Lines Matching full:lgamma
27 * lgamma(1+s) = log(s) + lgamma(s)
29 * lgamma(7.3) = log(6.3) + lgamma(6.3)
30 * = log(6.3*5.3) + lgamma(5.3)
31 * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
32 * 2. Polynomial approximation of lgamma around its
36 * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
42 * lgamma(x) = 0.5*s + s*P(s)/Q(s)
44 * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
48 * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
55 * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
57 * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
59 * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
72 * lgamma(x) = log(|Gamma(x)|)
73 * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
78 * lgamma(2+s) ~ s*(1-Euler) for tiny s
79 * lgamma(1)=lgamma(2)=0
80 * lgamma(x) ~ -log(x) for tiny x
81 * lgamma(0) = lgamma(inf) = inf
82 * lgamma(-integer) = +-inf
237 if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
276 z = one; /* lgamma(1+s) = log(s) + lgamma(s) */