1 /* 2 * Block driver for the QCOW version 2 format 3 * 4 * Copyright (c) 2004-2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <zlib.h> 26 27 #include "qemu-common.h" 28 #include "block_int.h" 29 #include "block/qcow2.h" 30 31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size) 32 { 33 BDRVQcowState *s = bs->opaque; 34 int new_l1_size, new_l1_size2, ret, i; 35 uint64_t *new_l1_table; 36 uint64_t new_l1_table_offset; 37 uint8_t data[12]; 38 39 new_l1_size = s->l1_size; 40 if (min_size <= new_l1_size) 41 return 0; 42 while (min_size > new_l1_size) { 43 new_l1_size = (new_l1_size * 3 + 1) / 2; 44 } 45 #ifdef DEBUG_ALLOC2 46 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size); 47 #endif 48 49 new_l1_size2 = sizeof(uint64_t) * new_l1_size; 50 new_l1_table = qemu_mallocz(new_l1_size2); 51 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); 52 53 /* write new table (align to cluster) */ 54 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); 55 56 for(i = 0; i < s->l1_size; i++) 57 new_l1_table[i] = cpu_to_be64(new_l1_table[i]); 58 ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2); 59 if (ret != new_l1_size2) 60 goto fail; 61 for(i = 0; i < s->l1_size; i++) 62 new_l1_table[i] = be64_to_cpu(new_l1_table[i]); 63 64 /* set new table */ 65 cpu_to_be32w((uint32_t*)data, new_l1_size); 66 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset); 67 if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data, 68 sizeof(data)) != sizeof(data)) 69 goto fail; 70 qemu_free(s->l1_table); 71 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t)); 72 s->l1_table_offset = new_l1_table_offset; 73 s->l1_table = new_l1_table; 74 s->l1_size = new_l1_size; 75 return 0; 76 fail: 77 qemu_free(s->l1_table); 78 return -EIO; 79 } 80 81 void qcow2_l2_cache_reset(BlockDriverState *bs) 82 { 83 BDRVQcowState *s = bs->opaque; 84 85 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t)); 86 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t)); 87 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t)); 88 } 89 90 static inline int l2_cache_new_entry(BlockDriverState *bs) 91 { 92 BDRVQcowState *s = bs->opaque; 93 uint32_t min_count; 94 int min_index, i; 95 96 /* find a new entry in the least used one */ 97 min_index = 0; 98 min_count = 0xffffffff; 99 for(i = 0; i < L2_CACHE_SIZE; i++) { 100 if (s->l2_cache_counts[i] < min_count) { 101 min_count = s->l2_cache_counts[i]; 102 min_index = i; 103 } 104 } 105 return min_index; 106 } 107 108 /* 109 * seek_l2_table 110 * 111 * seek l2_offset in the l2_cache table 112 * if not found, return NULL, 113 * if found, 114 * increments the l2 cache hit count of the entry, 115 * if counter overflow, divide by two all counters 116 * return the pointer to the l2 cache entry 117 * 118 */ 119 120 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset) 121 { 122 int i, j; 123 124 for(i = 0; i < L2_CACHE_SIZE; i++) { 125 if (l2_offset == s->l2_cache_offsets[i]) { 126 /* increment the hit count */ 127 if (++s->l2_cache_counts[i] == 0xffffffff) { 128 for(j = 0; j < L2_CACHE_SIZE; j++) { 129 s->l2_cache_counts[j] >>= 1; 130 } 131 } 132 return s->l2_cache + (i << s->l2_bits); 133 } 134 } 135 return NULL; 136 } 137 138 /* 139 * l2_load 140 * 141 * Loads a L2 table into memory. If the table is in the cache, the cache 142 * is used; otherwise the L2 table is loaded from the image file. 143 * 144 * Returns a pointer to the L2 table on success, or NULL if the read from 145 * the image file failed. 146 */ 147 148 static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset) 149 { 150 BDRVQcowState *s = bs->opaque; 151 int min_index; 152 uint64_t *l2_table; 153 154 /* seek if the table for the given offset is in the cache */ 155 156 l2_table = seek_l2_table(s, l2_offset); 157 if (l2_table != NULL) 158 return l2_table; 159 160 /* not found: load a new entry in the least used one */ 161 162 min_index = l2_cache_new_entry(bs); 163 l2_table = s->l2_cache + (min_index << s->l2_bits); 164 if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) != 165 s->l2_size * sizeof(uint64_t)) 166 return NULL; 167 s->l2_cache_offsets[min_index] = l2_offset; 168 s->l2_cache_counts[min_index] = 1; 169 170 return l2_table; 171 } 172 173 /* 174 * Writes one sector of the L1 table to the disk (can't update single entries 175 * and we really don't want bdrv_pread to perform a read-modify-write) 176 */ 177 #define L1_ENTRIES_PER_SECTOR (512 / 8) 178 static int write_l1_entry(BDRVQcowState *s, int l1_index) 179 { 180 uint64_t buf[L1_ENTRIES_PER_SECTOR]; 181 int l1_start_index; 182 int i; 183 184 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); 185 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { 186 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); 187 } 188 189 if (bdrv_pwrite(s->hd, s->l1_table_offset + 8 * l1_start_index, 190 buf, sizeof(buf)) != sizeof(buf)) 191 { 192 return -1; 193 } 194 195 return 0; 196 } 197 198 /* 199 * l2_allocate 200 * 201 * Allocate a new l2 entry in the file. If l1_index points to an already 202 * used entry in the L2 table (i.e. we are doing a copy on write for the L2 203 * table) copy the contents of the old L2 table into the newly allocated one. 204 * Otherwise the new table is initialized with zeros. 205 * 206 */ 207 208 static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index) 209 { 210 BDRVQcowState *s = bs->opaque; 211 int min_index; 212 uint64_t old_l2_offset; 213 uint64_t *l2_table, l2_offset; 214 215 old_l2_offset = s->l1_table[l1_index]; 216 217 /* allocate a new l2 entry */ 218 219 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); 220 221 /* update the L1 entry */ 222 223 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; 224 if (write_l1_entry(s, l1_index) < 0) { 225 return NULL; 226 } 227 228 /* allocate a new entry in the l2 cache */ 229 230 min_index = l2_cache_new_entry(bs); 231 l2_table = s->l2_cache + (min_index << s->l2_bits); 232 233 if (old_l2_offset == 0) { 234 /* if there was no old l2 table, clear the new table */ 235 memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); 236 } else { 237 /* if there was an old l2 table, read it from the disk */ 238 if (bdrv_pread(s->hd, old_l2_offset, 239 l2_table, s->l2_size * sizeof(uint64_t)) != 240 s->l2_size * sizeof(uint64_t)) 241 return NULL; 242 } 243 /* write the l2 table to the file */ 244 if (bdrv_pwrite(s->hd, l2_offset, 245 l2_table, s->l2_size * sizeof(uint64_t)) != 246 s->l2_size * sizeof(uint64_t)) 247 return NULL; 248 249 /* update the l2 cache entry */ 250 251 s->l2_cache_offsets[min_index] = l2_offset; 252 s->l2_cache_counts[min_index] = 1; 253 254 return l2_table; 255 } 256 257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, 258 uint64_t *l2_table, uint64_t start, uint64_t mask) 259 { 260 int i; 261 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask; 262 263 if (!offset) 264 return 0; 265 266 for (i = start; i < start + nb_clusters; i++) 267 if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask)) 268 break; 269 270 return (i - start); 271 } 272 273 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) 274 { 275 int i = 0; 276 277 while(nb_clusters-- && l2_table[i] == 0) 278 i++; 279 280 return i; 281 } 282 283 /* The crypt function is compatible with the linux cryptoloop 284 algorithm for < 4 GB images. NOTE: out_buf == in_buf is 285 supported */ 286 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, 287 uint8_t *out_buf, const uint8_t *in_buf, 288 int nb_sectors, int enc, 289 const AES_KEY *key) 290 { 291 union { 292 uint64_t ll[2]; 293 uint8_t b[16]; 294 } ivec; 295 int i; 296 297 for(i = 0; i < nb_sectors; i++) { 298 ivec.ll[0] = cpu_to_le64(sector_num); 299 ivec.ll[1] = 0; 300 AES_cbc_encrypt(in_buf, out_buf, 512, key, 301 ivec.b, enc); 302 sector_num++; 303 in_buf += 512; 304 out_buf += 512; 305 } 306 } 307 308 309 static int qcow_read(BlockDriverState *bs, int64_t sector_num, 310 uint8_t *buf, int nb_sectors) 311 { 312 BDRVQcowState *s = bs->opaque; 313 int ret, index_in_cluster, n, n1; 314 uint64_t cluster_offset; 315 316 while (nb_sectors > 0) { 317 n = nb_sectors; 318 cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n); 319 index_in_cluster = sector_num & (s->cluster_sectors - 1); 320 if (!cluster_offset) { 321 if (bs->backing_hd) { 322 /* read from the base image */ 323 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n); 324 if (n1 > 0) { 325 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1); 326 if (ret < 0) 327 return -1; 328 } 329 } else { 330 memset(buf, 0, 512 * n); 331 } 332 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) { 333 if (qcow2_decompress_cluster(s, cluster_offset) < 0) 334 return -1; 335 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n); 336 } else { 337 ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512); 338 if (ret != n * 512) 339 return -1; 340 if (s->crypt_method) { 341 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0, 342 &s->aes_decrypt_key); 343 } 344 } 345 nb_sectors -= n; 346 sector_num += n; 347 buf += n * 512; 348 } 349 return 0; 350 } 351 352 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect, 353 uint64_t cluster_offset, int n_start, int n_end) 354 { 355 BDRVQcowState *s = bs->opaque; 356 int n, ret; 357 358 n = n_end - n_start; 359 if (n <= 0) 360 return 0; 361 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n); 362 if (ret < 0) 363 return ret; 364 if (s->crypt_method) { 365 qcow2_encrypt_sectors(s, start_sect + n_start, 366 s->cluster_data, 367 s->cluster_data, n, 1, 368 &s->aes_encrypt_key); 369 } 370 ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start, 371 s->cluster_data, n); 372 if (ret < 0) 373 return ret; 374 return 0; 375 } 376 377 378 /* 379 * get_cluster_offset 380 * 381 * For a given offset of the disk image, return cluster offset in 382 * qcow2 file. 383 * 384 * on entry, *num is the number of contiguous clusters we'd like to 385 * access following offset. 386 * 387 * on exit, *num is the number of contiguous clusters we can read. 388 * 389 * Return 1, if the offset is found 390 * Return 0, otherwise. 391 * 392 */ 393 394 uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, 395 int *num) 396 { 397 BDRVQcowState *s = bs->opaque; 398 int l1_index, l2_index; 399 uint64_t l2_offset, *l2_table, cluster_offset; 400 int l1_bits, c; 401 int index_in_cluster, nb_available, nb_needed, nb_clusters; 402 403 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); 404 nb_needed = *num + index_in_cluster; 405 406 l1_bits = s->l2_bits + s->cluster_bits; 407 408 /* compute how many bytes there are between the offset and 409 * the end of the l1 entry 410 */ 411 412 nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1)); 413 414 /* compute the number of available sectors */ 415 416 nb_available = (nb_available >> 9) + index_in_cluster; 417 418 if (nb_needed > nb_available) { 419 nb_needed = nb_available; 420 } 421 422 cluster_offset = 0; 423 424 /* seek the the l2 offset in the l1 table */ 425 426 l1_index = offset >> l1_bits; 427 if (l1_index >= s->l1_size) 428 goto out; 429 430 l2_offset = s->l1_table[l1_index]; 431 432 /* seek the l2 table of the given l2 offset */ 433 434 if (!l2_offset) 435 goto out; 436 437 /* load the l2 table in memory */ 438 439 l2_offset &= ~QCOW_OFLAG_COPIED; 440 l2_table = l2_load(bs, l2_offset); 441 if (l2_table == NULL) 442 return 0; 443 444 /* find the cluster offset for the given disk offset */ 445 446 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 447 cluster_offset = be64_to_cpu(l2_table[l2_index]); 448 nb_clusters = size_to_clusters(s, nb_needed << 9); 449 450 if (!cluster_offset) { 451 /* how many empty clusters ? */ 452 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); 453 } else { 454 /* how many allocated clusters ? */ 455 c = count_contiguous_clusters(nb_clusters, s->cluster_size, 456 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED); 457 } 458 459 nb_available = (c * s->cluster_sectors); 460 out: 461 if (nb_available > nb_needed) 462 nb_available = nb_needed; 463 464 *num = nb_available - index_in_cluster; 465 466 return cluster_offset & ~QCOW_OFLAG_COPIED; 467 } 468 469 /* 470 * get_cluster_table 471 * 472 * for a given disk offset, load (and allocate if needed) 473 * the l2 table. 474 * 475 * the l2 table offset in the qcow2 file and the cluster index 476 * in the l2 table are given to the caller. 477 * 478 */ 479 480 static int get_cluster_table(BlockDriverState *bs, uint64_t offset, 481 uint64_t **new_l2_table, 482 uint64_t *new_l2_offset, 483 int *new_l2_index) 484 { 485 BDRVQcowState *s = bs->opaque; 486 int l1_index, l2_index, ret; 487 uint64_t l2_offset, *l2_table; 488 489 /* seek the the l2 offset in the l1 table */ 490 491 l1_index = offset >> (s->l2_bits + s->cluster_bits); 492 if (l1_index >= s->l1_size) { 493 ret = qcow2_grow_l1_table(bs, l1_index + 1); 494 if (ret < 0) 495 return 0; 496 } 497 l2_offset = s->l1_table[l1_index]; 498 499 /* seek the l2 table of the given l2 offset */ 500 501 if (l2_offset & QCOW_OFLAG_COPIED) { 502 /* load the l2 table in memory */ 503 l2_offset &= ~QCOW_OFLAG_COPIED; 504 l2_table = l2_load(bs, l2_offset); 505 if (l2_table == NULL) 506 return 0; 507 } else { 508 if (l2_offset) 509 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t)); 510 l2_table = l2_allocate(bs, l1_index); 511 if (l2_table == NULL) 512 return 0; 513 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED; 514 } 515 516 /* find the cluster offset for the given disk offset */ 517 518 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); 519 520 *new_l2_table = l2_table; 521 *new_l2_offset = l2_offset; 522 *new_l2_index = l2_index; 523 524 return 1; 525 } 526 527 /* 528 * alloc_compressed_cluster_offset 529 * 530 * For a given offset of the disk image, return cluster offset in 531 * qcow2 file. 532 * 533 * If the offset is not found, allocate a new compressed cluster. 534 * 535 * Return the cluster offset if successful, 536 * Return 0, otherwise. 537 * 538 */ 539 540 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, 541 uint64_t offset, 542 int compressed_size) 543 { 544 BDRVQcowState *s = bs->opaque; 545 int l2_index, ret; 546 uint64_t l2_offset, *l2_table, cluster_offset; 547 int nb_csectors; 548 549 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index); 550 if (ret == 0) 551 return 0; 552 553 cluster_offset = be64_to_cpu(l2_table[l2_index]); 554 if (cluster_offset & QCOW_OFLAG_COPIED) 555 return cluster_offset & ~QCOW_OFLAG_COPIED; 556 557 if (cluster_offset) 558 qcow2_free_any_clusters(bs, cluster_offset, 1); 559 560 cluster_offset = qcow2_alloc_bytes(bs, compressed_size); 561 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - 562 (cluster_offset >> 9); 563 564 cluster_offset |= QCOW_OFLAG_COMPRESSED | 565 ((uint64_t)nb_csectors << s->csize_shift); 566 567 /* update L2 table */ 568 569 /* compressed clusters never have the copied flag */ 570 571 l2_table[l2_index] = cpu_to_be64(cluster_offset); 572 if (bdrv_pwrite(s->hd, 573 l2_offset + l2_index * sizeof(uint64_t), 574 l2_table + l2_index, 575 sizeof(uint64_t)) != sizeof(uint64_t)) 576 return 0; 577 578 return cluster_offset; 579 } 580 581 /* 582 * Write L2 table updates to disk, writing whole sectors to avoid a 583 * read-modify-write in bdrv_pwrite 584 */ 585 #define L2_ENTRIES_PER_SECTOR (512 / 8) 586 static int write_l2_entries(BDRVQcowState *s, uint64_t *l2_table, 587 uint64_t l2_offset, int l2_index, int num) 588 { 589 int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1); 590 int start_offset = (8 * l2_index) & ~511; 591 int end_offset = (8 * (l2_index + num) + 511) & ~511; 592 size_t len = end_offset - start_offset; 593 594 if (bdrv_pwrite(s->hd, l2_offset + start_offset, &l2_table[l2_start_index], 595 len) != len) 596 { 597 return -1; 598 } 599 600 return 0; 601 } 602 603 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset, 604 QCowL2Meta *m) 605 { 606 BDRVQcowState *s = bs->opaque; 607 int i, j = 0, l2_index, ret; 608 uint64_t *old_cluster, start_sect, l2_offset, *l2_table; 609 610 if (m->nb_clusters == 0) 611 return 0; 612 613 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t)); 614 615 /* copy content of unmodified sectors */ 616 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9; 617 if (m->n_start) { 618 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start); 619 if (ret < 0) 620 goto err; 621 } 622 623 if (m->nb_available & (s->cluster_sectors - 1)) { 624 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1); 625 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9), 626 m->nb_available - end, s->cluster_sectors); 627 if (ret < 0) 628 goto err; 629 } 630 631 ret = -EIO; 632 /* update L2 table */ 633 if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index)) 634 goto err; 635 636 for (i = 0; i < m->nb_clusters; i++) { 637 /* if two concurrent writes happen to the same unallocated cluster 638 * each write allocates separate cluster and writes data concurrently. 639 * The first one to complete updates l2 table with pointer to its 640 * cluster the second one has to do RMW (which is done above by 641 * copy_sectors()), update l2 table with its cluster pointer and free 642 * old cluster. This is what this loop does */ 643 if(l2_table[l2_index + i] != 0) 644 old_cluster[j++] = l2_table[l2_index + i]; 645 646 l2_table[l2_index + i] = cpu_to_be64((cluster_offset + 647 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); 648 } 649 650 if (write_l2_entries(s, l2_table, l2_offset, l2_index, m->nb_clusters) < 0) { 651 ret = -1; 652 goto err; 653 } 654 655 for (i = 0; i < j; i++) 656 qcow2_free_any_clusters(bs, 657 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1); 658 659 ret = 0; 660 err: 661 qemu_free(old_cluster); 662 return ret; 663 } 664 665 /* 666 * alloc_cluster_offset 667 * 668 * For a given offset of the disk image, return cluster offset in 669 * qcow2 file. 670 * 671 * If the offset is not found, allocate a new cluster. 672 * 673 * Return the cluster offset if successful, 674 * Return 0, otherwise. 675 * 676 */ 677 678 uint64_t qcow2_alloc_cluster_offset(BlockDriverState *bs, 679 uint64_t offset, 680 int n_start, int n_end, 681 int *num, QCowL2Meta *m) 682 { 683 BDRVQcowState *s = bs->opaque; 684 int l2_index, ret; 685 uint64_t l2_offset, *l2_table, cluster_offset; 686 int nb_clusters, i = 0; 687 688 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index); 689 if (ret == 0) 690 return 0; 691 692 nb_clusters = size_to_clusters(s, n_end << 9); 693 694 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); 695 696 cluster_offset = be64_to_cpu(l2_table[l2_index]); 697 698 /* We keep all QCOW_OFLAG_COPIED clusters */ 699 700 if (cluster_offset & QCOW_OFLAG_COPIED) { 701 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size, 702 &l2_table[l2_index], 0, 0); 703 704 cluster_offset &= ~QCOW_OFLAG_COPIED; 705 m->nb_clusters = 0; 706 707 goto out; 708 } 709 710 /* for the moment, multiple compressed clusters are not managed */ 711 712 if (cluster_offset & QCOW_OFLAG_COMPRESSED) 713 nb_clusters = 1; 714 715 /* how many available clusters ? */ 716 717 while (i < nb_clusters) { 718 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size, 719 &l2_table[l2_index], i, 0); 720 721 if(be64_to_cpu(l2_table[l2_index + i])) 722 break; 723 724 i += count_contiguous_free_clusters(nb_clusters - i, 725 &l2_table[l2_index + i]); 726 727 cluster_offset = be64_to_cpu(l2_table[l2_index + i]); 728 729 if ((cluster_offset & QCOW_OFLAG_COPIED) || 730 (cluster_offset & QCOW_OFLAG_COMPRESSED)) 731 break; 732 } 733 nb_clusters = i; 734 735 /* allocate a new cluster */ 736 737 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size); 738 739 /* save info needed for meta data update */ 740 m->offset = offset; 741 m->n_start = n_start; 742 m->nb_clusters = nb_clusters; 743 744 out: 745 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end); 746 747 *num = m->nb_available - n_start; 748 749 return cluster_offset; 750 } 751 752 static int decompress_buffer(uint8_t *out_buf, int out_buf_size, 753 const uint8_t *buf, int buf_size) 754 { 755 z_stream strm1, *strm = &strm1; 756 int ret, out_len; 757 758 memset(strm, 0, sizeof(*strm)); 759 760 strm->next_in = (uint8_t *)buf; 761 strm->avail_in = buf_size; 762 strm->next_out = out_buf; 763 strm->avail_out = out_buf_size; 764 765 ret = inflateInit2(strm, -12); 766 if (ret != Z_OK) 767 return -1; 768 ret = inflate(strm, Z_FINISH); 769 out_len = strm->next_out - out_buf; 770 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || 771 out_len != out_buf_size) { 772 inflateEnd(strm); 773 return -1; 774 } 775 inflateEnd(strm); 776 return 0; 777 } 778 779 int qcow2_decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset) 780 { 781 int ret, csize, nb_csectors, sector_offset; 782 uint64_t coffset; 783 784 coffset = cluster_offset & s->cluster_offset_mask; 785 if (s->cluster_cache_offset != coffset) { 786 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; 787 sector_offset = coffset & 511; 788 csize = nb_csectors * 512 - sector_offset; 789 ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors); 790 if (ret < 0) { 791 return -1; 792 } 793 if (decompress_buffer(s->cluster_cache, s->cluster_size, 794 s->cluster_data + sector_offset, csize) < 0) { 795 return -1; 796 } 797 s->cluster_cache_offset = coffset; 798 } 799 return 0; 800 } 801