Home | History | Annotate | Download | only in libtomcrypt

Lines Matching refs:mbox

19 \def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
47 \newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
48 \def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
548 example, if you have $\mbox{Pr}\left[X = 1\right] = {1 \over 2} \pm \gamma$ where $\vert \gamma \vert > 0$ then the
793 C_{-1} = C_{-1} + 1\mbox{ }(\mbox{mod }2^W) \nonumber \\
3231 $\mbox{lcm}(p - 1, q - 1)$. The public key consists of the composite $N$ and some integer $e$ such that
3232 $\mbox{gcd}(e, \phi(N)) = 1$. The private key consists of the composite $N$ and the inverse of $e$ modulo $\phi(N)$
3233 often simply denoted as $de \equiv 1\mbox{ }(\mbox{mod }\phi(N))$.
3236 $1 < M < N-2$ and computes the ciphertext $C = M^e\mbox{ }(\mbox{mod }N)$. Since finding the inverse exponent $d$
3238 $C^d \equiv \left (M^e \right)^d \equiv M^1 \equiv M\mbox{ }(\mbox{mod }N)$. Similarly the owner of the private key
3618 y^2 = x^3 - 3x + b\mbox{ }(\mbox{mod }p)
4035 \item $g = h^r \mbox{ (mod }p\mbox{)}$ a generator of order $q$ modulo $p$. $h$ can be any non-trivial random
4038 \item $y = g^x \mbox{ (mod }p\mbox{)}$ the public key.
4048 \item $(p-1) \equiv 0 \mbox{ (mod }q\mbox{)}$.
4049 \item $g^q \equiv 1 \mbox{ (mod }p\mbox{)}$.
4051 \item $y^q \equiv 1 \mbox{ (mod }p\mbox{)}$.
4898 as $\phi(pq)$ or $(p - 1)(q - 1)$. The decryption exponent $d$ is found as $de \equiv 1\mbox{ }(\mbox{mod } \phi(pq))$. If either $p$ or $q$ is composite the value of $d$ will be incorrect and the user
4918 to get a prime of the form $p \equiv 3\mbox{ }(\mbox{mod } 4)$. So if you want a 1024-bit prime of this sort pass