Home | History | Annotate | Download | only in block
      1 /*
      2  * Block driver for the QCOW version 2 format
      3  *
      4  * Copyright (c) 2004-2006 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 
     25 #include <zlib.h>
     26 
     27 #include "qemu-common.h"
     28 #include "block_int.h"
     29 #include "block/qcow2.h"
     30 
     31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
     32 {
     33     BDRVQcowState *s = bs->opaque;
     34     int new_l1_size, new_l1_size2, ret, i;
     35     uint64_t *new_l1_table;
     36     uint64_t new_l1_table_offset;
     37     uint8_t data[12];
     38 
     39     new_l1_size = s->l1_size;
     40     if (min_size <= new_l1_size)
     41         return 0;
     42     while (min_size > new_l1_size) {
     43         new_l1_size = (new_l1_size * 3 + 1) / 2;
     44     }
     45 #ifdef DEBUG_ALLOC2
     46     printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
     47 #endif
     48 
     49     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
     50     new_l1_table = qemu_mallocz(new_l1_size2);
     51     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
     52 
     53     /* write new table (align to cluster) */
     54     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
     55 
     56     for(i = 0; i < s->l1_size; i++)
     57         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
     58     ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
     59     if (ret != new_l1_size2)
     60         goto fail;
     61     for(i = 0; i < s->l1_size; i++)
     62         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
     63 
     64     /* set new table */
     65     cpu_to_be32w((uint32_t*)data, new_l1_size);
     66     cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
     67     if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
     68                 sizeof(data)) != sizeof(data))
     69         goto fail;
     70     qemu_free(s->l1_table);
     71     qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
     72     s->l1_table_offset = new_l1_table_offset;
     73     s->l1_table = new_l1_table;
     74     s->l1_size = new_l1_size;
     75     return 0;
     76  fail:
     77     qemu_free(s->l1_table);
     78     return -EIO;
     79 }
     80 
     81 void qcow2_l2_cache_reset(BlockDriverState *bs)
     82 {
     83     BDRVQcowState *s = bs->opaque;
     84 
     85     memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
     86     memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
     87     memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
     88 }
     89 
     90 static inline int l2_cache_new_entry(BlockDriverState *bs)
     91 {
     92     BDRVQcowState *s = bs->opaque;
     93     uint32_t min_count;
     94     int min_index, i;
     95 
     96     /* find a new entry in the least used one */
     97     min_index = 0;
     98     min_count = 0xffffffff;
     99     for(i = 0; i < L2_CACHE_SIZE; i++) {
    100         if (s->l2_cache_counts[i] < min_count) {
    101             min_count = s->l2_cache_counts[i];
    102             min_index = i;
    103         }
    104     }
    105     return min_index;
    106 }
    107 
    108 /*
    109  * seek_l2_table
    110  *
    111  * seek l2_offset in the l2_cache table
    112  * if not found, return NULL,
    113  * if found,
    114  *   increments the l2 cache hit count of the entry,
    115  *   if counter overflow, divide by two all counters
    116  *   return the pointer to the l2 cache entry
    117  *
    118  */
    119 
    120 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
    121 {
    122     int i, j;
    123 
    124     for(i = 0; i < L2_CACHE_SIZE; i++) {
    125         if (l2_offset == s->l2_cache_offsets[i]) {
    126             /* increment the hit count */
    127             if (++s->l2_cache_counts[i] == 0xffffffff) {
    128                 for(j = 0; j < L2_CACHE_SIZE; j++) {
    129                     s->l2_cache_counts[j] >>= 1;
    130                 }
    131             }
    132             return s->l2_cache + (i << s->l2_bits);
    133         }
    134     }
    135     return NULL;
    136 }
    137 
    138 /*
    139  * l2_load
    140  *
    141  * Loads a L2 table into memory. If the table is in the cache, the cache
    142  * is used; otherwise the L2 table is loaded from the image file.
    143  *
    144  * Returns a pointer to the L2 table on success, or NULL if the read from
    145  * the image file failed.
    146  */
    147 
    148 static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
    149 {
    150     BDRVQcowState *s = bs->opaque;
    151     int min_index;
    152     uint64_t *l2_table;
    153 
    154     /* seek if the table for the given offset is in the cache */
    155 
    156     l2_table = seek_l2_table(s, l2_offset);
    157     if (l2_table != NULL)
    158         return l2_table;
    159 
    160     /* not found: load a new entry in the least used one */
    161 
    162     min_index = l2_cache_new_entry(bs);
    163     l2_table = s->l2_cache + (min_index << s->l2_bits);
    164     if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
    165         s->l2_size * sizeof(uint64_t))
    166         return NULL;
    167     s->l2_cache_offsets[min_index] = l2_offset;
    168     s->l2_cache_counts[min_index] = 1;
    169 
    170     return l2_table;
    171 }
    172 
    173 /*
    174  * Writes one sector of the L1 table to the disk (can't update single entries
    175  * and we really don't want bdrv_pread to perform a read-modify-write)
    176  */
    177 #define L1_ENTRIES_PER_SECTOR (512 / 8)
    178 static int write_l1_entry(BDRVQcowState *s, int l1_index)
    179 {
    180     uint64_t buf[L1_ENTRIES_PER_SECTOR];
    181     int l1_start_index;
    182     int i;
    183 
    184     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
    185     for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
    186         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
    187     }
    188 
    189     if (bdrv_pwrite(s->hd, s->l1_table_offset + 8 * l1_start_index,
    190         buf, sizeof(buf)) != sizeof(buf))
    191     {
    192         return -1;
    193     }
    194 
    195     return 0;
    196 }
    197 
    198 /*
    199  * l2_allocate
    200  *
    201  * Allocate a new l2 entry in the file. If l1_index points to an already
    202  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
    203  * table) copy the contents of the old L2 table into the newly allocated one.
    204  * Otherwise the new table is initialized with zeros.
    205  *
    206  */
    207 
    208 static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
    209 {
    210     BDRVQcowState *s = bs->opaque;
    211     int min_index;
    212     uint64_t old_l2_offset;
    213     uint64_t *l2_table, l2_offset;
    214 
    215     old_l2_offset = s->l1_table[l1_index];
    216 
    217     /* allocate a new l2 entry */
    218 
    219     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
    220 
    221     /* update the L1 entry */
    222 
    223     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
    224     if (write_l1_entry(s, l1_index) < 0) {
    225         return NULL;
    226     }
    227 
    228     /* allocate a new entry in the l2 cache */
    229 
    230     min_index = l2_cache_new_entry(bs);
    231     l2_table = s->l2_cache + (min_index << s->l2_bits);
    232 
    233     if (old_l2_offset == 0) {
    234         /* if there was no old l2 table, clear the new table */
    235         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
    236     } else {
    237         /* if there was an old l2 table, read it from the disk */
    238         if (bdrv_pread(s->hd, old_l2_offset,
    239                        l2_table, s->l2_size * sizeof(uint64_t)) !=
    240             s->l2_size * sizeof(uint64_t))
    241             return NULL;
    242     }
    243     /* write the l2 table to the file */
    244     if (bdrv_pwrite(s->hd, l2_offset,
    245                     l2_table, s->l2_size * sizeof(uint64_t)) !=
    246         s->l2_size * sizeof(uint64_t))
    247         return NULL;
    248 
    249     /* update the l2 cache entry */
    250 
    251     s->l2_cache_offsets[min_index] = l2_offset;
    252     s->l2_cache_counts[min_index] = 1;
    253 
    254     return l2_table;
    255 }
    256 
    257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
    258         uint64_t *l2_table, uint64_t start, uint64_t mask)
    259 {
    260     int i;
    261     uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
    262 
    263     if (!offset)
    264         return 0;
    265 
    266     for (i = start; i < start + nb_clusters; i++)
    267         if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
    268             break;
    269 
    270 	return (i - start);
    271 }
    272 
    273 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
    274 {
    275     int i = 0;
    276 
    277     while(nb_clusters-- && l2_table[i] == 0)
    278         i++;
    279 
    280     return i;
    281 }
    282 
    283 /* The crypt function is compatible with the linux cryptoloop
    284    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
    285    supported */
    286 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
    287                            uint8_t *out_buf, const uint8_t *in_buf,
    288                            int nb_sectors, int enc,
    289                            const AES_KEY *key)
    290 {
    291     union {
    292         uint64_t ll[2];
    293         uint8_t b[16];
    294     } ivec;
    295     int i;
    296 
    297     for(i = 0; i < nb_sectors; i++) {
    298         ivec.ll[0] = cpu_to_le64(sector_num);
    299         ivec.ll[1] = 0;
    300         AES_cbc_encrypt(in_buf, out_buf, 512, key,
    301                         ivec.b, enc);
    302         sector_num++;
    303         in_buf += 512;
    304         out_buf += 512;
    305     }
    306 }
    307 
    308 
    309 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
    310                      uint8_t *buf, int nb_sectors)
    311 {
    312     BDRVQcowState *s = bs->opaque;
    313     int ret, index_in_cluster, n, n1;
    314     uint64_t cluster_offset;
    315 
    316     while (nb_sectors > 0) {
    317         n = nb_sectors;
    318         cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n);
    319         index_in_cluster = sector_num & (s->cluster_sectors - 1);
    320         if (!cluster_offset) {
    321             if (bs->backing_hd) {
    322                 /* read from the base image */
    323                 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
    324                 if (n1 > 0) {
    325                     ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
    326                     if (ret < 0)
    327                         return -1;
    328                 }
    329             } else {
    330                 memset(buf, 0, 512 * n);
    331             }
    332         } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
    333             if (qcow2_decompress_cluster(s, cluster_offset) < 0)
    334                 return -1;
    335             memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
    336         } else {
    337             ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
    338             if (ret != n * 512)
    339                 return -1;
    340             if (s->crypt_method) {
    341                 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
    342                                 &s->aes_decrypt_key);
    343             }
    344         }
    345         nb_sectors -= n;
    346         sector_num += n;
    347         buf += n * 512;
    348     }
    349     return 0;
    350 }
    351 
    352 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
    353                         uint64_t cluster_offset, int n_start, int n_end)
    354 {
    355     BDRVQcowState *s = bs->opaque;
    356     int n, ret;
    357 
    358     n = n_end - n_start;
    359     if (n <= 0)
    360         return 0;
    361     ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
    362     if (ret < 0)
    363         return ret;
    364     if (s->crypt_method) {
    365         qcow2_encrypt_sectors(s, start_sect + n_start,
    366                         s->cluster_data,
    367                         s->cluster_data, n, 1,
    368                         &s->aes_encrypt_key);
    369     }
    370     ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
    371                      s->cluster_data, n);
    372     if (ret < 0)
    373         return ret;
    374     return 0;
    375 }
    376 
    377 
    378 /*
    379  * get_cluster_offset
    380  *
    381  * For a given offset of the disk image, return cluster offset in
    382  * qcow2 file.
    383  *
    384  * on entry, *num is the number of contiguous clusters we'd like to
    385  * access following offset.
    386  *
    387  * on exit, *num is the number of contiguous clusters we can read.
    388  *
    389  * Return 1, if the offset is found
    390  * Return 0, otherwise.
    391  *
    392  */
    393 
    394 uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
    395     int *num)
    396 {
    397     BDRVQcowState *s = bs->opaque;
    398     int l1_index, l2_index;
    399     uint64_t l2_offset, *l2_table, cluster_offset;
    400     int l1_bits, c;
    401     int index_in_cluster, nb_available, nb_needed, nb_clusters;
    402 
    403     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
    404     nb_needed = *num + index_in_cluster;
    405 
    406     l1_bits = s->l2_bits + s->cluster_bits;
    407 
    408     /* compute how many bytes there are between the offset and
    409      * the end of the l1 entry
    410      */
    411 
    412     nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));
    413 
    414     /* compute the number of available sectors */
    415 
    416     nb_available = (nb_available >> 9) + index_in_cluster;
    417 
    418     if (nb_needed > nb_available) {
    419         nb_needed = nb_available;
    420     }
    421 
    422     cluster_offset = 0;
    423 
    424     /* seek the the l2 offset in the l1 table */
    425 
    426     l1_index = offset >> l1_bits;
    427     if (l1_index >= s->l1_size)
    428         goto out;
    429 
    430     l2_offset = s->l1_table[l1_index];
    431 
    432     /* seek the l2 table of the given l2 offset */
    433 
    434     if (!l2_offset)
    435         goto out;
    436 
    437     /* load the l2 table in memory */
    438 
    439     l2_offset &= ~QCOW_OFLAG_COPIED;
    440     l2_table = l2_load(bs, l2_offset);
    441     if (l2_table == NULL)
    442         return 0;
    443 
    444     /* find the cluster offset for the given disk offset */
    445 
    446     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
    447     cluster_offset = be64_to_cpu(l2_table[l2_index]);
    448     nb_clusters = size_to_clusters(s, nb_needed << 9);
    449 
    450     if (!cluster_offset) {
    451         /* how many empty clusters ? */
    452         c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
    453     } else {
    454         /* how many allocated clusters ? */
    455         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
    456                 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
    457     }
    458 
    459    nb_available = (c * s->cluster_sectors);
    460 out:
    461     if (nb_available > nb_needed)
    462         nb_available = nb_needed;
    463 
    464     *num = nb_available - index_in_cluster;
    465 
    466     return cluster_offset & ~QCOW_OFLAG_COPIED;
    467 }
    468 
    469 /*
    470  * get_cluster_table
    471  *
    472  * for a given disk offset, load (and allocate if needed)
    473  * the l2 table.
    474  *
    475  * the l2 table offset in the qcow2 file and the cluster index
    476  * in the l2 table are given to the caller.
    477  *
    478  */
    479 
    480 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
    481                              uint64_t **new_l2_table,
    482                              uint64_t *new_l2_offset,
    483                              int *new_l2_index)
    484 {
    485     BDRVQcowState *s = bs->opaque;
    486     int l1_index, l2_index, ret;
    487     uint64_t l2_offset, *l2_table;
    488 
    489     /* seek the the l2 offset in the l1 table */
    490 
    491     l1_index = offset >> (s->l2_bits + s->cluster_bits);
    492     if (l1_index >= s->l1_size) {
    493         ret = qcow2_grow_l1_table(bs, l1_index + 1);
    494         if (ret < 0)
    495             return 0;
    496     }
    497     l2_offset = s->l1_table[l1_index];
    498 
    499     /* seek the l2 table of the given l2 offset */
    500 
    501     if (l2_offset & QCOW_OFLAG_COPIED) {
    502         /* load the l2 table in memory */
    503         l2_offset &= ~QCOW_OFLAG_COPIED;
    504         l2_table = l2_load(bs, l2_offset);
    505         if (l2_table == NULL)
    506             return 0;
    507     } else {
    508         if (l2_offset)
    509             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
    510         l2_table = l2_allocate(bs, l1_index);
    511         if (l2_table == NULL)
    512             return 0;
    513         l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
    514     }
    515 
    516     /* find the cluster offset for the given disk offset */
    517 
    518     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
    519 
    520     *new_l2_table = l2_table;
    521     *new_l2_offset = l2_offset;
    522     *new_l2_index = l2_index;
    523 
    524     return 1;
    525 }
    526 
    527 /*
    528  * alloc_compressed_cluster_offset
    529  *
    530  * For a given offset of the disk image, return cluster offset in
    531  * qcow2 file.
    532  *
    533  * If the offset is not found, allocate a new compressed cluster.
    534  *
    535  * Return the cluster offset if successful,
    536  * Return 0, otherwise.
    537  *
    538  */
    539 
    540 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
    541                                                uint64_t offset,
    542                                                int compressed_size)
    543 {
    544     BDRVQcowState *s = bs->opaque;
    545     int l2_index, ret;
    546     uint64_t l2_offset, *l2_table, cluster_offset;
    547     int nb_csectors;
    548 
    549     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
    550     if (ret == 0)
    551         return 0;
    552 
    553     cluster_offset = be64_to_cpu(l2_table[l2_index]);
    554     if (cluster_offset & QCOW_OFLAG_COPIED)
    555         return cluster_offset & ~QCOW_OFLAG_COPIED;
    556 
    557     if (cluster_offset)
    558         qcow2_free_any_clusters(bs, cluster_offset, 1);
    559 
    560     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
    561     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
    562                   (cluster_offset >> 9);
    563 
    564     cluster_offset |= QCOW_OFLAG_COMPRESSED |
    565                       ((uint64_t)nb_csectors << s->csize_shift);
    566 
    567     /* update L2 table */
    568 
    569     /* compressed clusters never have the copied flag */
    570 
    571     l2_table[l2_index] = cpu_to_be64(cluster_offset);
    572     if (bdrv_pwrite(s->hd,
    573                     l2_offset + l2_index * sizeof(uint64_t),
    574                     l2_table + l2_index,
    575                     sizeof(uint64_t)) != sizeof(uint64_t))
    576         return 0;
    577 
    578     return cluster_offset;
    579 }
    580 
    581 /*
    582  * Write L2 table updates to disk, writing whole sectors to avoid a
    583  * read-modify-write in bdrv_pwrite
    584  */
    585 #define L2_ENTRIES_PER_SECTOR (512 / 8)
    586 static int write_l2_entries(BDRVQcowState *s, uint64_t *l2_table,
    587     uint64_t l2_offset, int l2_index, int num)
    588 {
    589     int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
    590     int start_offset = (8 * l2_index) & ~511;
    591     int end_offset = (8 * (l2_index + num) + 511) & ~511;
    592     size_t len = end_offset - start_offset;
    593 
    594     if (bdrv_pwrite(s->hd, l2_offset + start_offset, &l2_table[l2_start_index],
    595         len) != len)
    596     {
    597         return -1;
    598     }
    599 
    600     return 0;
    601 }
    602 
    603 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
    604     QCowL2Meta *m)
    605 {
    606     BDRVQcowState *s = bs->opaque;
    607     int i, j = 0, l2_index, ret;
    608     uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
    609 
    610     if (m->nb_clusters == 0)
    611         return 0;
    612 
    613     old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
    614 
    615     /* copy content of unmodified sectors */
    616     start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
    617     if (m->n_start) {
    618         ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
    619         if (ret < 0)
    620             goto err;
    621     }
    622 
    623     if (m->nb_available & (s->cluster_sectors - 1)) {
    624         uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
    625         ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
    626                 m->nb_available - end, s->cluster_sectors);
    627         if (ret < 0)
    628             goto err;
    629     }
    630 
    631     ret = -EIO;
    632     /* update L2 table */
    633     if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
    634         goto err;
    635 
    636     for (i = 0; i < m->nb_clusters; i++) {
    637         /* if two concurrent writes happen to the same unallocated cluster
    638 	 * each write allocates separate cluster and writes data concurrently.
    639 	 * The first one to complete updates l2 table with pointer to its
    640 	 * cluster the second one has to do RMW (which is done above by
    641 	 * copy_sectors()), update l2 table with its cluster pointer and free
    642 	 * old cluster. This is what this loop does */
    643         if(l2_table[l2_index + i] != 0)
    644             old_cluster[j++] = l2_table[l2_index + i];
    645 
    646         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
    647                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
    648      }
    649 
    650     if (write_l2_entries(s, l2_table, l2_offset, l2_index, m->nb_clusters) < 0) {
    651         ret = -1;
    652         goto err;
    653     }
    654 
    655     for (i = 0; i < j; i++)
    656         qcow2_free_any_clusters(bs,
    657             be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
    658 
    659     ret = 0;
    660 err:
    661     qemu_free(old_cluster);
    662     return ret;
    663  }
    664 
    665 /*
    666  * alloc_cluster_offset
    667  *
    668  * For a given offset of the disk image, return cluster offset in
    669  * qcow2 file.
    670  *
    671  * If the offset is not found, allocate a new cluster.
    672  *
    673  * Return the cluster offset if successful,
    674  * Return 0, otherwise.
    675  *
    676  */
    677 
    678 uint64_t qcow2_alloc_cluster_offset(BlockDriverState *bs,
    679                                     uint64_t offset,
    680                                     int n_start, int n_end,
    681                                     int *num, QCowL2Meta *m)
    682 {
    683     BDRVQcowState *s = bs->opaque;
    684     int l2_index, ret;
    685     uint64_t l2_offset, *l2_table, cluster_offset;
    686     int nb_clusters, i = 0;
    687 
    688     ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
    689     if (ret == 0)
    690         return 0;
    691 
    692     nb_clusters = size_to_clusters(s, n_end << 9);
    693 
    694     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
    695 
    696     cluster_offset = be64_to_cpu(l2_table[l2_index]);
    697 
    698     /* We keep all QCOW_OFLAG_COPIED clusters */
    699 
    700     if (cluster_offset & QCOW_OFLAG_COPIED) {
    701         nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
    702                 &l2_table[l2_index], 0, 0);
    703 
    704         cluster_offset &= ~QCOW_OFLAG_COPIED;
    705         m->nb_clusters = 0;
    706 
    707         goto out;
    708     }
    709 
    710     /* for the moment, multiple compressed clusters are not managed */
    711 
    712     if (cluster_offset & QCOW_OFLAG_COMPRESSED)
    713         nb_clusters = 1;
    714 
    715     /* how many available clusters ? */
    716 
    717     while (i < nb_clusters) {
    718         i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
    719                 &l2_table[l2_index], i, 0);
    720 
    721         if(be64_to_cpu(l2_table[l2_index + i]))
    722             break;
    723 
    724         i += count_contiguous_free_clusters(nb_clusters - i,
    725                 &l2_table[l2_index + i]);
    726 
    727         cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
    728 
    729         if ((cluster_offset & QCOW_OFLAG_COPIED) ||
    730                 (cluster_offset & QCOW_OFLAG_COMPRESSED))
    731             break;
    732     }
    733     nb_clusters = i;
    734 
    735     /* allocate a new cluster */
    736 
    737     cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
    738 
    739     /* save info needed for meta data update */
    740     m->offset = offset;
    741     m->n_start = n_start;
    742     m->nb_clusters = nb_clusters;
    743 
    744 out:
    745     m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
    746 
    747     *num = m->nb_available - n_start;
    748 
    749     return cluster_offset;
    750 }
    751 
    752 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
    753                              const uint8_t *buf, int buf_size)
    754 {
    755     z_stream strm1, *strm = &strm1;
    756     int ret, out_len;
    757 
    758     memset(strm, 0, sizeof(*strm));
    759 
    760     strm->next_in = (uint8_t *)buf;
    761     strm->avail_in = buf_size;
    762     strm->next_out = out_buf;
    763     strm->avail_out = out_buf_size;
    764 
    765     ret = inflateInit2(strm, -12);
    766     if (ret != Z_OK)
    767         return -1;
    768     ret = inflate(strm, Z_FINISH);
    769     out_len = strm->next_out - out_buf;
    770     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
    771         out_len != out_buf_size) {
    772         inflateEnd(strm);
    773         return -1;
    774     }
    775     inflateEnd(strm);
    776     return 0;
    777 }
    778 
    779 int qcow2_decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
    780 {
    781     int ret, csize, nb_csectors, sector_offset;
    782     uint64_t coffset;
    783 
    784     coffset = cluster_offset & s->cluster_offset_mask;
    785     if (s->cluster_cache_offset != coffset) {
    786         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
    787         sector_offset = coffset & 511;
    788         csize = nb_csectors * 512 - sector_offset;
    789         ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
    790         if (ret < 0) {
    791             return -1;
    792         }
    793         if (decompress_buffer(s->cluster_cache, s->cluster_size,
    794                               s->cluster_data + sector_offset, csize) < 0) {
    795             return -1;
    796         }
    797         s->cluster_cache_offset = coffset;
    798     }
    799     return 0;
    800 }
    801