1 /* 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 12 #include "onyxd_int.h" 13 #include "header.h" 14 #include "reconintra.h" 15 #include "reconintra4x4.h" 16 #include "recon.h" 17 #include "reconinter.h" 18 #include "dequantize.h" 19 #include "detokenize.h" 20 #include "invtrans.h" 21 #include "alloccommon.h" 22 #include "entropymode.h" 23 #include "quant_common.h" 24 25 #include "setupintrarecon.h" 26 27 #include "decodemv.h" 28 #include "extend.h" 29 #include "vpx_mem/vpx_mem.h" 30 #include "idct.h" 31 #include "dequantize.h" 32 #include "predictdc.h" 33 #include "threading.h" 34 #include "decoderthreading.h" 35 #include "dboolhuff.h" 36 37 #include <assert.h> 38 #include <stdio.h> 39 40 void vp8cx_init_de_quantizer(VP8D_COMP *pbi) 41 { 42 int r, c; 43 int i; 44 int Q; 45 VP8_COMMON *const pc = & pbi->common; 46 47 for (Q = 0; Q < QINDEX_RANGE; Q++) 48 { 49 pc->Y1dequant[Q][0][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q); 50 pc->Y2dequant[Q][0][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q); 51 pc->UVdequant[Q][0][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q); 52 53 // all the ac values = ; 54 for (i = 1; i < 16; i++) 55 { 56 int rc = vp8_default_zig_zag1d[i]; 57 r = (rc >> 2); 58 c = (rc & 3); 59 60 pc->Y1dequant[Q][r][c] = (short)vp8_ac_yquant(Q); 61 pc->Y2dequant[Q][r][c] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q); 62 pc->UVdequant[Q][r][c] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q); 63 } 64 } 65 } 66 67 static void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd) 68 { 69 int i; 70 int QIndex; 71 MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; 72 VP8_COMMON *const pc = & pbi->common; 73 74 // Decide whether to use the default or alternate baseline Q value. 75 if (xd->segmentation_enabled) 76 { 77 // Abs Value 78 if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) 79 QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; 80 81 // Delta Value 82 else 83 { 84 QIndex = pc->base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; 85 QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; // Clamp to valid range 86 } 87 } 88 else 89 QIndex = pc->base_qindex; 90 91 // Set up the block level dequant pointers 92 for (i = 0; i < 16; i++) 93 { 94 xd->block[i].dequant = pc->Y1dequant[QIndex]; 95 } 96 97 for (i = 16; i < 24; i++) 98 { 99 xd->block[i].dequant = pc->UVdequant[QIndex]; 100 } 101 102 xd->block[24].dequant = pc->Y2dequant[QIndex]; 103 104 } 105 106 #if CONFIG_RUNTIME_CPU_DETECT 107 #define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x) 108 #else 109 #define RTCD_VTABLE(x) NULL 110 #endif 111 112 //skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it 113 // to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. 114 static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd) 115 { 116 if (xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) 117 { 118 119 vp8_build_intra_predictors_mbuv_s(xd); 120 vp8_build_intra_predictors_mby_s_ptr(xd); 121 122 } 123 else 124 { 125 vp8_build_inter_predictors_mb_s(xd); 126 } 127 } 128 129 static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) 130 { 131 /* If the MV points so far into the UMV border that no visible pixels 132 * are used for reconstruction, the subpel part of the MV can be 133 * discarded and the MV limited to 16 pixels with equivalent results. 134 * 135 * This limit kicks in at 19 pixels for the top and left edges, for 136 * the 16 pixels plus 3 taps right of the central pixel when subpel 137 * filtering. The bottom and right edges use 16 pixels plus 2 pixels 138 * left of the central pixel when filtering. 139 */ 140 if (mv->col < (xd->mb_to_left_edge - (19 << 3))) 141 mv->col = xd->mb_to_left_edge - (16 << 3); 142 else if (mv->col > xd->mb_to_right_edge + (18 << 3)) 143 mv->col = xd->mb_to_right_edge + (16 << 3); 144 145 if (mv->row < (xd->mb_to_top_edge - (19 << 3))) 146 mv->row = xd->mb_to_top_edge - (16 << 3); 147 else if (mv->row > xd->mb_to_bottom_edge + (18 << 3)) 148 mv->row = xd->mb_to_bottom_edge + (16 << 3); 149 } 150 151 /* A version of the above function for chroma block MVs.*/ 152 static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) 153 { 154 mv->col = (2*mv->col < (xd->mb_to_left_edge - (19 << 3))) ? (xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col; 155 mv->col = (2*mv->col > xd->mb_to_right_edge + (18 << 3)) ? (xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col; 156 157 mv->row = (2*mv->row < (xd->mb_to_top_edge - (19 << 3))) ? (xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row; 158 mv->row = (2*mv->row > xd->mb_to_bottom_edge + (18 << 3)) ? (xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row; 159 } 160 161 static void clamp_mvs(MACROBLOCKD *xd) 162 { 163 if (xd->mode_info_context->mbmi.mode == SPLITMV) 164 { 165 int i; 166 167 for (i=0; i<16; i++) 168 clamp_mv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd); 169 for (i=16; i<24; i++) 170 clamp_uvmv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd); 171 } 172 else 173 { 174 clamp_mv_to_umv_border(&xd->mode_info_context->mbmi.mv.as_mv, xd); 175 clamp_uvmv_to_umv_border(&xd->block[16].bmi.mv.as_mv, xd); 176 } 177 178 } 179 180 void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd) 181 { 182 int eobtotal = 0; 183 int i, do_clamp = xd->mode_info_context->mbmi.need_to_clamp_mvs; 184 185 if (xd->mode_info_context->mbmi.mb_skip_coeff) 186 { 187 vp8_reset_mb_tokens_context(xd); 188 } 189 else 190 { 191 eobtotal = vp8_decode_mb_tokens(pbi, xd); 192 } 193 194 /* Perform temporary clamping of the MV to be used for prediction */ 195 if (do_clamp) 196 { 197 clamp_mvs(xd); 198 } 199 200 xd->mode_info_context->mbmi.dc_diff = 1; 201 202 if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV && eobtotal == 0) 203 { 204 xd->mode_info_context->mbmi.dc_diff = 0; 205 skip_recon_mb(pbi, xd); 206 return; 207 } 208 209 if (xd->segmentation_enabled) 210 mb_init_dequantizer(pbi, xd); 211 212 // do prediction 213 if (xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) 214 { 215 vp8_build_intra_predictors_mbuv(xd); 216 217 if (xd->mode_info_context->mbmi.mode != B_PRED) 218 { 219 vp8_build_intra_predictors_mby_ptr(xd); 220 } else { 221 vp8_intra_prediction_down_copy(xd); 222 } 223 } 224 else 225 { 226 vp8_build_inter_predictors_mb(xd); 227 } 228 229 // dequantization and idct 230 if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV) 231 { 232 BLOCKD *b = &xd->block[24]; 233 DEQUANT_INVOKE(&pbi->dequant, block)(b); 234 235 // do 2nd order transform on the dc block 236 if (xd->eobs[24] > 1) 237 { 238 IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff); 239 ((int *)b->qcoeff)[0] = 0; 240 ((int *)b->qcoeff)[1] = 0; 241 ((int *)b->qcoeff)[2] = 0; 242 ((int *)b->qcoeff)[3] = 0; 243 ((int *)b->qcoeff)[4] = 0; 244 ((int *)b->qcoeff)[5] = 0; 245 ((int *)b->qcoeff)[6] = 0; 246 ((int *)b->qcoeff)[7] = 0; 247 } 248 else 249 { 250 IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff); 251 ((int *)b->qcoeff)[0] = 0; 252 } 253 254 DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block) 255 (xd->qcoeff, &xd->block[0].dequant[0][0], 256 xd->predictor, xd->dst.y_buffer, 257 xd->dst.y_stride, xd->eobs, xd->block[24].diff); 258 } 259 else if ((xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) && xd->mode_info_context->mbmi.mode == B_PRED) 260 { 261 for (i = 0; i < 16; i++) 262 { 263 264 BLOCKD *b = &xd->block[i]; 265 vp8_predict_intra4x4(b, b->bmi.mode, b->predictor); 266 267 if (xd->eobs[i] > 1) 268 { 269 DEQUANT_INVOKE(&pbi->dequant, idct_add) 270 (b->qcoeff, &b->dequant[0][0], b->predictor, 271 *(b->base_dst) + b->dst, 16, b->dst_stride); 272 } 273 else 274 { 275 IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add) 276 (b->qcoeff[0] * b->dequant[0][0], b->predictor, 277 *(b->base_dst) + b->dst, 16, b->dst_stride); 278 ((int *)b->qcoeff)[0] = 0; 279 } 280 } 281 282 } 283 else 284 { 285 DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block) 286 (xd->qcoeff, &xd->block[0].dequant[0][0], 287 xd->predictor, xd->dst.y_buffer, 288 xd->dst.y_stride, xd->eobs); 289 } 290 291 DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block) 292 (xd->qcoeff+16*16, &xd->block[16].dequant[0][0], 293 xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer, 294 xd->dst.uv_stride, xd->eobs+16); 295 } 296 297 static int get_delta_q(vp8_reader *bc, int prev, int *q_update) 298 { 299 int ret_val = 0; 300 301 if (vp8_read_bit(bc)) 302 { 303 ret_val = vp8_read_literal(bc, 4); 304 305 if (vp8_read_bit(bc)) 306 ret_val = -ret_val; 307 } 308 309 /* Trigger a quantizer update if the delta-q value has changed */ 310 if (ret_val != prev) 311 *q_update = 1; 312 313 return ret_val; 314 } 315 316 #ifdef PACKET_TESTING 317 #include <stdio.h> 318 FILE *vpxlog = 0; 319 #endif 320 321 322 323 void vp8_decode_mb_row(VP8D_COMP *pbi, 324 VP8_COMMON *pc, 325 int mb_row, 326 MACROBLOCKD *xd) 327 { 328 329 int i; 330 int recon_yoffset, recon_uvoffset; 331 int mb_col; 332 int ref_fb_idx = pc->lst_fb_idx; 333 int dst_fb_idx = pc->new_fb_idx; 334 int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride; 335 int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride; 336 337 vpx_memset(&pc->left_context, 0, sizeof(pc->left_context)); 338 recon_yoffset = mb_row * recon_y_stride * 16; 339 recon_uvoffset = mb_row * recon_uv_stride * 8; 340 // reset above block coeffs 341 342 xd->above_context = pc->above_context; 343 xd->up_available = (mb_row != 0); 344 345 xd->mb_to_top_edge = -((mb_row * 16)) << 3; 346 xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; 347 348 for (mb_col = 0; mb_col < pc->mb_cols; mb_col++) 349 { 350 351 if (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == B_PRED) 352 { 353 for (i = 0; i < 16; i++) 354 { 355 BLOCKD *d = &xd->block[i]; 356 vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO)); 357 } 358 } 359 360 // Distance of Mb to the various image edges. 361 // These specified to 8th pel as they are always compared to values that are in 1/8th pel units 362 xd->mb_to_left_edge = -((mb_col * 16) << 3); 363 xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; 364 365 xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; 366 xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; 367 xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; 368 369 xd->left_available = (mb_col != 0); 370 371 // Select the appropriate reference frame for this MB 372 if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) 373 ref_fb_idx = pc->lst_fb_idx; 374 else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) 375 ref_fb_idx = pc->gld_fb_idx; 376 else 377 ref_fb_idx = pc->alt_fb_idx; 378 379 xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; 380 xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; 381 xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; 382 383 vp8_build_uvmvs(xd, pc->full_pixel); 384 385 /* 386 if(pc->current_video_frame==0 &&mb_col==1 && mb_row==0) 387 pbi->debugoutput =1; 388 else 389 pbi->debugoutput =0; 390 */ 391 vp8_decode_macroblock(pbi, xd); 392 393 394 recon_yoffset += 16; 395 recon_uvoffset += 8; 396 397 ++xd->mode_info_context; /* next mb */ 398 399 xd->above_context++; 400 401 pbi->current_mb_col_main = mb_col; 402 } 403 404 // adjust to the next row of mbs 405 vp8_extend_mb_row( 406 &pc->yv12_fb[dst_fb_idx], 407 xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8 408 ); 409 410 ++xd->mode_info_context; /* skip prediction column */ 411 412 pbi->last_mb_row_decoded = mb_row; 413 } 414 415 416 static unsigned int read_partition_size(const unsigned char *cx_size) 417 { 418 const unsigned int size = 419 cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); 420 return size; 421 } 422 423 424 static void setup_token_decoder(VP8D_COMP *pbi, 425 const unsigned char *cx_data) 426 { 427 int num_part; 428 int i; 429 VP8_COMMON *pc = &pbi->common; 430 const unsigned char *user_data_end = pbi->Source + pbi->source_sz; 431 vp8_reader *bool_decoder; 432 const unsigned char *partition; 433 434 /* Parse number of token partitions to use */ 435 pc->multi_token_partition = (TOKEN_PARTITION)vp8_read_literal(&pbi->bc, 2); 436 num_part = 1 << pc->multi_token_partition; 437 438 /* Set up pointers to the first partition */ 439 partition = cx_data; 440 bool_decoder = &pbi->bc2; 441 442 if (num_part > 1) 443 { 444 CHECK_MEM_ERROR(pbi->mbc, vpx_malloc(num_part * sizeof(vp8_reader))); 445 bool_decoder = pbi->mbc; 446 partition += 3 * (num_part - 1); 447 } 448 449 for (i = 0; i < num_part; i++) 450 { 451 const unsigned char *partition_size_ptr = cx_data + i * 3; 452 unsigned int partition_size; 453 454 /* Calculate the length of this partition. The last partition 455 * size is implicit. 456 */ 457 if (i < num_part - 1) 458 { 459 partition_size = read_partition_size(partition_size_ptr); 460 } 461 else 462 { 463 partition_size = user_data_end - partition; 464 } 465 466 if (partition + partition_size > user_data_end) 467 vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, 468 "Truncated packet or corrupt partition " 469 "%d length", i + 1); 470 471 if (vp8dx_start_decode(bool_decoder, IF_RTCD(&pbi->dboolhuff), 472 partition, partition_size)) 473 vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, 474 "Failed to allocate bool decoder %d", i + 1); 475 476 /* Advance to the next partition */ 477 partition += partition_size; 478 bool_decoder++; 479 } 480 481 /* Clamp number of decoder threads */ 482 if (pbi->decoding_thread_count > num_part - 1) 483 pbi->decoding_thread_count = num_part - 1; 484 } 485 486 487 static void stop_token_decoder(VP8D_COMP *pbi) 488 { 489 int i; 490 VP8_COMMON *pc = &pbi->common; 491 492 if (pc->multi_token_partition != ONE_PARTITION) 493 vpx_free(pbi->mbc); 494 } 495 496 static void init_frame(VP8D_COMP *pbi) 497 { 498 VP8_COMMON *const pc = & pbi->common; 499 MACROBLOCKD *const xd = & pbi->mb; 500 501 if (pc->frame_type == KEY_FRAME) 502 { 503 // Various keyframe initializations 504 vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); 505 506 vp8_init_mbmode_probs(pc); 507 508 vp8_default_coef_probs(pc); 509 vp8_kf_default_bmode_probs(pc->kf_bmode_prob); 510 511 // reset the segment feature data to 0 with delta coding (Default state). 512 vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); 513 xd->mb_segement_abs_delta = SEGMENT_DELTADATA; 514 515 // reset the mode ref deltasa for loop filter 516 vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); 517 vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); 518 519 // All buffers are implicitly updated on key frames. 520 pc->refresh_golden_frame = 1; 521 pc->refresh_alt_ref_frame = 1; 522 pc->copy_buffer_to_gf = 0; 523 pc->copy_buffer_to_arf = 0; 524 525 // Note that Golden and Altref modes cannot be used on a key frame so 526 // ref_frame_sign_bias[] is undefined and meaningless 527 pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0; 528 pc->ref_frame_sign_bias[ALTREF_FRAME] = 0; 529 } 530 else 531 { 532 if (!pc->use_bilinear_mc_filter) 533 pc->mcomp_filter_type = SIXTAP; 534 else 535 pc->mcomp_filter_type = BILINEAR; 536 537 // To enable choice of different interploation filters 538 if (pc->mcomp_filter_type == SIXTAP) 539 { 540 xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4); 541 xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4); 542 xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8); 543 xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16); 544 } 545 else 546 { 547 xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4); 548 xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4); 549 xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8); 550 xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16); 551 } 552 } 553 554 xd->left_context = &pc->left_context; 555 xd->mode_info_context = pc->mi; 556 xd->frame_type = pc->frame_type; 557 xd->mode_info_context->mbmi.mode = DC_PRED; 558 xd->mode_info_stride = pc->mode_info_stride; 559 } 560 561 int vp8_decode_frame(VP8D_COMP *pbi) 562 { 563 vp8_reader *const bc = & pbi->bc; 564 VP8_COMMON *const pc = & pbi->common; 565 MACROBLOCKD *const xd = & pbi->mb; 566 const unsigned char *data = (const unsigned char *)pbi->Source; 567 const unsigned char *const data_end = data + pbi->source_sz; 568 int first_partition_length_in_bytes; 569 570 int mb_row; 571 int i, j, k, l; 572 const int *const mb_feature_data_bits = vp8_mb_feature_data_bits; 573 574 pc->frame_type = (FRAME_TYPE)(data[0] & 1); 575 pc->version = (data[0] >> 1) & 7; 576 pc->show_frame = (data[0] >> 4) & 1; 577 first_partition_length_in_bytes = 578 (data[0] | (data[1] << 8) | (data[2] << 16)) >> 5; 579 data += 3; 580 581 if (data + first_partition_length_in_bytes > data_end) 582 vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, 583 "Truncated packet or corrupt partition 0 length"); 584 vp8_setup_version(pc); 585 586 if (pc->frame_type == KEY_FRAME) 587 { 588 const int Width = pc->Width; 589 const int Height = pc->Height; 590 591 // vet via sync code 592 if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) 593 vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, 594 "Invalid frame sync code"); 595 596 pc->Width = (data[3] | (data[4] << 8)) & 0x3fff; 597 pc->horiz_scale = data[4] >> 6; 598 pc->Height = (data[5] | (data[6] << 8)) & 0x3fff; 599 pc->vert_scale = data[6] >> 6; 600 data += 7; 601 602 if (Width != pc->Width || Height != pc->Height) 603 { 604 if (pc->Width <= 0) 605 { 606 pc->Width = Width; 607 vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, 608 "Invalid frame width"); 609 } 610 611 if (pc->Height <= 0) 612 { 613 pc->Height = Height; 614 vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, 615 "Invalid frame height"); 616 } 617 618 if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height)) 619 vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, 620 "Failed to allocate frame buffers"); 621 } 622 } 623 624 if (pc->Width == 0 || pc->Height == 0) 625 { 626 return -1; 627 } 628 629 init_frame(pbi); 630 631 if (vp8dx_start_decode(bc, IF_RTCD(&pbi->dboolhuff), 632 data, data_end - data)) 633 vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, 634 "Failed to allocate bool decoder 0"); 635 if (pc->frame_type == KEY_FRAME) { 636 pc->clr_type = (YUV_TYPE)vp8_read_bit(bc); 637 pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc); 638 } 639 640 // Is segmentation enabled 641 xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc); 642 643 if (xd->segmentation_enabled) 644 { 645 // Signal whether or not the segmentation map is being explicitly updated this frame. 646 xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc); 647 xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc); 648 649 if (xd->update_mb_segmentation_data) 650 { 651 xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc); 652 653 vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); 654 655 // For each segmentation feature (Quant and loop filter level) 656 for (i = 0; i < MB_LVL_MAX; i++) 657 { 658 for (j = 0; j < MAX_MB_SEGMENTS; j++) 659 { 660 // Frame level data 661 if (vp8_read_bit(bc)) 662 { 663 xd->segment_feature_data[i][j] = (signed char)vp8_read_literal(bc, mb_feature_data_bits[i]); 664 665 if (vp8_read_bit(bc)) 666 xd->segment_feature_data[i][j] = -xd->segment_feature_data[i][j]; 667 } 668 else 669 xd->segment_feature_data[i][j] = 0; 670 } 671 } 672 } 673 674 if (xd->update_mb_segmentation_map) 675 { 676 // Which macro block level features are enabled 677 vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); 678 679 // Read the probs used to decode the segment id for each macro block. 680 for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) 681 { 682 // If not explicitly set value is defaulted to 255 by memset above 683 if (vp8_read_bit(bc)) 684 xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); 685 } 686 } 687 } 688 689 // Read the loop filter level and type 690 pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc); 691 pc->filter_level = vp8_read_literal(bc, 6); 692 pc->sharpness_level = vp8_read_literal(bc, 3); 693 694 // Read in loop filter deltas applied at the MB level based on mode or ref frame. 695 xd->mode_ref_lf_delta_update = 0; 696 xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc); 697 698 if (xd->mode_ref_lf_delta_enabled) 699 { 700 // Do the deltas need to be updated 701 xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc); 702 703 if (xd->mode_ref_lf_delta_update) 704 { 705 // Send update 706 for (i = 0; i < MAX_REF_LF_DELTAS; i++) 707 { 708 if (vp8_read_bit(bc)) 709 { 710 //sign = vp8_read_bit( bc ); 711 xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); 712 713 if (vp8_read_bit(bc)) // Apply sign 714 xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; 715 } 716 } 717 718 // Send update 719 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) 720 { 721 if (vp8_read_bit(bc)) 722 { 723 //sign = vp8_read_bit( bc ); 724 xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); 725 726 if (vp8_read_bit(bc)) // Apply sign 727 xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; 728 } 729 } 730 } 731 } 732 733 setup_token_decoder(pbi, data + first_partition_length_in_bytes); 734 xd->current_bc = &pbi->bc2; 735 736 // Read the default quantizers. 737 { 738 int Q, q_update; 739 740 Q = vp8_read_literal(bc, 7); // AC 1st order Q = default 741 pc->base_qindex = Q; 742 q_update = 0; 743 pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update); 744 pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update); 745 pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update); 746 pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update); 747 pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update); 748 749 if (q_update) 750 vp8cx_init_de_quantizer(pbi); 751 752 // MB level dequantizer setup 753 mb_init_dequantizer(pbi, &pbi->mb); 754 } 755 756 // Determine if the golden frame or ARF buffer should be updated and how. 757 // For all non key frames the GF and ARF refresh flags and sign bias 758 // flags must be set explicitly. 759 if (pc->frame_type != KEY_FRAME) 760 { 761 // Should the GF or ARF be updated from the current frame 762 pc->refresh_golden_frame = vp8_read_bit(bc); 763 pc->refresh_alt_ref_frame = vp8_read_bit(bc); 764 765 // Buffer to buffer copy flags. 766 pc->copy_buffer_to_gf = 0; 767 768 if (!pc->refresh_golden_frame) 769 pc->copy_buffer_to_gf = vp8_read_literal(bc, 2); 770 771 pc->copy_buffer_to_arf = 0; 772 773 if (!pc->refresh_alt_ref_frame) 774 pc->copy_buffer_to_arf = vp8_read_literal(bc, 2); 775 776 pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc); 777 pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc); 778 } 779 780 pc->refresh_entropy_probs = vp8_read_bit(bc); 781 if (pc->refresh_entropy_probs == 0) 782 { 783 vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); 784 } 785 786 pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc); 787 788 if (0) 789 { 790 FILE *z = fopen("decodestats.stt", "a"); 791 fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n", 792 pc->current_video_frame, 793 pc->frame_type, 794 pc->refresh_golden_frame, 795 pc->refresh_alt_ref_frame, 796 pc->refresh_last_frame, 797 pc->base_qindex); 798 fclose(z); 799 } 800 801 802 { 803 // read coef probability tree 804 805 for (i = 0; i < BLOCK_TYPES; i++) 806 for (j = 0; j < COEF_BANDS; j++) 807 for (k = 0; k < PREV_COEF_CONTEXTS; k++) 808 for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) 809 { 810 811 vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l; 812 813 if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l])) 814 { 815 *p = (vp8_prob)vp8_read_literal(bc, 8); 816 817 } 818 } 819 } 820 821 vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG)); 822 vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG)); 823 824 // set up frame new frame for intra coded blocks 825 vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]); 826 827 vp8_setup_block_dptrs(xd); 828 829 vp8_build_block_doffsets(xd); 830 831 // clear out the coeff buffer 832 vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); 833 834 // Read the mb_no_coeff_skip flag 835 pc->mb_no_coeff_skip = (int)vp8_read_bit(bc); 836 837 838 vp8_decode_mode_mvs(pbi); 839 840 vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); 841 842 vpx_memcpy(&xd->block[0].bmi, &xd->mode_info_context->bmi[0], sizeof(B_MODE_INFO)); 843 844 845 if (pbi->b_multithreaded_lf && pc->filter_level != 0) 846 vp8_start_lfthread(pbi); 847 848 if (pbi->b_multithreaded_rd && pc->multi_token_partition != ONE_PARTITION) 849 { 850 vp8_mtdecode_mb_rows(pbi, xd); 851 } 852 else 853 { 854 int ibc = 0; 855 int num_part = 1 << pc->multi_token_partition; 856 857 // Decode the individual macro block 858 for (mb_row = 0; mb_row < pc->mb_rows; mb_row++) 859 { 860 861 if (num_part > 1) 862 { 863 xd->current_bc = & pbi->mbc[ibc]; 864 ibc++; 865 866 if (ibc == num_part) 867 ibc = 0; 868 } 869 870 vp8_decode_mb_row(pbi, pc, mb_row, xd); 871 } 872 873 pbi->last_mb_row_decoded = mb_row; 874 } 875 876 877 stop_token_decoder(pbi); 878 879 // vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); 880 881 // If this was a kf or Gf note the Q used 882 if ((pc->frame_type == KEY_FRAME) || 883 pc->refresh_golden_frame || pc->refresh_alt_ref_frame) 884 { 885 pc->last_kf_gf_q = pc->base_qindex; 886 } 887 888 if (pc->refresh_entropy_probs == 0) 889 { 890 vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc)); 891 } 892 893 #ifdef PACKET_TESTING 894 { 895 FILE *f = fopen("decompressor.VP8", "ab"); 896 unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8; 897 fwrite((void *) &size, 4, 1, f); 898 fwrite((void *) pbi->Source, size, 1, f); 899 fclose(f); 900 } 901 #endif 902 903 return 0; 904 } 905