1 // Copyright 2006-2008 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef V8_JSREGEXP_H_ 29 #define V8_JSREGEXP_H_ 30 31 #include "macro-assembler.h" 32 #include "zone-inl.h" 33 34 namespace v8 { 35 namespace internal { 36 37 38 class RegExpMacroAssembler; 39 40 41 class RegExpImpl { 42 public: 43 // Whether V8 is compiled with native regexp support or not. 44 static bool UsesNativeRegExp() { 45 #ifdef V8_INTERPRETED_REGEXP 46 return false; 47 #else 48 return true; 49 #endif 50 } 51 52 // Creates a regular expression literal in the old space. 53 // This function calls the garbage collector if necessary. 54 static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor, 55 Handle<String> pattern, 56 Handle<String> flags, 57 bool* has_pending_exception); 58 59 // Returns a string representation of a regular expression. 60 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. 61 // This function calls the garbage collector if necessary. 62 static Handle<String> ToString(Handle<Object> value); 63 64 // Parses the RegExp pattern and prepares the JSRegExp object with 65 // generic data and choice of implementation - as well as what 66 // the implementation wants to store in the data field. 67 // Returns false if compilation fails. 68 static Handle<Object> Compile(Handle<JSRegExp> re, 69 Handle<String> pattern, 70 Handle<String> flags); 71 72 // See ECMA-262 section 15.10.6.2. 73 // This function calls the garbage collector if necessary. 74 static Handle<Object> Exec(Handle<JSRegExp> regexp, 75 Handle<String> subject, 76 int index, 77 Handle<JSArray> lastMatchInfo); 78 79 // Prepares a JSRegExp object with Irregexp-specific data. 80 static void IrregexpInitialize(Handle<JSRegExp> re, 81 Handle<String> pattern, 82 JSRegExp::Flags flags, 83 int capture_register_count); 84 85 86 static void AtomCompile(Handle<JSRegExp> re, 87 Handle<String> pattern, 88 JSRegExp::Flags flags, 89 Handle<String> match_pattern); 90 91 static Handle<Object> AtomExec(Handle<JSRegExp> regexp, 92 Handle<String> subject, 93 int index, 94 Handle<JSArray> lastMatchInfo); 95 96 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; 97 98 // Prepare a RegExp for being executed one or more times (using 99 // IrregexpExecOnce) on the subject. 100 // This ensures that the regexp is compiled for the subject, and that 101 // the subject is flat. 102 // Returns the number of integer spaces required by IrregexpExecOnce 103 // as its "registers" argument. If the regexp cannot be compiled, 104 // an exception is set as pending, and this function returns negative. 105 static int IrregexpPrepare(Handle<JSRegExp> regexp, 106 Handle<String> subject); 107 108 // Execute a regular expression once on the subject, starting from 109 // character "index". 110 // If successful, returns RE_SUCCESS and set the capture positions 111 // in the first registers. 112 // If matching fails, returns RE_FAILURE. 113 // If execution fails, sets a pending exception and returns RE_EXCEPTION. 114 static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp, 115 Handle<String> subject, 116 int index, 117 Vector<int> registers); 118 119 // Execute an Irregexp bytecode pattern. 120 // On a successful match, the result is a JSArray containing 121 // captured positions. On a failure, the result is the null value. 122 // Returns an empty handle in case of an exception. 123 static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp, 124 Handle<String> subject, 125 int index, 126 Handle<JSArray> lastMatchInfo); 127 128 // Array index in the lastMatchInfo array. 129 static const int kLastCaptureCount = 0; 130 static const int kLastSubject = 1; 131 static const int kLastInput = 2; 132 static const int kFirstCapture = 3; 133 static const int kLastMatchOverhead = 3; 134 135 // Direct offset into the lastMatchInfo array. 136 static const int kLastCaptureCountOffset = 137 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize; 138 static const int kLastSubjectOffset = 139 FixedArray::kHeaderSize + kLastSubject * kPointerSize; 140 static const int kLastInputOffset = 141 FixedArray::kHeaderSize + kLastInput * kPointerSize; 142 static const int kFirstCaptureOffset = 143 FixedArray::kHeaderSize + kFirstCapture * kPointerSize; 144 145 // Used to access the lastMatchInfo array. 146 static int GetCapture(FixedArray* array, int index) { 147 return Smi::cast(array->get(index + kFirstCapture))->value(); 148 } 149 150 static void SetLastCaptureCount(FixedArray* array, int to) { 151 array->set(kLastCaptureCount, Smi::FromInt(to)); 152 } 153 154 static void SetLastSubject(FixedArray* array, String* to) { 155 array->set(kLastSubject, to); 156 } 157 158 static void SetLastInput(FixedArray* array, String* to) { 159 array->set(kLastInput, to); 160 } 161 162 static void SetCapture(FixedArray* array, int index, int to) { 163 array->set(index + kFirstCapture, Smi::FromInt(to)); 164 } 165 166 static int GetLastCaptureCount(FixedArray* array) { 167 return Smi::cast(array->get(kLastCaptureCount))->value(); 168 } 169 170 // For acting on the JSRegExp data FixedArray. 171 static int IrregexpMaxRegisterCount(FixedArray* re); 172 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); 173 static int IrregexpNumberOfCaptures(FixedArray* re); 174 static int IrregexpNumberOfRegisters(FixedArray* re); 175 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii); 176 static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii); 177 178 // Limit the space regexps take up on the heap. In order to limit this we 179 // would like to keep track of the amount of regexp code on the heap. This 180 // is not tracked, however. As a conservative approximation we track the 181 // total regexp code compiled including code that has subsequently been freed 182 // and the total executable memory at any point. 183 static const int kRegExpExecutableMemoryLimit = 16 * MB; 184 static const int kRegWxpCompiledLimit = 1 * MB; 185 186 private: 187 static String* last_ascii_string_; 188 static String* two_byte_cached_string_; 189 190 static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii); 191 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii); 192 193 194 // Set the subject cache. The previous string buffer is not deleted, so the 195 // caller should ensure that it doesn't leak. 196 static void SetSubjectCache(String* subject, 197 char* utf8_subject, 198 int uft8_length, 199 int character_position, 200 int utf8_position); 201 202 // A one element cache of the last utf8_subject string and its length. The 203 // subject JS String object is cached in the heap. We also cache a 204 // translation between position and utf8 position. 205 static char* utf8_subject_cache_; 206 static int utf8_length_cache_; 207 static int utf8_position_; 208 static int character_position_; 209 }; 210 211 212 // Represents the location of one element relative to the intersection of 213 // two sets. Corresponds to the four areas of a Venn diagram. 214 enum ElementInSetsRelation { 215 kInsideNone = 0, 216 kInsideFirst = 1, 217 kInsideSecond = 2, 218 kInsideBoth = 3 219 }; 220 221 222 // Represents the relation of two sets. 223 // Sets can be either disjoint, partially or fully overlapping, or equal. 224 class SetRelation BASE_EMBEDDED { 225 public: 226 // Relation is represented by a bit saying whether there are elements in 227 // one set that is not in the other, and a bit saying that there are elements 228 // that are in both sets. 229 230 // Location of an element. Corresponds to the internal areas of 231 // a Venn diagram. 232 enum { 233 kInFirst = 1 << kInsideFirst, 234 kInSecond = 1 << kInsideSecond, 235 kInBoth = 1 << kInsideBoth 236 }; 237 SetRelation() : bits_(0) {} 238 ~SetRelation() {} 239 // Add the existence of objects in a particular 240 void SetElementsInFirstSet() { bits_ |= kInFirst; } 241 void SetElementsInSecondSet() { bits_ |= kInSecond; } 242 void SetElementsInBothSets() { bits_ |= kInBoth; } 243 // Check the currently known relation of the sets (common functions only, 244 // for other combinations, use value() to get the bits and check them 245 // manually). 246 // Sets are completely disjoint. 247 bool Disjoint() { return (bits_ & kInBoth) == 0; } 248 // Sets are equal. 249 bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; } 250 // First set contains second. 251 bool Contains() { return (bits_ & kInSecond) == 0; } 252 // Second set contains first. 253 bool ContainedIn() { return (bits_ & kInFirst) == 0; } 254 bool NonTrivialIntersection() { 255 return (bits_ == (kInFirst | kInSecond | kInBoth)); 256 } 257 int value() { return bits_; } 258 private: 259 int bits_; 260 }; 261 262 263 class CharacterRange { 264 public: 265 CharacterRange() : from_(0), to_(0) { } 266 // For compatibility with the CHECK_OK macro 267 CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT 268 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { } 269 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges); 270 static Vector<const uc16> GetWordBounds(); 271 static inline CharacterRange Singleton(uc16 value) { 272 return CharacterRange(value, value); 273 } 274 static inline CharacterRange Range(uc16 from, uc16 to) { 275 ASSERT(from <= to); 276 return CharacterRange(from, to); 277 } 278 static inline CharacterRange Everything() { 279 return CharacterRange(0, 0xFFFF); 280 } 281 bool Contains(uc16 i) { return from_ <= i && i <= to_; } 282 uc16 from() const { return from_; } 283 void set_from(uc16 value) { from_ = value; } 284 uc16 to() const { return to_; } 285 void set_to(uc16 value) { to_ = value; } 286 bool is_valid() { return from_ <= to_; } 287 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; } 288 bool IsSingleton() { return (from_ == to_); } 289 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii); 290 static void Split(ZoneList<CharacterRange>* base, 291 Vector<const uc16> overlay, 292 ZoneList<CharacterRange>** included, 293 ZoneList<CharacterRange>** excluded); 294 // Whether a range list is in canonical form: Ranges ordered by from value, 295 // and ranges non-overlapping and non-adjacent. 296 static bool IsCanonical(ZoneList<CharacterRange>* ranges); 297 // Convert range list to canonical form. The characters covered by the ranges 298 // will still be the same, but no character is in more than one range, and 299 // adjacent ranges are merged. The resulting list may be shorter than the 300 // original, but cannot be longer. 301 static void Canonicalize(ZoneList<CharacterRange>* ranges); 302 // Check how the set of characters defined by a CharacterRange list relates 303 // to the set of word characters. List must be in canonical form. 304 static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges); 305 // Takes two character range lists (representing character sets) in canonical 306 // form and merges them. 307 // The characters that are only covered by the first set are added to 308 // first_set_only_out. the characters that are only in the second set are 309 // added to second_set_only_out, and the characters that are in both are 310 // added to both_sets_out. 311 // The pointers to first_set_only_out, second_set_only_out and both_sets_out 312 // should be to empty lists, but they need not be distinct, and may be NULL. 313 // If NULL, the characters are dropped, and if two arguments are the same 314 // pointer, the result is the union of the two sets that would be created 315 // if the pointers had been distinct. 316 // This way, the Merge function can compute all the usual set operations: 317 // union (all three out-sets are equal), intersection (only both_sets_out is 318 // non-NULL), and set difference (only first_set is non-NULL). 319 static void Merge(ZoneList<CharacterRange>* first_set, 320 ZoneList<CharacterRange>* second_set, 321 ZoneList<CharacterRange>* first_set_only_out, 322 ZoneList<CharacterRange>* second_set_only_out, 323 ZoneList<CharacterRange>* both_sets_out); 324 // Negate the contents of a character range in canonical form. 325 static void Negate(ZoneList<CharacterRange>* src, 326 ZoneList<CharacterRange>* dst); 327 static const int kStartMarker = (1 << 24); 328 static const int kPayloadMask = (1 << 24) - 1; 329 330 private: 331 uc16 from_; 332 uc16 to_; 333 }; 334 335 336 // A set of unsigned integers that behaves especially well on small 337 // integers (< 32). May do zone-allocation. 338 class OutSet: public ZoneObject { 339 public: 340 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } 341 OutSet* Extend(unsigned value); 342 bool Get(unsigned value); 343 static const unsigned kFirstLimit = 32; 344 345 private: 346 // Destructively set a value in this set. In most cases you want 347 // to use Extend instead to ensure that only one instance exists 348 // that contains the same values. 349 void Set(unsigned value); 350 351 // The successors are a list of sets that contain the same values 352 // as this set and the one more value that is not present in this 353 // set. 354 ZoneList<OutSet*>* successors() { return successors_; } 355 356 OutSet(uint32_t first, ZoneList<unsigned>* remaining) 357 : first_(first), remaining_(remaining), successors_(NULL) { } 358 uint32_t first_; 359 ZoneList<unsigned>* remaining_; 360 ZoneList<OutSet*>* successors_; 361 friend class Trace; 362 }; 363 364 365 // A mapping from integers, specified as ranges, to a set of integers. 366 // Used for mapping character ranges to choices. 367 class DispatchTable : public ZoneObject { 368 public: 369 class Entry { 370 public: 371 Entry() : from_(0), to_(0), out_set_(NULL) { } 372 Entry(uc16 from, uc16 to, OutSet* out_set) 373 : from_(from), to_(to), out_set_(out_set) { } 374 uc16 from() { return from_; } 375 uc16 to() { return to_; } 376 void set_to(uc16 value) { to_ = value; } 377 void AddValue(int value) { out_set_ = out_set_->Extend(value); } 378 OutSet* out_set() { return out_set_; } 379 private: 380 uc16 from_; 381 uc16 to_; 382 OutSet* out_set_; 383 }; 384 385 class Config { 386 public: 387 typedef uc16 Key; 388 typedef Entry Value; 389 static const uc16 kNoKey; 390 static const Entry kNoValue; 391 static inline int Compare(uc16 a, uc16 b) { 392 if (a == b) 393 return 0; 394 else if (a < b) 395 return -1; 396 else 397 return 1; 398 } 399 }; 400 401 void AddRange(CharacterRange range, int value); 402 OutSet* Get(uc16 value); 403 void Dump(); 404 405 template <typename Callback> 406 void ForEach(Callback* callback) { return tree()->ForEach(callback); } 407 private: 408 // There can't be a static empty set since it allocates its 409 // successors in a zone and caches them. 410 OutSet* empty() { return &empty_; } 411 OutSet empty_; 412 ZoneSplayTree<Config>* tree() { return &tree_; } 413 ZoneSplayTree<Config> tree_; 414 }; 415 416 417 #define FOR_EACH_NODE_TYPE(VISIT) \ 418 VISIT(End) \ 419 VISIT(Action) \ 420 VISIT(Choice) \ 421 VISIT(BackReference) \ 422 VISIT(Assertion) \ 423 VISIT(Text) 424 425 426 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ 427 VISIT(Disjunction) \ 428 VISIT(Alternative) \ 429 VISIT(Assertion) \ 430 VISIT(CharacterClass) \ 431 VISIT(Atom) \ 432 VISIT(Quantifier) \ 433 VISIT(Capture) \ 434 VISIT(Lookahead) \ 435 VISIT(BackReference) \ 436 VISIT(Empty) \ 437 VISIT(Text) 438 439 440 #define FORWARD_DECLARE(Name) class RegExp##Name; 441 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) 442 #undef FORWARD_DECLARE 443 444 445 class TextElement { 446 public: 447 enum Type {UNINITIALIZED, ATOM, CHAR_CLASS}; 448 TextElement() : type(UNINITIALIZED) { } 449 explicit TextElement(Type t) : type(t), cp_offset(-1) { } 450 static TextElement Atom(RegExpAtom* atom); 451 static TextElement CharClass(RegExpCharacterClass* char_class); 452 int length(); 453 Type type; 454 union { 455 RegExpAtom* u_atom; 456 RegExpCharacterClass* u_char_class; 457 } data; 458 int cp_offset; 459 }; 460 461 462 class Trace; 463 464 465 struct NodeInfo { 466 NodeInfo() 467 : being_analyzed(false), 468 been_analyzed(false), 469 follows_word_interest(false), 470 follows_newline_interest(false), 471 follows_start_interest(false), 472 at_end(false), 473 visited(false) { } 474 475 // Returns true if the interests and assumptions of this node 476 // matches the given one. 477 bool Matches(NodeInfo* that) { 478 return (at_end == that->at_end) && 479 (follows_word_interest == that->follows_word_interest) && 480 (follows_newline_interest == that->follows_newline_interest) && 481 (follows_start_interest == that->follows_start_interest); 482 } 483 484 // Updates the interests of this node given the interests of the 485 // node preceding it. 486 void AddFromPreceding(NodeInfo* that) { 487 at_end |= that->at_end; 488 follows_word_interest |= that->follows_word_interest; 489 follows_newline_interest |= that->follows_newline_interest; 490 follows_start_interest |= that->follows_start_interest; 491 } 492 493 bool HasLookbehind() { 494 return follows_word_interest || 495 follows_newline_interest || 496 follows_start_interest; 497 } 498 499 // Sets the interests of this node to include the interests of the 500 // following node. 501 void AddFromFollowing(NodeInfo* that) { 502 follows_word_interest |= that->follows_word_interest; 503 follows_newline_interest |= that->follows_newline_interest; 504 follows_start_interest |= that->follows_start_interest; 505 } 506 507 void ResetCompilationState() { 508 being_analyzed = false; 509 been_analyzed = false; 510 } 511 512 bool being_analyzed: 1; 513 bool been_analyzed: 1; 514 515 // These bits are set of this node has to know what the preceding 516 // character was. 517 bool follows_word_interest: 1; 518 bool follows_newline_interest: 1; 519 bool follows_start_interest: 1; 520 521 bool at_end: 1; 522 bool visited: 1; 523 }; 524 525 526 class SiblingList { 527 public: 528 SiblingList() : list_(NULL) { } 529 int length() { 530 return list_ == NULL ? 0 : list_->length(); 531 } 532 void Ensure(RegExpNode* parent) { 533 if (list_ == NULL) { 534 list_ = new ZoneList<RegExpNode*>(2); 535 list_->Add(parent); 536 } 537 } 538 void Add(RegExpNode* node) { list_->Add(node); } 539 RegExpNode* Get(int index) { return list_->at(index); } 540 private: 541 ZoneList<RegExpNode*>* list_; 542 }; 543 544 545 // Details of a quick mask-compare check that can look ahead in the 546 // input stream. 547 class QuickCheckDetails { 548 public: 549 QuickCheckDetails() 550 : characters_(0), 551 mask_(0), 552 value_(0), 553 cannot_match_(false) { } 554 explicit QuickCheckDetails(int characters) 555 : characters_(characters), 556 mask_(0), 557 value_(0), 558 cannot_match_(false) { } 559 bool Rationalize(bool ascii); 560 // Merge in the information from another branch of an alternation. 561 void Merge(QuickCheckDetails* other, int from_index); 562 // Advance the current position by some amount. 563 void Advance(int by, bool ascii); 564 void Clear(); 565 bool cannot_match() { return cannot_match_; } 566 void set_cannot_match() { cannot_match_ = true; } 567 struct Position { 568 Position() : mask(0), value(0), determines_perfectly(false) { } 569 uc16 mask; 570 uc16 value; 571 bool determines_perfectly; 572 }; 573 int characters() { return characters_; } 574 void set_characters(int characters) { characters_ = characters; } 575 Position* positions(int index) { 576 ASSERT(index >= 0); 577 ASSERT(index < characters_); 578 return positions_ + index; 579 } 580 uint32_t mask() { return mask_; } 581 uint32_t value() { return value_; } 582 583 private: 584 // How many characters do we have quick check information from. This is 585 // the same for all branches of a choice node. 586 int characters_; 587 Position positions_[4]; 588 // These values are the condensate of the above array after Rationalize(). 589 uint32_t mask_; 590 uint32_t value_; 591 // If set to true, there is no way this quick check can match at all. 592 // E.g., if it requires to be at the start of the input, and isn't. 593 bool cannot_match_; 594 }; 595 596 597 class RegExpNode: public ZoneObject { 598 public: 599 RegExpNode() : first_character_set_(NULL), trace_count_(0) { } 600 virtual ~RegExpNode(); 601 virtual void Accept(NodeVisitor* visitor) = 0; 602 // Generates a goto to this node or actually generates the code at this point. 603 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; 604 // How many characters must this node consume at a minimum in order to 605 // succeed. If we have found at least 'still_to_find' characters that 606 // must be consumed there is no need to ask any following nodes whether 607 // they are sure to eat any more characters. The not_at_start argument is 608 // used to indicate that we know we are not at the start of the input. In 609 // this case anchored branches will always fail and can be ignored when 610 // determining how many characters are consumed on success. 611 virtual int EatsAtLeast(int still_to_find, 612 int recursion_depth, 613 bool not_at_start) = 0; 614 // Emits some quick code that checks whether the preloaded characters match. 615 // Falls through on certain failure, jumps to the label on possible success. 616 // If the node cannot make a quick check it does nothing and returns false. 617 bool EmitQuickCheck(RegExpCompiler* compiler, 618 Trace* trace, 619 bool preload_has_checked_bounds, 620 Label* on_possible_success, 621 QuickCheckDetails* details_return, 622 bool fall_through_on_failure); 623 // For a given number of characters this returns a mask and a value. The 624 // next n characters are anded with the mask and compared with the value. 625 // A comparison failure indicates the node cannot match the next n characters. 626 // A comparison success indicates the node may match. 627 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 628 RegExpCompiler* compiler, 629 int characters_filled_in, 630 bool not_at_start) = 0; 631 static const int kNodeIsTooComplexForGreedyLoops = -1; 632 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 633 Label* label() { return &label_; } 634 // If non-generic code is generated for a node (ie the node is not at the 635 // start of the trace) then it cannot be reused. This variable sets a limit 636 // on how often we allow that to happen before we insist on starting a new 637 // trace and generating generic code for a node that can be reused by flushing 638 // the deferred actions in the current trace and generating a goto. 639 static const int kMaxCopiesCodeGenerated = 10; 640 641 NodeInfo* info() { return &info_; } 642 643 void AddSibling(RegExpNode* node) { siblings_.Add(node); } 644 645 // Static version of EnsureSibling that expresses the fact that the 646 // result has the same type as the input. 647 template <class C> 648 static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) { 649 return static_cast<C*>(node->EnsureSibling(info, cloned)); 650 } 651 652 SiblingList* siblings() { return &siblings_; } 653 void set_siblings(SiblingList* other) { siblings_ = *other; } 654 655 // Return the set of possible next characters recognized by the regexp 656 // (or a safe subset, potentially the set of all characters). 657 ZoneList<CharacterRange>* FirstCharacterSet(); 658 659 // Compute (if possible within the budget of traversed nodes) the 660 // possible first characters of the input matched by this node and 661 // its continuation. Returns the remaining budget after the computation. 662 // If the budget is spent, the result is negative, and the cached 663 // first_character_set_ value isn't set. 664 virtual int ComputeFirstCharacterSet(int budget); 665 666 // Get and set the cached first character set value. 667 ZoneList<CharacterRange>* first_character_set() { 668 return first_character_set_; 669 } 670 void set_first_character_set(ZoneList<CharacterRange>* character_set) { 671 first_character_set_ = character_set; 672 } 673 674 protected: 675 enum LimitResult { DONE, CONTINUE }; 676 static const int kComputeFirstCharacterSetFail = -1; 677 678 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); 679 680 // Returns a sibling of this node whose interests and assumptions 681 // match the ones in the given node info. If no sibling exists NULL 682 // is returned. 683 RegExpNode* TryGetSibling(NodeInfo* info); 684 685 // Returns a sibling of this node whose interests match the ones in 686 // the given node info. The info must not contain any assertions. 687 // If no node exists a new one will be created by cloning the current 688 // node. The result will always be an instance of the same concrete 689 // class as this node. 690 RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned); 691 692 // Returns a clone of this node initialized using the copy constructor 693 // of its concrete class. Note that the node may have to be pre- 694 // processed before it is on a usable state. 695 virtual RegExpNode* Clone() = 0; 696 697 private: 698 static const int kFirstCharBudget = 10; 699 Label label_; 700 NodeInfo info_; 701 SiblingList siblings_; 702 ZoneList<CharacterRange>* first_character_set_; 703 // This variable keeps track of how many times code has been generated for 704 // this node (in different traces). We don't keep track of where the 705 // generated code is located unless the code is generated at the start of 706 // a trace, in which case it is generic and can be reused by flushing the 707 // deferred operations in the current trace and generating a goto. 708 int trace_count_; 709 }; 710 711 712 // A simple closed interval. 713 class Interval { 714 public: 715 Interval() : from_(kNone), to_(kNone) { } 716 Interval(int from, int to) : from_(from), to_(to) { } 717 Interval Union(Interval that) { 718 if (that.from_ == kNone) 719 return *this; 720 else if (from_ == kNone) 721 return that; 722 else 723 return Interval(Min(from_, that.from_), Max(to_, that.to_)); 724 } 725 bool Contains(int value) { 726 return (from_ <= value) && (value <= to_); 727 } 728 bool is_empty() { return from_ == kNone; } 729 int from() { return from_; } 730 int to() { return to_; } 731 static Interval Empty() { return Interval(); } 732 static const int kNone = -1; 733 private: 734 int from_; 735 int to_; 736 }; 737 738 739 class SeqRegExpNode: public RegExpNode { 740 public: 741 explicit SeqRegExpNode(RegExpNode* on_success) 742 : on_success_(on_success) { } 743 RegExpNode* on_success() { return on_success_; } 744 void set_on_success(RegExpNode* node) { on_success_ = node; } 745 private: 746 RegExpNode* on_success_; 747 }; 748 749 750 class ActionNode: public SeqRegExpNode { 751 public: 752 enum Type { 753 SET_REGISTER, 754 INCREMENT_REGISTER, 755 STORE_POSITION, 756 BEGIN_SUBMATCH, 757 POSITIVE_SUBMATCH_SUCCESS, 758 EMPTY_MATCH_CHECK, 759 CLEAR_CAPTURES 760 }; 761 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); 762 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); 763 static ActionNode* StorePosition(int reg, 764 bool is_capture, 765 RegExpNode* on_success); 766 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); 767 static ActionNode* BeginSubmatch(int stack_pointer_reg, 768 int position_reg, 769 RegExpNode* on_success); 770 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, 771 int restore_reg, 772 int clear_capture_count, 773 int clear_capture_from, 774 RegExpNode* on_success); 775 static ActionNode* EmptyMatchCheck(int start_register, 776 int repetition_register, 777 int repetition_limit, 778 RegExpNode* on_success); 779 virtual void Accept(NodeVisitor* visitor); 780 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 781 virtual int EatsAtLeast(int still_to_find, 782 int recursion_depth, 783 bool not_at_start); 784 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 785 RegExpCompiler* compiler, 786 int filled_in, 787 bool not_at_start) { 788 return on_success()->GetQuickCheckDetails( 789 details, compiler, filled_in, not_at_start); 790 } 791 Type type() { return type_; } 792 // TODO(erikcorry): We should allow some action nodes in greedy loops. 793 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 794 virtual ActionNode* Clone() { return new ActionNode(*this); } 795 virtual int ComputeFirstCharacterSet(int budget); 796 private: 797 union { 798 struct { 799 int reg; 800 int value; 801 } u_store_register; 802 struct { 803 int reg; 804 } u_increment_register; 805 struct { 806 int reg; 807 bool is_capture; 808 } u_position_register; 809 struct { 810 int stack_pointer_register; 811 int current_position_register; 812 int clear_register_count; 813 int clear_register_from; 814 } u_submatch; 815 struct { 816 int start_register; 817 int repetition_register; 818 int repetition_limit; 819 } u_empty_match_check; 820 struct { 821 int range_from; 822 int range_to; 823 } u_clear_captures; 824 } data_; 825 ActionNode(Type type, RegExpNode* on_success) 826 : SeqRegExpNode(on_success), 827 type_(type) { } 828 Type type_; 829 friend class DotPrinter; 830 }; 831 832 833 class TextNode: public SeqRegExpNode { 834 public: 835 TextNode(ZoneList<TextElement>* elms, 836 RegExpNode* on_success) 837 : SeqRegExpNode(on_success), 838 elms_(elms) { } 839 TextNode(RegExpCharacterClass* that, 840 RegExpNode* on_success) 841 : SeqRegExpNode(on_success), 842 elms_(new ZoneList<TextElement>(1)) { 843 elms_->Add(TextElement::CharClass(that)); 844 } 845 virtual void Accept(NodeVisitor* visitor); 846 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 847 virtual int EatsAtLeast(int still_to_find, 848 int recursion_depth, 849 bool not_at_start); 850 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 851 RegExpCompiler* compiler, 852 int characters_filled_in, 853 bool not_at_start); 854 ZoneList<TextElement>* elements() { return elms_; } 855 void MakeCaseIndependent(bool is_ascii); 856 virtual int GreedyLoopTextLength(); 857 virtual TextNode* Clone() { 858 TextNode* result = new TextNode(*this); 859 result->CalculateOffsets(); 860 return result; 861 } 862 void CalculateOffsets(); 863 virtual int ComputeFirstCharacterSet(int budget); 864 private: 865 enum TextEmitPassType { 866 NON_ASCII_MATCH, // Check for characters that can't match. 867 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. 868 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. 869 CASE_CHARACTER_MATCH, // Case-independent single character check. 870 CHARACTER_CLASS_MATCH // Character class. 871 }; 872 static bool SkipPass(int pass, bool ignore_case); 873 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; 874 static const int kLastPass = CHARACTER_CLASS_MATCH; 875 void TextEmitPass(RegExpCompiler* compiler, 876 TextEmitPassType pass, 877 bool preloaded, 878 Trace* trace, 879 bool first_element_checked, 880 int* checked_up_to); 881 int Length(); 882 ZoneList<TextElement>* elms_; 883 }; 884 885 886 class AssertionNode: public SeqRegExpNode { 887 public: 888 enum AssertionNodeType { 889 AT_END, 890 AT_START, 891 AT_BOUNDARY, 892 AT_NON_BOUNDARY, 893 AFTER_NEWLINE, 894 // Types not directly expressible in regexp syntax. 895 // Used for modifying a boundary node if its following character is 896 // known to be word and/or non-word. 897 AFTER_NONWORD_CHARACTER, 898 AFTER_WORD_CHARACTER 899 }; 900 static AssertionNode* AtEnd(RegExpNode* on_success) { 901 return new AssertionNode(AT_END, on_success); 902 } 903 static AssertionNode* AtStart(RegExpNode* on_success) { 904 return new AssertionNode(AT_START, on_success); 905 } 906 static AssertionNode* AtBoundary(RegExpNode* on_success) { 907 return new AssertionNode(AT_BOUNDARY, on_success); 908 } 909 static AssertionNode* AtNonBoundary(RegExpNode* on_success) { 910 return new AssertionNode(AT_NON_BOUNDARY, on_success); 911 } 912 static AssertionNode* AfterNewline(RegExpNode* on_success) { 913 return new AssertionNode(AFTER_NEWLINE, on_success); 914 } 915 virtual void Accept(NodeVisitor* visitor); 916 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 917 virtual int EatsAtLeast(int still_to_find, 918 int recursion_depth, 919 bool not_at_start); 920 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 921 RegExpCompiler* compiler, 922 int filled_in, 923 bool not_at_start); 924 virtual int ComputeFirstCharacterSet(int budget); 925 virtual AssertionNode* Clone() { return new AssertionNode(*this); } 926 AssertionNodeType type() { return type_; } 927 void set_type(AssertionNodeType type) { type_ = type; } 928 private: 929 AssertionNode(AssertionNodeType t, RegExpNode* on_success) 930 : SeqRegExpNode(on_success), type_(t) { } 931 AssertionNodeType type_; 932 }; 933 934 935 class BackReferenceNode: public SeqRegExpNode { 936 public: 937 BackReferenceNode(int start_reg, 938 int end_reg, 939 RegExpNode* on_success) 940 : SeqRegExpNode(on_success), 941 start_reg_(start_reg), 942 end_reg_(end_reg) { } 943 virtual void Accept(NodeVisitor* visitor); 944 int start_register() { return start_reg_; } 945 int end_register() { return end_reg_; } 946 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 947 virtual int EatsAtLeast(int still_to_find, 948 int recursion_depth, 949 bool not_at_start); 950 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 951 RegExpCompiler* compiler, 952 int characters_filled_in, 953 bool not_at_start) { 954 return; 955 } 956 virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); } 957 virtual int ComputeFirstCharacterSet(int budget); 958 private: 959 int start_reg_; 960 int end_reg_; 961 }; 962 963 964 class EndNode: public RegExpNode { 965 public: 966 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; 967 explicit EndNode(Action action) : action_(action) { } 968 virtual void Accept(NodeVisitor* visitor); 969 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 970 virtual int EatsAtLeast(int still_to_find, 971 int recursion_depth, 972 bool not_at_start) { return 0; } 973 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 974 RegExpCompiler* compiler, 975 int characters_filled_in, 976 bool not_at_start) { 977 // Returning 0 from EatsAtLeast should ensure we never get here. 978 UNREACHABLE(); 979 } 980 virtual EndNode* Clone() { return new EndNode(*this); } 981 private: 982 Action action_; 983 }; 984 985 986 class NegativeSubmatchSuccess: public EndNode { 987 public: 988 NegativeSubmatchSuccess(int stack_pointer_reg, 989 int position_reg, 990 int clear_capture_count, 991 int clear_capture_start) 992 : EndNode(NEGATIVE_SUBMATCH_SUCCESS), 993 stack_pointer_register_(stack_pointer_reg), 994 current_position_register_(position_reg), 995 clear_capture_count_(clear_capture_count), 996 clear_capture_start_(clear_capture_start) { } 997 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 998 999 private: 1000 int stack_pointer_register_; 1001 int current_position_register_; 1002 int clear_capture_count_; 1003 int clear_capture_start_; 1004 }; 1005 1006 1007 class Guard: public ZoneObject { 1008 public: 1009 enum Relation { LT, GEQ }; 1010 Guard(int reg, Relation op, int value) 1011 : reg_(reg), 1012 op_(op), 1013 value_(value) { } 1014 int reg() { return reg_; } 1015 Relation op() { return op_; } 1016 int value() { return value_; } 1017 1018 private: 1019 int reg_; 1020 Relation op_; 1021 int value_; 1022 }; 1023 1024 1025 class GuardedAlternative { 1026 public: 1027 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } 1028 void AddGuard(Guard* guard); 1029 RegExpNode* node() { return node_; } 1030 void set_node(RegExpNode* node) { node_ = node; } 1031 ZoneList<Guard*>* guards() { return guards_; } 1032 1033 private: 1034 RegExpNode* node_; 1035 ZoneList<Guard*>* guards_; 1036 }; 1037 1038 1039 class AlternativeGeneration; 1040 1041 1042 class ChoiceNode: public RegExpNode { 1043 public: 1044 explicit ChoiceNode(int expected_size) 1045 : alternatives_(new ZoneList<GuardedAlternative>(expected_size)), 1046 table_(NULL), 1047 not_at_start_(false), 1048 being_calculated_(false) { } 1049 virtual void Accept(NodeVisitor* visitor); 1050 void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); } 1051 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } 1052 DispatchTable* GetTable(bool ignore_case); 1053 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1054 virtual int EatsAtLeast(int still_to_find, 1055 int recursion_depth, 1056 bool not_at_start); 1057 int EatsAtLeastHelper(int still_to_find, 1058 int recursion_depth, 1059 RegExpNode* ignore_this_node, 1060 bool not_at_start); 1061 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1062 RegExpCompiler* compiler, 1063 int characters_filled_in, 1064 bool not_at_start); 1065 virtual ChoiceNode* Clone() { return new ChoiceNode(*this); } 1066 1067 bool being_calculated() { return being_calculated_; } 1068 bool not_at_start() { return not_at_start_; } 1069 void set_not_at_start() { not_at_start_ = true; } 1070 void set_being_calculated(bool b) { being_calculated_ = b; } 1071 virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; } 1072 1073 protected: 1074 int GreedyLoopTextLength(GuardedAlternative* alternative); 1075 ZoneList<GuardedAlternative>* alternatives_; 1076 1077 private: 1078 friend class DispatchTableConstructor; 1079 friend class Analysis; 1080 void GenerateGuard(RegExpMacroAssembler* macro_assembler, 1081 Guard* guard, 1082 Trace* trace); 1083 int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start); 1084 void EmitOutOfLineContinuation(RegExpCompiler* compiler, 1085 Trace* trace, 1086 GuardedAlternative alternative, 1087 AlternativeGeneration* alt_gen, 1088 int preload_characters, 1089 bool next_expects_preload); 1090 DispatchTable* table_; 1091 // If true, this node is never checked at the start of the input. 1092 // Allows a new trace to start with at_start() set to false. 1093 bool not_at_start_; 1094 bool being_calculated_; 1095 }; 1096 1097 1098 class NegativeLookaheadChoiceNode: public ChoiceNode { 1099 public: 1100 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail, 1101 GuardedAlternative then_do_this) 1102 : ChoiceNode(2) { 1103 AddAlternative(this_must_fail); 1104 AddAlternative(then_do_this); 1105 } 1106 virtual int EatsAtLeast(int still_to_find, 1107 int recursion_depth, 1108 bool not_at_start); 1109 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1110 RegExpCompiler* compiler, 1111 int characters_filled_in, 1112 bool not_at_start); 1113 // For a negative lookahead we don't emit the quick check for the 1114 // alternative that is expected to fail. This is because quick check code 1115 // starts by loading enough characters for the alternative that takes fewest 1116 // characters, but on a negative lookahead the negative branch did not take 1117 // part in that calculation (EatsAtLeast) so the assumptions don't hold. 1118 virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; } 1119 virtual int ComputeFirstCharacterSet(int budget); 1120 }; 1121 1122 1123 class LoopChoiceNode: public ChoiceNode { 1124 public: 1125 explicit LoopChoiceNode(bool body_can_be_zero_length) 1126 : ChoiceNode(2), 1127 loop_node_(NULL), 1128 continue_node_(NULL), 1129 body_can_be_zero_length_(body_can_be_zero_length) { } 1130 void AddLoopAlternative(GuardedAlternative alt); 1131 void AddContinueAlternative(GuardedAlternative alt); 1132 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1133 virtual int EatsAtLeast(int still_to_find, 1134 int recursion_depth, 1135 bool not_at_start); 1136 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1137 RegExpCompiler* compiler, 1138 int characters_filled_in, 1139 bool not_at_start); 1140 virtual int ComputeFirstCharacterSet(int budget); 1141 virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); } 1142 RegExpNode* loop_node() { return loop_node_; } 1143 RegExpNode* continue_node() { return continue_node_; } 1144 bool body_can_be_zero_length() { return body_can_be_zero_length_; } 1145 virtual void Accept(NodeVisitor* visitor); 1146 1147 private: 1148 // AddAlternative is made private for loop nodes because alternatives 1149 // should not be added freely, we need to keep track of which node 1150 // goes back to the node itself. 1151 void AddAlternative(GuardedAlternative node) { 1152 ChoiceNode::AddAlternative(node); 1153 } 1154 1155 RegExpNode* loop_node_; 1156 RegExpNode* continue_node_; 1157 bool body_can_be_zero_length_; 1158 }; 1159 1160 1161 // There are many ways to generate code for a node. This class encapsulates 1162 // the current way we should be generating. In other words it encapsulates 1163 // the current state of the code generator. The effect of this is that we 1164 // generate code for paths that the matcher can take through the regular 1165 // expression. A given node in the regexp can be code-generated several times 1166 // as it can be part of several traces. For example for the regexp: 1167 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part 1168 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code 1169 // to match foo is generated only once (the traces have a common prefix). The 1170 // code to store the capture is deferred and generated (twice) after the places 1171 // where baz has been matched. 1172 class Trace { 1173 public: 1174 // A value for a property that is either known to be true, know to be false, 1175 // or not known. 1176 enum TriBool { 1177 UNKNOWN = -1, FALSE = 0, TRUE = 1 1178 }; 1179 1180 class DeferredAction { 1181 public: 1182 DeferredAction(ActionNode::Type type, int reg) 1183 : type_(type), reg_(reg), next_(NULL) { } 1184 DeferredAction* next() { return next_; } 1185 bool Mentions(int reg); 1186 int reg() { return reg_; } 1187 ActionNode::Type type() { return type_; } 1188 private: 1189 ActionNode::Type type_; 1190 int reg_; 1191 DeferredAction* next_; 1192 friend class Trace; 1193 }; 1194 1195 class DeferredCapture : public DeferredAction { 1196 public: 1197 DeferredCapture(int reg, bool is_capture, Trace* trace) 1198 : DeferredAction(ActionNode::STORE_POSITION, reg), 1199 cp_offset_(trace->cp_offset()), 1200 is_capture_(is_capture) { } 1201 int cp_offset() { return cp_offset_; } 1202 bool is_capture() { return is_capture_; } 1203 private: 1204 int cp_offset_; 1205 bool is_capture_; 1206 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } 1207 }; 1208 1209 class DeferredSetRegister : public DeferredAction { 1210 public: 1211 DeferredSetRegister(int reg, int value) 1212 : DeferredAction(ActionNode::SET_REGISTER, reg), 1213 value_(value) { } 1214 int value() { return value_; } 1215 private: 1216 int value_; 1217 }; 1218 1219 class DeferredClearCaptures : public DeferredAction { 1220 public: 1221 explicit DeferredClearCaptures(Interval range) 1222 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), 1223 range_(range) { } 1224 Interval range() { return range_; } 1225 private: 1226 Interval range_; 1227 }; 1228 1229 class DeferredIncrementRegister : public DeferredAction { 1230 public: 1231 explicit DeferredIncrementRegister(int reg) 1232 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } 1233 }; 1234 1235 Trace() 1236 : cp_offset_(0), 1237 actions_(NULL), 1238 backtrack_(NULL), 1239 stop_node_(NULL), 1240 loop_label_(NULL), 1241 characters_preloaded_(0), 1242 bound_checked_up_to_(0), 1243 flush_budget_(100), 1244 at_start_(UNKNOWN) { } 1245 1246 // End the trace. This involves flushing the deferred actions in the trace 1247 // and pushing a backtrack location onto the backtrack stack. Once this is 1248 // done we can start a new trace or go to one that has already been 1249 // generated. 1250 void Flush(RegExpCompiler* compiler, RegExpNode* successor); 1251 int cp_offset() { return cp_offset_; } 1252 DeferredAction* actions() { return actions_; } 1253 // A trivial trace is one that has no deferred actions or other state that 1254 // affects the assumptions used when generating code. There is no recorded 1255 // backtrack location in a trivial trace, so with a trivial trace we will 1256 // generate code that, on a failure to match, gets the backtrack location 1257 // from the backtrack stack rather than using a direct jump instruction. We 1258 // always start code generation with a trivial trace and non-trivial traces 1259 // are created as we emit code for nodes or add to the list of deferred 1260 // actions in the trace. The location of the code generated for a node using 1261 // a trivial trace is recorded in a label in the node so that gotos can be 1262 // generated to that code. 1263 bool is_trivial() { 1264 return backtrack_ == NULL && 1265 actions_ == NULL && 1266 cp_offset_ == 0 && 1267 characters_preloaded_ == 0 && 1268 bound_checked_up_to_ == 0 && 1269 quick_check_performed_.characters() == 0 && 1270 at_start_ == UNKNOWN; 1271 } 1272 TriBool at_start() { return at_start_; } 1273 void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; } 1274 Label* backtrack() { return backtrack_; } 1275 Label* loop_label() { return loop_label_; } 1276 RegExpNode* stop_node() { return stop_node_; } 1277 int characters_preloaded() { return characters_preloaded_; } 1278 int bound_checked_up_to() { return bound_checked_up_to_; } 1279 int flush_budget() { return flush_budget_; } 1280 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } 1281 bool mentions_reg(int reg); 1282 // Returns true if a deferred position store exists to the specified 1283 // register and stores the offset in the out-parameter. Otherwise 1284 // returns false. 1285 bool GetStoredPosition(int reg, int* cp_offset); 1286 // These set methods and AdvanceCurrentPositionInTrace should be used only on 1287 // new traces - the intention is that traces are immutable after creation. 1288 void add_action(DeferredAction* new_action) { 1289 ASSERT(new_action->next_ == NULL); 1290 new_action->next_ = actions_; 1291 actions_ = new_action; 1292 } 1293 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } 1294 void set_stop_node(RegExpNode* node) { stop_node_ = node; } 1295 void set_loop_label(Label* label) { loop_label_ = label; } 1296 void set_characters_preloaded(int count) { characters_preloaded_ = count; } 1297 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } 1298 void set_flush_budget(int to) { flush_budget_ = to; } 1299 void set_quick_check_performed(QuickCheckDetails* d) { 1300 quick_check_performed_ = *d; 1301 } 1302 void InvalidateCurrentCharacter(); 1303 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); 1304 private: 1305 int FindAffectedRegisters(OutSet* affected_registers); 1306 void PerformDeferredActions(RegExpMacroAssembler* macro, 1307 int max_register, 1308 OutSet& affected_registers, 1309 OutSet* registers_to_pop, 1310 OutSet* registers_to_clear); 1311 void RestoreAffectedRegisters(RegExpMacroAssembler* macro, 1312 int max_register, 1313 OutSet& registers_to_pop, 1314 OutSet& registers_to_clear); 1315 int cp_offset_; 1316 DeferredAction* actions_; 1317 Label* backtrack_; 1318 RegExpNode* stop_node_; 1319 Label* loop_label_; 1320 int characters_preloaded_; 1321 int bound_checked_up_to_; 1322 QuickCheckDetails quick_check_performed_; 1323 int flush_budget_; 1324 TriBool at_start_; 1325 }; 1326 1327 1328 class NodeVisitor { 1329 public: 1330 virtual ~NodeVisitor() { } 1331 #define DECLARE_VISIT(Type) \ 1332 virtual void Visit##Type(Type##Node* that) = 0; 1333 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1334 #undef DECLARE_VISIT 1335 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } 1336 }; 1337 1338 1339 // Node visitor used to add the start set of the alternatives to the 1340 // dispatch table of a choice node. 1341 class DispatchTableConstructor: public NodeVisitor { 1342 public: 1343 DispatchTableConstructor(DispatchTable* table, bool ignore_case) 1344 : table_(table), 1345 choice_index_(-1), 1346 ignore_case_(ignore_case) { } 1347 1348 void BuildTable(ChoiceNode* node); 1349 1350 void AddRange(CharacterRange range) { 1351 table()->AddRange(range, choice_index_); 1352 } 1353 1354 void AddInverse(ZoneList<CharacterRange>* ranges); 1355 1356 #define DECLARE_VISIT(Type) \ 1357 virtual void Visit##Type(Type##Node* that); 1358 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1359 #undef DECLARE_VISIT 1360 1361 DispatchTable* table() { return table_; } 1362 void set_choice_index(int value) { choice_index_ = value; } 1363 1364 protected: 1365 DispatchTable* table_; 1366 int choice_index_; 1367 bool ignore_case_; 1368 }; 1369 1370 1371 // Assertion propagation moves information about assertions such as 1372 // \b to the affected nodes. For instance, in /.\b./ information must 1373 // be propagated to the first '.' that whatever follows needs to know 1374 // if it matched a word or a non-word, and to the second '.' that it 1375 // has to check if it succeeds a word or non-word. In this case the 1376 // result will be something like: 1377 // 1378 // +-------+ +------------+ 1379 // | . | | . | 1380 // +-------+ ---> +------------+ 1381 // | word? | | check word | 1382 // +-------+ +------------+ 1383 class Analysis: public NodeVisitor { 1384 public: 1385 Analysis(bool ignore_case, bool is_ascii) 1386 : ignore_case_(ignore_case), 1387 is_ascii_(is_ascii), 1388 error_message_(NULL) { } 1389 void EnsureAnalyzed(RegExpNode* node); 1390 1391 #define DECLARE_VISIT(Type) \ 1392 virtual void Visit##Type(Type##Node* that); 1393 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1394 #undef DECLARE_VISIT 1395 virtual void VisitLoopChoice(LoopChoiceNode* that); 1396 1397 bool has_failed() { return error_message_ != NULL; } 1398 const char* error_message() { 1399 ASSERT(error_message_ != NULL); 1400 return error_message_; 1401 } 1402 void fail(const char* error_message) { 1403 error_message_ = error_message; 1404 } 1405 private: 1406 bool ignore_case_; 1407 bool is_ascii_; 1408 const char* error_message_; 1409 1410 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); 1411 }; 1412 1413 1414 struct RegExpCompileData { 1415 RegExpCompileData() 1416 : tree(NULL), 1417 node(NULL), 1418 simple(true), 1419 contains_anchor(false), 1420 capture_count(0) { } 1421 RegExpTree* tree; 1422 RegExpNode* node; 1423 bool simple; 1424 bool contains_anchor; 1425 Handle<String> error; 1426 int capture_count; 1427 }; 1428 1429 1430 class RegExpEngine: public AllStatic { 1431 public: 1432 struct CompilationResult { 1433 explicit CompilationResult(const char* error_message) 1434 : error_message(error_message), 1435 code(HEAP->the_hole_value()), 1436 num_registers(0) {} 1437 CompilationResult(Object* code, int registers) 1438 : error_message(NULL), 1439 code(code), 1440 num_registers(registers) {} 1441 const char* error_message; 1442 Object* code; 1443 int num_registers; 1444 }; 1445 1446 static CompilationResult Compile(RegExpCompileData* input, 1447 bool ignore_case, 1448 bool multiline, 1449 Handle<String> pattern, 1450 bool is_ascii); 1451 1452 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); 1453 }; 1454 1455 1456 class OffsetsVector { 1457 public: 1458 explicit inline OffsetsVector(int num_registers) 1459 : offsets_vector_length_(num_registers) { 1460 if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { 1461 vector_ = NewArray<int>(offsets_vector_length_); 1462 } else { 1463 vector_ = Isolate::Current()->jsregexp_static_offsets_vector(); 1464 } 1465 } 1466 inline ~OffsetsVector() { 1467 if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { 1468 DeleteArray(vector_); 1469 vector_ = NULL; 1470 } 1471 } 1472 inline int* vector() { return vector_; } 1473 inline int length() { return offsets_vector_length_; } 1474 1475 static const int kStaticOffsetsVectorSize = 50; 1476 1477 private: 1478 static Address static_offsets_vector_address(Isolate* isolate) { 1479 return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()); 1480 } 1481 1482 int* vector_; 1483 int offsets_vector_length_; 1484 1485 friend class ExternalReference; 1486 }; 1487 1488 1489 } } // namespace v8::internal 1490 1491 #endif // V8_JSREGEXP_H_ 1492