Lines Matching refs:PI
22 #if defined (PI)
23 #undef PI
202 const double CalendarAstronomer::PI = 3.14159265358979323846;
204 #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0)
205 #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours
206 #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians
207 #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees
218 * Normalize an angle so that it's in the range 0 - 2pi.
219 * For positive angles this is just (angle % 2pi), but the Java
223 return normalize(angle, CalendarAstronomer::PI * 2.0);
227 * Normalize an angle into the range -PI - PI
230 return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
504 double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle
527 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
531 #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
532 #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
535 //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
689 return (CalendarAstronomer::PI/2);
700 return (CalendarAstronomer::PI);
711 return ((CalendarAstronomer::PI*3)/2);
811 // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
941 // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
1042 #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch
1043 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee
1044 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node
1045 #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit
1050 #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A
1051 #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A
1078 double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
1079 meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
1087 double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
1089 double annual = 0.1858*PI/180 * ::sin(meanAnomalySun);
1090 double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun);
1101 double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
1102 double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
1112 double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
1123 double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
1125 nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
1199 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
1209 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
1224 return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
1305 // this loop we use normPI to get values in the range -Pi to Pi,