137 #define MP_GT         1   /* greater than */
    138 
    139 #define MP_ZPOS       0   /* positive integer */
    140 #define MP_NEG        1   /* negative */
    141 
    142 #define MP_OKAY       0   /* ok result */
    143 #define MP_MEM        -2  /* out of mem */
    144 #define MP_VAL        -3  /* invalid input */
    145 #define MP_RANGE      MP_VAL
    146 
    147 #define MP_YES        1   /* yes response */
    148 #define MP_NO         0   /* no response */
    149 
    150 /* Primality generation flags */
    151 #define LTM_PRIME_BBS      0x0001 /* BBS style prime */
    152 #define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
    153 #define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
    154 
    155 typedef int           mp_err;
    156 
    157 /* you'll have to tune these... */
    158 extern int KARATSUBA_MUL_CUTOFF,
    159            KARATSUBA_SQR_CUTOFF,
    160            TOOM_MUL_CUTOFF,
    161            TOOM_SQR_CUTOFF;
    162 
    163 /* define this to use lower memory usage routines (exptmods mostly) */
    164 /* #define MP_LOW_MEM */
    165 
    166 /* default precision */
    167 #ifndef MP_PREC
    168    #ifndef MP_LOW_MEM
    169       #define MP_PREC                 32     /* default digits of precision */
    170    #else
    171       #define MP_PREC                 8      /* default digits of precision */
    172    #endif
    173 #endif
    174 
    175 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
    176 #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
    177 
    178 /* the infamous mp_int structure */
    179 typedef struct  {
    180     int used, alloc, sign;
    181     mp_digit *dp;
    182 } mp_int;
    183 
    184 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
    185 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
    186 
    187 
    188 #define USED(m)    ((m)->used)
    189 #define DIGIT(m,k) ((m)->dp[(k)])
    190 #define SIGN(m)    ((m)->sign)
    191 
    192 /* error code to char* string */
    193 char *mp_error_to_string(int code);
    194 
    195 /* ---> init and deinit bignum functions <--- */
    196 /* init a bignum */
    197 int mp_init(mp_int *a);
    198 
    199 /* free a bignum */
    200 void mp_clear(mp_int *a);
    201 
    202 /* init a null terminated series of arguments */
    203 int mp_init_multi(mp_int *mp, ...);
    204 
    205 /* clear a null terminated series of arguments */
    206 void mp_clear_multi(mp_int *mp, ...);
    207 
    208 /* exchange two ints */
    209 void mp_exch(mp_int *a, mp_int *b);
    210 
    211 /* shrink ram required for a bignum */
    212 int mp_shrink(mp_int *a);
    213 
    214 /* grow an int to a given size */
    215 int mp_grow(mp_int *a, int size);
    216 
    217 /* init to a given number of digits */
    218 int mp_init_size(mp_int *a, int size);
    219 
    220 /* ---> Basic Manipulations <--- */
    221 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
    222 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
    223 #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
    224 
    225 /* set to zero */
    226 void mp_zero(mp_int *a);
    227 
    228 /* set to a digit */
    229 void mp_set(mp_int *a, mp_digit b);
    230 
    231 /* set a 32-bit const */
    232 int mp_set_int(mp_int *a, unsigned long b);
    233 
    234 /* get a 32-bit value */
    235 unsigned long mp_get_int(mp_int * a);
    236 
    237 /* initialize and set a digit */
    238 int mp_init_set (mp_int * a, mp_digit b);
    239 
    240 /* initialize and set 32-bit value */
    241 int mp_init_set_int (mp_int * a, unsigned long b);
    242 
    243 /* copy, b = a */
    244 int mp_copy(mp_int *a, mp_int *b);
    245 
    246 /* inits and copies, a = b */
    247 int mp_init_copy(mp_int *a, mp_int *b);
    248 
    249 /* trim unused digits */
    250 void mp_clamp(mp_int *a);
    251 
    252 /* ---> digit manipulation <--- */
    253 
    254 /* right shift by "b" digits */
    255 void mp_rshd(mp_int *a, int b);
    256 
    257 /* left shift by "b" digits */
    258 int mp_lshd(mp_int *a, int b);
    259 
    260 /* c = a / 2**b */
    261 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
    262 
    263 /* b = a/2 */
    264 int mp_div_2(mp_int *a, mp_int *b);
    265 
    266 /* c = a * 2**b */
    267 int mp_mul_2d(mp_int *a, int b, mp_int *c);
    268 
    269 /* b = a*2 */
    270 int mp_mul_2(mp_int *a, mp_int *b);
    271 
    272 /* c = a mod 2**d */
    273 int mp_mod_2d(mp_int *a, int b, mp_int *c);
    274 
    275 /* computes a = 2**b */
    276 int mp_2expt(mp_int *a, int b);
    277 
    278 /* Counts the number of lsbs which are zero before the first zero bit */
    279 int mp_cnt_lsb(mp_int *a);
    280 
    281 /* I Love Earth! */
    282 
    283 /* makes a pseudo-random int of a given size */
    284 int mp_rand(mp_int *a, int digits);
    285 
    286 /* ---> binary operations <--- */
    287 /* c = a XOR b  */
    288 int mp_xor(mp_int *a, mp_int *b, mp_int *c);
    289 
    290 /* c = a OR b */
    291 int mp_or(mp_int *a, mp_int *b, mp_int *c);
    292 
    293 /* c = a AND b */
    294 int mp_and(mp_int *a, mp_int *b, mp_int *c);
    295 
    296 /* ---> Basic arithmetic <--- */
    297 
    298 /* b = -a */
    299 int mp_neg(mp_int *a, mp_int *b);
    300 
    301 /* b = |a| */
    302 int mp_abs(mp_int *a, mp_int *b);
    303 
    304 /* compare a to b */
    305 int mp_cmp(mp_int *a, mp_int *b);
    306 
    307 /* compare |a| to |b| */
    308 int mp_cmp_mag(mp_int *a, mp_int *b);
    309 
    310 /* c = a + b */
    311 int mp_add(mp_int *a, mp_int *b, mp_int *c);
    312 
    313 /* c = a - b */
    314 int mp_sub(mp_int *a, mp_int *b, mp_int *c);
    315 
    316 /* c = a * b */
    317 int mp_mul(mp_int *a, mp_int *b, mp_int *c);
    318 
    319 /* b = a*a  */
    320 int mp_sqr(mp_int *a, mp_int *b);
    321 
    322 /* a/b => cb + d == a */
    323 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
    324 
    325 /* c = a mod b, 0 <= c < b  */
    326 int mp_mod(mp_int *a, mp_int *b, mp_int *c);
    327 
    328 /* ---> single digit functions <--- */
    329 
    330 /* compare against a single digit */
    331 int mp_cmp_d(mp_int *a, mp_digit b);
    332 
    333 /* c = a + b */
    334 int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
    335 
    336 /* c = a - b */
    337 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
    338 
    339 /* c = a * b */
    340 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
    341 
    342 /* a/b => cb + d == a */
    343 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
    344 
    345 /* a/3 => 3c + d == a */
    346 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
    347 
    348 /* c = a**b */
    349 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
    350 
    351 /* c = a mod b, 0 <= c < b  */
    352 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
    353 
    354 /* ---> number theory <--- */
    355 
    356 /* d = a + b (mod c) */
    357 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
    358 
    359 /* d = a - b (mod c) */
    360 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
    361 
    362 /* d = a * b (mod c) */
    363 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
    364 
    365 /* c = a * a (mod b) */
    366 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
    367 
    368 /* c = 1/a (mod b) */
    369 int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
    370 
    371 /* c = (a, b) */
    372 int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
    373 
    374 /* produces value such that U1*a + U2*b = U3 */
    375 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
    376 
    377 /* c = [a, b] or (a*b)/(a, b) */
    378 int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
    379 
    380 /* finds one of the b'th root of a, such that |c|**b <= |a|
    381  *
    382  * returns error if a < 0 and b is even
    383  */
    384 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
    385 
    386 /* special sqrt algo */
    387 int mp_sqrt(mp_int *arg, mp_int *ret);
    388 
    389 /* is number a square? */
    390 int mp_is_square(mp_int *arg, int *ret);
    391 
    392 /* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
    393 int mp_jacobi(mp_int *a, mp_int *n, int *c);
    394 
    395 /* used to setup the Barrett reduction for a given modulus b */
    396 int mp_reduce_setup(mp_int *a, mp_int *b);
    397 
    398 /* Barrett Reduction, computes a (mod b) with a precomputed value c
    399  *
    400  * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
    401  * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
    402  */
    403 int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
    404 
    405 /* setups the montgomery reduction */
    406 int mp_montgomery_setup(mp_int *a, mp_digit *mp);
    407 
    408 /* computes a = B**n mod b without division or multiplication useful for
    409  * normalizing numbers in a Montgomery system.
    410  */
    411 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
    412 
    413 /* computes x/R == x (mod N) via Montgomery Reduction */
    414 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
    415 
    416 /* returns 1 if a is a valid DR modulus */
    417 int mp_dr_is_modulus(mp_int *a);
    418 
    419 /* sets the value of "d" required for mp_dr_reduce */
    420 void mp_dr_setup(mp_int *a, mp_digit *d);
    421 
    422 /* reduces a modulo b using the Diminished Radix method */
    423 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
    424 
    425 /* returns true if a can be reduced with mp_reduce_2k */
    426 int mp_reduce_is_2k(mp_int *a);
    427 
    428 /* determines k value for 2k reduction */
    429 int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
    430 
    431 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
    432 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
    433 
    434 /* returns true if a can be reduced with mp_reduce_2k_l */
    435 int mp_reduce_is_2k_l(mp_int *a);
    436 
    437 /* determines k value for 2k reduction */
    438 int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
    439 
    440 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
    441 int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
    442 
    443 /* d = a**b (mod c) */
    444 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
    445 
    446 /* ---> Primes <--- */
    447 
    448 /* number of primes */
    449 #ifdef MP_8BIT
    450    #define PRIME_SIZE      31
    451 #else
    452    #define PRIME_SIZE      256
    453 #endif
    454 
    455 /* table of first PRIME_SIZE primes */
    456 extern const mp_digit ltm_prime_tab[];
    457 
    458 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
    459 int mp_prime_is_divisible(mp_int *a, int *result);
    460 
    461 /* performs one Fermat test of "a" using base "b".
    462  * Sets result to 0 if composite or 1 if probable prime
    463  */
    464 int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
    465 
    466 /* performs one Miller-Rabin test of "a" using base "b".
    467  * Sets result to 0 if composite or 1 if probable prime
    468  */
    469 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
    470 
    471 /* This gives [for a given bit size] the number of trials required
    472  * such that Miller-Rabin gives a prob of failure lower than 2^-96
    473  */
    474 int mp_prime_rabin_miller_trials(int size);
    475 
    476 /* performs t rounds of Miller-Rabin on "a" using the first
    477  * t prime bases.  Also performs an initial sieve of trial
    478  * division.  Determines if "a" is prime with probability
    479  * of error no more than (1/4)**t.
    480  *
    481  * Sets result to 1 if probably prime, 0 otherwise
    482  */
    483 int mp_prime_is_prime(mp_int *a, int t, int *result);
    484 
    485 /* finds the next prime after the number "a" using "t" trials
    486  * of Miller-Rabin.
    487  *
    488  * bbs_style = 1 means the prime must be congruent to 3 mod 4
    489  */
    490 int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
    491 
    492 /* makes a truly random prime of a given size (bytes),
    493  * call with bbs = 1 if you want it to be congruent to 3 mod 4
    494  *
    495  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
    496  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
    497  * so it can be NULL
    498  *
    499  * The prime generated will be larger than 2^(8*size).
    500  */
    501 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
    502 
    503 /* makes a truly random prime of a given size (bits),
    504  *
    505  * Flags are as follows:
    506  *
    507  *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
    508  *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
    509  *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
    510  *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
    511  *
    512  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
    513  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
    514  * so it can be NULL
    515  *
    516  */
    517 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
    518 
    519 /* ---> radix conversion <--- */
    520 int mp_count_bits(mp_int *a);
    521 
    522 int mp_unsigned_bin_size(mp_int *a);
    523 int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
    524 int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
    525 int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
    526 
    527 int mp_signed_bin_size(mp_int *a);
    528 int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
    529 int mp_to_signed_bin(mp_int *a,  unsigned char *b);
    530 int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
    531 
    532 int mp_read_radix(mp_int *a, const char *str, int radix);
    533 int mp_toradix(mp_int *a, char *str, int radix);
    534 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
    535 int mp_radix_size(mp_int *a, int radix, int *size);
    536 
    537 int mp_fread(mp_int *a, int radix, FILE *stream);
    538 int mp_fwrite(mp_int *a, int radix, FILE *stream);
    539 
    540 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
    541 #define mp_raw_size(mp)           mp_signed_bin_size(mp)
    542 #define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
    543 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
    544 #define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
    545 #define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))
    546 
    547 #define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
    548 #define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
    549 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
    550 #define mp_tohex(M, S)     mp_toradix((M), (S), 16)
    551 
    552 /* lowlevel functions, do not call! */
    553 int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
    554 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
    555 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
    556 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
    557 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
    558 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
    559 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
    560 int fast_s_mp_sqr(mp_int *a, mp_int *b);
    561 int s_mp_sqr(mp_int *a, mp_int *b);
    562 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
    563 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
    564 int mp_karatsuba_sqr(mp_int *a, mp_int *b);
    565 int mp_toom_sqr(mp_int *a, mp_int *b);
    566 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
    567 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
    568 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
    569 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
    570 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
    571 void bn_reverse(unsigned char *s, int len);
    572 
    573 extern const char *mp_s_rmap;
    574 
    575 #ifdef __cplusplus
    576    }
    577 #endif
    578 
    579 #endif
    580 
    581 
    582 /* $Source: /cvs/libtom/libtommath/tommath.h,v $ */
    583 /* $Revision: 1.8 $ */
    584 /* $Date: 2006/03/31 14:18:44 $ */
    585