Return to the PCRE index page.
This page is part of the PCRE HTML documentation. It was generated automatically
from the original man page. If there is any nonsense in it, please consult the
man page, in case the conversion went wrong.
This document describes the optional features of PCRE that can be selected when the library is compiled. It assumes use of the configure script, where the optional features are selected or deselected by providing options to configure before running the make command. However, the same options can be selected in both Unix-like and non-Unix-like environments using the GUI facility of cmake-gui if you are using CMake instead of configure to build PCRE.
There is a lot more information about building PCRE in non-Unix-like environments in the file called NON_UNIX_USE, which is part of the PCRE distribution. You should consult this file as well as the README file if you are building in a non-Unix-like environment.
The complete list of options for configure (which includes the standard ones such as the selection of the installation directory) can be obtained by running
./configure --helpThe following sections include descriptions of options whose names begin with --enable or --disable. These settings specify changes to the defaults for the configure command. Because of the way that configure works, --enable and --disable always come in pairs, so the complementary option always exists as well, but as it specifies the default, it is not described.
By default, the configure script will search for a C++ compiler and C++ header files. If it finds them, it automatically builds the C++ wrapper library for PCRE. You can disable this by adding
--disable-cppto the configure command.
To build PCRE with support for UTF-8 Unicode character strings, add
--enable-utf8to the configure command. Of itself, this does not make PCRE treat strings as UTF-8. As well as compiling PCRE with this option, you also have have to set the PCRE_UTF8 option when you call the pcre_compile() or pcre_compile2() functions.
If you set --enable-utf8 when compiling in an EBCDIC environment, PCRE expects its input to be either ASCII or UTF-8 (depending on the runtime option). It is not possible to support both EBCDIC and UTF-8 codes in the same version of the library. Consequently, --enable-utf8 and --enable-ebcdic are mutually exclusive.
UTF-8 support allows PCRE to process character values greater than 255 in the strings that it handles. On its own, however, it does not provide any facilities for accessing the properties of such characters. If you want to be able to use the pattern escapes \P, \p, and \X, which refer to Unicode character properties, you must add
--enable-unicode-propertiesto the configure command. This implies UTF-8 support, even if you have not explicitly requested it.
Including Unicode property support adds around 30K of tables to the PCRE library. Only the general category properties such as Lu and Nd are supported. Details are given in the pcrepattern documentation.
By default, PCRE interprets the linefeed (LF) character as indicating the end of a line. This is the normal newline character on Unix-like systems. You can compile PCRE to use carriage return (CR) instead, by adding
--enable-newline-is-crto the configure command. There is also a --enable-newline-is-lf option, which explicitly specifies linefeed as the newline character.
--enable-newline-is-crlfto the configure command. There is a fourth option, specified by
--enable-newline-is-anycrlfwhich causes PCRE to recognize any of the three sequences CR, LF, or CRLF as indicating a line ending. Finally, a fifth option, specified by
--enable-newline-is-anycauses PCRE to recognize any Unicode newline sequence.
Whatever line ending convention is selected when PCRE is built can be overridden when the library functions are called. At build time it is conventional to use the standard for your operating system.
By default, the sequence \R in a pattern matches any Unicode newline sequence, whatever has been selected as the line ending sequence. If you specify
--enable-bsr-anycrlfthe default is changed so that \R matches only CR, LF, or CRLF. Whatever is selected when PCRE is built can be overridden when the library functions are called.
The PCRE building process uses libtool to build both shared and static Unix libraries by default. You can suppress one of these by adding one of
--disable-shared --disable-staticto the configure command, as required.
When PCRE is called through the POSIX interface (see the pcreposix documentation), additional working storage is required for holding the pointers to capturing substrings, because PCRE requires three integers per substring, whereas the POSIX interface provides only two. If the number of expected substrings is small, the wrapper function uses space on the stack, because this is faster than using malloc() for each call. The default threshold above which the stack is no longer used is 10; it can be changed by adding a setting such as
--with-posix-malloc-threshold=20to the configure command.
Within a compiled pattern, offset values are used to point from one part to another (for example, from an opening parenthesis to an alternation metacharacter). By default, two-byte values are used for these offsets, leading to a maximum size for a compiled pattern of around 64K. This is sufficient to handle all but the most gigantic patterns. Nevertheless, some people do want to process truyl enormous patterns, so it is possible to compile PCRE to use three-byte or four-byte offsets by adding a setting such as
--with-link-size=3to the configure command. The value given must be 2, 3, or 4. Using longer offsets slows down the operation of PCRE because it has to load additional bytes when handling them.
When matching with the pcre_exec() function, PCRE implements backtracking by making recursive calls to an internal function called match(). In environments where the size of the stack is limited, this can severely limit PCRE's operation. (The Unix environment does not usually suffer from this problem, but it may sometimes be necessary to increase the maximum stack size. There is a discussion in the pcrestack documentation.) An alternative approach to recursion that uses memory from the heap to remember data, instead of using recursive function calls, has been implemented to work round the problem of limited stack size. If you want to build a version of PCRE that works this way, add
--disable-stack-for-recursionto the configure command. With this configuration, PCRE will use the pcre_stack_malloc and pcre_stack_free variables to call memory management functions. By default these point to malloc() and free(), but you can replace the pointers so that your own functions are used instead.
Separate functions are provided rather than using pcre_malloc and pcre_free because the usage is very predictable: the block sizes requested are always the same, and the blocks are always freed in reverse order. A calling program might be able to implement optimized functions that perform better than malloc() and free(). PCRE runs noticeably more slowly when built in this way. This option affects only the pcre_exec() function; it is not relevant for pcre_dfa_exec().
Internally, PCRE has a function called match(), which it calls repeatedly (sometimes recursively) when matching a pattern with the pcre_exec() function. By controlling the maximum number of times this function may be called during a single matching operation, a limit can be placed on the resources used by a single call to pcre_exec(). The limit can be changed at run time, as described in the pcreapi documentation. The default is 10 million, but this can be changed by adding a setting such as
--with-match-limit=500000to the configure command. This setting has no effect on the pcre_dfa_exec() matching function.
In some environments it is desirable to limit the depth of recursive calls of match() more strictly than the total number of calls, in order to restrict the maximum amount of stack (or heap, if --disable-stack-for-recursion is specified) that is used. A second limit controls this; it defaults to the value that is set for --with-match-limit, which imposes no additional constraints. However, you can set a lower limit by adding, for example,
--with-match-limit-recursion=10000to the configure command. This value can also be overridden at run time.
PCRE uses fixed tables for processing characters whose code values are less than 256. By default, PCRE is built with a set of tables that are distributed in the file pcre_chartables.c.dist. These tables are for ASCII codes only. If you add
--enable-rebuild-chartablesto the configure command, the distributed tables are no longer used. Instead, a program called dftables is compiled and run. This outputs the source for new set of tables, created in the default locale of your C runtime system. (This method of replacing the tables does not work if you are cross compiling, because dftables is run on the local host. If you need to create alternative tables when cross compiling, you will have to do so "by hand".)
PCRE assumes by default that it will run in an environment where the character code is ASCII (or Unicode, which is a superset of ASCII). This is the case for most computer operating systems. PCRE can, however, be compiled to run in an EBCDIC environment by adding
--enable-ebcdicto the configure command. This setting implies --enable-rebuild-chartables. You should only use it if you know that you are in an EBCDIC environment (for example, an IBM mainframe operating system). The --enable-ebcdic option is incompatible with --enable-utf8.
By default, pcregrep reads all files as plain text. You can build it so that it recognizes files whose names end in .gz or .bz2, and reads them with libz or libbz2, respectively, by adding one or both of
--enable-pcregrep-libz --enable-pcregrep-libbz2to the configure command. These options naturally require that the relevant libraries are installed on your system. Configuration will fail if they are not.
If you add
--enable-pcretest-libreadlineto the configure command, pcretest is linked with the libreadline library, and when its input is from a terminal, it reads it using the readline() function. This provides line-editing and history facilities. Note that libreadline is GPL-licensed, so if you distribute a binary of pcretest linked in this way, there may be licensing issues.
Setting this option causes the -lreadline option to be added to the pcretest build. In many operating environments with a sytem-installed libreadline this is sufficient. However, in some environments (e.g. if an unmodified distribution version of readline is in use), some extra configuration may be necessary. The INSTALL file for libreadline says this:
"Readline uses the termcap functions, but does not link with the termcap or curses library itself, allowing applications which link with readline the to choose an appropriate library."If your environment has not been set up so that an appropriate library is automatically included, you may need to add something like
LIBS="-ncurses"immediately before the configure command.
pcreapi(3), pcre_config(3).
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
Last updated: 29 September 2009
Copyright © 1997-2009 University of Cambridge.
Return to the PCRE index page.