Home | History | Annotate | Download | only in bn
      1 /* crypto/bn/bn_gf2m.c */
      2 /* ====================================================================
      3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
      4  *
      5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
      6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
      7  * to the OpenSSL project.
      8  *
      9  * The ECC Code is licensed pursuant to the OpenSSL open source
     10  * license provided below.
     11  *
     12  * In addition, Sun covenants to all licensees who provide a reciprocal
     13  * covenant with respect to their own patents if any, not to sue under
     14  * current and future patent claims necessarily infringed by the making,
     15  * using, practicing, selling, offering for sale and/or otherwise
     16  * disposing of the ECC Code as delivered hereunder (or portions thereof),
     17  * provided that such covenant shall not apply:
     18  *  1) for code that a licensee deletes from the ECC Code;
     19  *  2) separates from the ECC Code; or
     20  *  3) for infringements caused by:
     21  *       i) the modification of the ECC Code or
     22  *      ii) the combination of the ECC Code with other software or
     23  *          devices where such combination causes the infringement.
     24  *
     25  * The software is originally written by Sheueling Chang Shantz and
     26  * Douglas Stebila of Sun Microsystems Laboratories.
     27  *
     28  */
     29 
     30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
     31  * and may be modified; but after modifications, the above covenant
     32  * may no longer apply!  In such cases, the corresponding paragraph
     33  * ["In addition, Sun covenants ... causes the infringement."] and
     34  * this note can be edited out; but please keep the Sun copyright
     35  * notice and attribution. */
     36 
     37 /* ====================================================================
     38  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  *
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in
     49  *    the documentation and/or other materials provided with the
     50  *    distribution.
     51  *
     52  * 3. All advertising materials mentioning features or use of this
     53  *    software must display the following acknowledgment:
     54  *    "This product includes software developed by the OpenSSL Project
     55  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     56  *
     57  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     58  *    endorse or promote products derived from this software without
     59  *    prior written permission. For written permission, please contact
     60  *    openssl-core (at) openssl.org.
     61  *
     62  * 5. Products derived from this software may not be called "OpenSSL"
     63  *    nor may "OpenSSL" appear in their names without prior written
     64  *    permission of the OpenSSL Project.
     65  *
     66  * 6. Redistributions of any form whatsoever must retain the following
     67  *    acknowledgment:
     68  *    "This product includes software developed by the OpenSSL Project
     69  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     70  *
     71  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     72  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     74  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     75  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     76  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     77  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     78  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     80  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     81  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     82  * OF THE POSSIBILITY OF SUCH DAMAGE.
     83  * ====================================================================
     84  *
     85  * This product includes cryptographic software written by Eric Young
     86  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     87  * Hudson (tjh (at) cryptsoft.com).
     88  *
     89  */
     90 
     91 #include <assert.h>
     92 #include <limits.h>
     93 #include <stdio.h>
     94 #include "cryptlib.h"
     95 #include "bn_lcl.h"
     96 
     97 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
     98 #define MAX_ITERATIONS 50
     99 
    100 static const BN_ULONG SQR_tb[16] =
    101   {     0,     1,     4,     5,    16,    17,    20,    21,
    102        64,    65,    68,    69,    80,    81,    84,    85 };
    103 /* Platform-specific macros to accelerate squaring. */
    104 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
    105 #define SQR1(w) \
    106     SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
    107     SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
    108     SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
    109     SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
    110 #define SQR0(w) \
    111     SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
    112     SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
    113     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    114     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
    115 #endif
    116 #ifdef THIRTY_TWO_BIT
    117 #define SQR1(w) \
    118     SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
    119     SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
    120 #define SQR0(w) \
    121     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    122     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
    123 #endif
    124 
    125 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
    126  * result is a polynomial r with degree < 2 * BN_BITS - 1
    127  * The caller MUST ensure that the variables have the right amount
    128  * of space allocated.
    129  */
    130 #ifdef THIRTY_TWO_BIT
    131 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
    132 	{
    133 	register BN_ULONG h, l, s;
    134 	BN_ULONG tab[8], top2b = a >> 30;
    135 	register BN_ULONG a1, a2, a4;
    136 
    137 	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
    138 
    139 	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
    140 	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
    141 
    142 	s = tab[b       & 0x7]; l  = s;
    143 	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
    144 	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
    145 	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
    146 	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
    147 	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
    148 	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
    149 	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
    150 	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
    151 	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
    152 	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
    153 
    154 	/* compensate for the top two bits of a */
    155 
    156 	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
    157 	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
    158 
    159 	*r1 = h; *r0 = l;
    160 	}
    161 #endif
    162 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
    163 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
    164 	{
    165 	register BN_ULONG h, l, s;
    166 	BN_ULONG tab[16], top3b = a >> 61;
    167 	register BN_ULONG a1, a2, a4, a8;
    168 
    169 	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
    170 
    171 	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
    172 	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
    173 	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
    174 	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
    175 
    176 	s = tab[b       & 0xF]; l  = s;
    177 	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
    178 	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
    179 	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
    180 	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
    181 	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
    182 	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
    183 	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
    184 	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
    185 	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
    186 	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
    187 	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
    188 	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
    189 	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
    190 	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
    191 	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
    192 
    193 	/* compensate for the top three bits of a */
    194 
    195 	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
    196 	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
    197 	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
    198 
    199 	*r1 = h; *r0 = l;
    200 	}
    201 #endif
    202 
    203 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
    204  * result is a polynomial r with degree < 4 * BN_BITS2 - 1
    205  * The caller MUST ensure that the variables have the right amount
    206  * of space allocated.
    207  */
    208 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
    209 	{
    210 	BN_ULONG m1, m0;
    211 	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
    212 	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
    213 	bn_GF2m_mul_1x1(r+1, r, a0, b0);
    214 	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
    215 	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
    216 	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
    217 	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
    218 	}
    219 
    220 
    221 /* Add polynomials a and b and store result in r; r could be a or b, a and b
    222  * could be equal; r is the bitwise XOR of a and b.
    223  */
    224 int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
    225 	{
    226 	int i;
    227 	const BIGNUM *at, *bt;
    228 
    229 	bn_check_top(a);
    230 	bn_check_top(b);
    231 
    232 	if (a->top < b->top) { at = b; bt = a; }
    233 	else { at = a; bt = b; }
    234 
    235 	if(bn_wexpand(r, at->top) == NULL)
    236 		return 0;
    237 
    238 	for (i = 0; i < bt->top; i++)
    239 		{
    240 		r->d[i] = at->d[i] ^ bt->d[i];
    241 		}
    242 	for (; i < at->top; i++)
    243 		{
    244 		r->d[i] = at->d[i];
    245 		}
    246 
    247 	r->top = at->top;
    248 	bn_correct_top(r);
    249 
    250 	return 1;
    251 	}
    252 
    253 
    254 /* Some functions allow for representation of the irreducible polynomials
    255  * as an int[], say p.  The irreducible f(t) is then of the form:
    256  *     t^p[0] + t^p[1] + ... + t^p[k]
    257  * where m = p[0] > p[1] > ... > p[k] = 0.
    258  */
    259 
    260 
    261 /* Performs modular reduction of a and store result in r.  r could be a. */
    262 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
    263 	{
    264 	int j, k;
    265 	int n, dN, d0, d1;
    266 	BN_ULONG zz, *z;
    267 
    268 	bn_check_top(a);
    269 
    270 	if (!p[0])
    271 		{
    272 		/* reduction mod 1 => return 0 */
    273 		BN_zero(r);
    274 		return 1;
    275 		}
    276 
    277 	/* Since the algorithm does reduction in the r value, if a != r, copy
    278 	 * the contents of a into r so we can do reduction in r.
    279 	 */
    280 	if (a != r)
    281 		{
    282 		if (!bn_wexpand(r, a->top)) return 0;
    283 		for (j = 0; j < a->top; j++)
    284 			{
    285 			r->d[j] = a->d[j];
    286 			}
    287 		r->top = a->top;
    288 		}
    289 	z = r->d;
    290 
    291 	/* start reduction */
    292 	dN = p[0] / BN_BITS2;
    293 	for (j = r->top - 1; j > dN;)
    294 		{
    295 		zz = z[j];
    296 		if (z[j] == 0) { j--; continue; }
    297 		z[j] = 0;
    298 
    299 		for (k = 1; p[k] != 0; k++)
    300 			{
    301 			/* reducing component t^p[k] */
    302 			n = p[0] - p[k];
    303 			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
    304 			n /= BN_BITS2;
    305 			z[j-n] ^= (zz>>d0);
    306 			if (d0) z[j-n-1] ^= (zz<<d1);
    307 			}
    308 
    309 		/* reducing component t^0 */
    310 		n = dN;
    311 		d0 = p[0] % BN_BITS2;
    312 		d1 = BN_BITS2 - d0;
    313 		z[j-n] ^= (zz >> d0);
    314 		if (d0) z[j-n-1] ^= (zz << d1);
    315 		}
    316 
    317 	/* final round of reduction */
    318 	while (j == dN)
    319 		{
    320 
    321 		d0 = p[0] % BN_BITS2;
    322 		zz = z[dN] >> d0;
    323 		if (zz == 0) break;
    324 		d1 = BN_BITS2 - d0;
    325 
    326 		/* clear up the top d1 bits */
    327 		if (d0)
    328 			z[dN] = (z[dN] << d1) >> d1;
    329 		else
    330 			z[dN] = 0;
    331 		z[0] ^= zz; /* reduction t^0 component */
    332 
    333 		for (k = 1; p[k] != 0; k++)
    334 			{
    335 			BN_ULONG tmp_ulong;
    336 
    337 			/* reducing component t^p[k]*/
    338 			n = p[k] / BN_BITS2;
    339 			d0 = p[k] % BN_BITS2;
    340 			d1 = BN_BITS2 - d0;
    341 			z[n] ^= (zz << d0);
    342 			tmp_ulong = zz >> d1;
    343                         if (d0 && tmp_ulong)
    344                                 z[n+1] ^= tmp_ulong;
    345 			}
    346 
    347 
    348 		}
    349 
    350 	bn_correct_top(r);
    351 	return 1;
    352 	}
    353 
    354 /* Performs modular reduction of a by p and store result in r.  r could be a.
    355  *
    356  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
    357  * function is only provided for convenience; for best performance, use the
    358  * BN_GF2m_mod_arr function.
    359  */
    360 int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
    361 	{
    362 	int ret = 0;
    363 	const int max = BN_num_bits(p) + 1;
    364 	int *arr=NULL;
    365 	bn_check_top(a);
    366 	bn_check_top(p);
    367 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    368 	ret = BN_GF2m_poly2arr(p, arr, max);
    369 	if (!ret || ret > max)
    370 		{
    371 		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
    372 		goto err;
    373 		}
    374 	ret = BN_GF2m_mod_arr(r, a, arr);
    375 	bn_check_top(r);
    376 err:
    377 	if (arr) OPENSSL_free(arr);
    378 	return ret;
    379 	}
    380 
    381 
    382 /* Compute the product of two polynomials a and b, reduce modulo p, and store
    383  * the result in r.  r could be a or b; a could be b.
    384  */
    385 int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
    386 	{
    387 	int zlen, i, j, k, ret = 0;
    388 	BIGNUM *s;
    389 	BN_ULONG x1, x0, y1, y0, zz[4];
    390 
    391 	bn_check_top(a);
    392 	bn_check_top(b);
    393 
    394 	if (a == b)
    395 		{
    396 		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
    397 		}
    398 
    399 	BN_CTX_start(ctx);
    400 	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
    401 
    402 	zlen = a->top + b->top + 4;
    403 	if (!bn_wexpand(s, zlen)) goto err;
    404 	s->top = zlen;
    405 
    406 	for (i = 0; i < zlen; i++) s->d[i] = 0;
    407 
    408 	for (j = 0; j < b->top; j += 2)
    409 		{
    410 		y0 = b->d[j];
    411 		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
    412 		for (i = 0; i < a->top; i += 2)
    413 			{
    414 			x0 = a->d[i];
    415 			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
    416 			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
    417 			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
    418 			}
    419 		}
    420 
    421 	bn_correct_top(s);
    422 	if (BN_GF2m_mod_arr(r, s, p))
    423 		ret = 1;
    424 	bn_check_top(r);
    425 
    426 err:
    427 	BN_CTX_end(ctx);
    428 	return ret;
    429 	}
    430 
    431 /* Compute the product of two polynomials a and b, reduce modulo p, and store
    432  * the result in r.  r could be a or b; a could equal b.
    433  *
    434  * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
    435  * function is only provided for convenience; for best performance, use the
    436  * BN_GF2m_mod_mul_arr function.
    437  */
    438 int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
    439 	{
    440 	int ret = 0;
    441 	const int max = BN_num_bits(p) + 1;
    442 	int *arr=NULL;
    443 	bn_check_top(a);
    444 	bn_check_top(b);
    445 	bn_check_top(p);
    446 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    447 	ret = BN_GF2m_poly2arr(p, arr, max);
    448 	if (!ret || ret > max)
    449 		{
    450 		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
    451 		goto err;
    452 		}
    453 	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
    454 	bn_check_top(r);
    455 err:
    456 	if (arr) OPENSSL_free(arr);
    457 	return ret;
    458 	}
    459 
    460 
    461 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
    462 int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
    463 	{
    464 	int i, ret = 0;
    465 	BIGNUM *s;
    466 
    467 	bn_check_top(a);
    468 	BN_CTX_start(ctx);
    469 	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
    470 	if (!bn_wexpand(s, 2 * a->top)) goto err;
    471 
    472 	for (i = a->top - 1; i >= 0; i--)
    473 		{
    474 		s->d[2*i+1] = SQR1(a->d[i]);
    475 		s->d[2*i  ] = SQR0(a->d[i]);
    476 		}
    477 
    478 	s->top = 2 * a->top;
    479 	bn_correct_top(s);
    480 	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
    481 	bn_check_top(r);
    482 	ret = 1;
    483 err:
    484 	BN_CTX_end(ctx);
    485 	return ret;
    486 	}
    487 
    488 /* Square a, reduce the result mod p, and store it in a.  r could be a.
    489  *
    490  * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
    491  * function is only provided for convenience; for best performance, use the
    492  * BN_GF2m_mod_sqr_arr function.
    493  */
    494 int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    495 	{
    496 	int ret = 0;
    497 	const int max = BN_num_bits(p) + 1;
    498 	int *arr=NULL;
    499 
    500 	bn_check_top(a);
    501 	bn_check_top(p);
    502 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    503 	ret = BN_GF2m_poly2arr(p, arr, max);
    504 	if (!ret || ret > max)
    505 		{
    506 		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
    507 		goto err;
    508 		}
    509 	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
    510 	bn_check_top(r);
    511 err:
    512 	if (arr) OPENSSL_free(arr);
    513 	return ret;
    514 	}
    515 
    516 
    517 /* Invert a, reduce modulo p, and store the result in r. r could be a.
    518  * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
    519  *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
    520  *     of Elliptic Curve Cryptography Over Binary Fields".
    521  */
    522 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    523 	{
    524 	BIGNUM *b, *c, *u, *v, *tmp;
    525 	int ret = 0;
    526 
    527 	bn_check_top(a);
    528 	bn_check_top(p);
    529 
    530 	BN_CTX_start(ctx);
    531 
    532 	b = BN_CTX_get(ctx);
    533 	c = BN_CTX_get(ctx);
    534 	u = BN_CTX_get(ctx);
    535 	v = BN_CTX_get(ctx);
    536 	if (v == NULL) goto err;
    537 
    538 	if (!BN_one(b)) goto err;
    539 	if (!BN_GF2m_mod(u, a, p)) goto err;
    540 	if (!BN_copy(v, p)) goto err;
    541 
    542 	if (BN_is_zero(u)) goto err;
    543 
    544 	while (1)
    545 		{
    546 		while (!BN_is_odd(u))
    547 			{
    548 			if (BN_is_zero(u)) goto err;
    549 			if (!BN_rshift1(u, u)) goto err;
    550 			if (BN_is_odd(b))
    551 				{
    552 				if (!BN_GF2m_add(b, b, p)) goto err;
    553 				}
    554 			if (!BN_rshift1(b, b)) goto err;
    555 			}
    556 
    557 		if (BN_abs_is_word(u, 1)) break;
    558 
    559 		if (BN_num_bits(u) < BN_num_bits(v))
    560 			{
    561 			tmp = u; u = v; v = tmp;
    562 			tmp = b; b = c; c = tmp;
    563 			}
    564 
    565 		if (!BN_GF2m_add(u, u, v)) goto err;
    566 		if (!BN_GF2m_add(b, b, c)) goto err;
    567 		}
    568 
    569 
    570 	if (!BN_copy(r, b)) goto err;
    571 	bn_check_top(r);
    572 	ret = 1;
    573 
    574 err:
    575   	BN_CTX_end(ctx);
    576 	return ret;
    577 	}
    578 
    579 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
    580  *
    581  * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
    582  * function is only provided for convenience; for best performance, use the
    583  * BN_GF2m_mod_inv function.
    584  */
    585 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
    586 	{
    587 	BIGNUM *field;
    588 	int ret = 0;
    589 
    590 	bn_check_top(xx);
    591 	BN_CTX_start(ctx);
    592 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
    593 	if (!BN_GF2m_arr2poly(p, field)) goto err;
    594 
    595 	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
    596 	bn_check_top(r);
    597 
    598 err:
    599 	BN_CTX_end(ctx);
    600 	return ret;
    601 	}
    602 
    603 
    604 #ifndef OPENSSL_SUN_GF2M_DIV
    605 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
    606  * or y, x could equal y.
    607  */
    608 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
    609 	{
    610 	BIGNUM *xinv = NULL;
    611 	int ret = 0;
    612 
    613 	bn_check_top(y);
    614 	bn_check_top(x);
    615 	bn_check_top(p);
    616 
    617 	BN_CTX_start(ctx);
    618 	xinv = BN_CTX_get(ctx);
    619 	if (xinv == NULL) goto err;
    620 
    621 	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
    622 	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
    623 	bn_check_top(r);
    624 	ret = 1;
    625 
    626 err:
    627 	BN_CTX_end(ctx);
    628 	return ret;
    629 	}
    630 #else
    631 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
    632  * or y, x could equal y.
    633  * Uses algorithm Modular_Division_GF(2^m) from
    634  *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
    635  *     the Great Divide".
    636  */
    637 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
    638 	{
    639 	BIGNUM *a, *b, *u, *v;
    640 	int ret = 0;
    641 
    642 	bn_check_top(y);
    643 	bn_check_top(x);
    644 	bn_check_top(p);
    645 
    646 	BN_CTX_start(ctx);
    647 
    648 	a = BN_CTX_get(ctx);
    649 	b = BN_CTX_get(ctx);
    650 	u = BN_CTX_get(ctx);
    651 	v = BN_CTX_get(ctx);
    652 	if (v == NULL) goto err;
    653 
    654 	/* reduce x and y mod p */
    655 	if (!BN_GF2m_mod(u, y, p)) goto err;
    656 	if (!BN_GF2m_mod(a, x, p)) goto err;
    657 	if (!BN_copy(b, p)) goto err;
    658 
    659 	while (!BN_is_odd(a))
    660 		{
    661 		if (!BN_rshift1(a, a)) goto err;
    662 		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
    663 		if (!BN_rshift1(u, u)) goto err;
    664 		}
    665 
    666 	do
    667 		{
    668 		if (BN_GF2m_cmp(b, a) > 0)
    669 			{
    670 			if (!BN_GF2m_add(b, b, a)) goto err;
    671 			if (!BN_GF2m_add(v, v, u)) goto err;
    672 			do
    673 				{
    674 				if (!BN_rshift1(b, b)) goto err;
    675 				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
    676 				if (!BN_rshift1(v, v)) goto err;
    677 				} while (!BN_is_odd(b));
    678 			}
    679 		else if (BN_abs_is_word(a, 1))
    680 			break;
    681 		else
    682 			{
    683 			if (!BN_GF2m_add(a, a, b)) goto err;
    684 			if (!BN_GF2m_add(u, u, v)) goto err;
    685 			do
    686 				{
    687 				if (!BN_rshift1(a, a)) goto err;
    688 				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
    689 				if (!BN_rshift1(u, u)) goto err;
    690 				} while (!BN_is_odd(a));
    691 			}
    692 		} while (1);
    693 
    694 	if (!BN_copy(r, u)) goto err;
    695 	bn_check_top(r);
    696 	ret = 1;
    697 
    698 err:
    699   	BN_CTX_end(ctx);
    700 	return ret;
    701 	}
    702 #endif
    703 
    704 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
    705  * or yy, xx could equal yy.
    706  *
    707  * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
    708  * function is only provided for convenience; for best performance, use the
    709  * BN_GF2m_mod_div function.
    710  */
    711 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
    712 	{
    713 	BIGNUM *field;
    714 	int ret = 0;
    715 
    716 	bn_check_top(yy);
    717 	bn_check_top(xx);
    718 
    719 	BN_CTX_start(ctx);
    720 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
    721 	if (!BN_GF2m_arr2poly(p, field)) goto err;
    722 
    723 	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
    724 	bn_check_top(r);
    725 
    726 err:
    727 	BN_CTX_end(ctx);
    728 	return ret;
    729 	}
    730 
    731 
    732 /* Compute the bth power of a, reduce modulo p, and store
    733  * the result in r.  r could be a.
    734  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
    735  */
    736 int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
    737 	{
    738 	int ret = 0, i, n;
    739 	BIGNUM *u;
    740 
    741 	bn_check_top(a);
    742 	bn_check_top(b);
    743 
    744 	if (BN_is_zero(b))
    745 		return(BN_one(r));
    746 
    747 	if (BN_abs_is_word(b, 1))
    748 		return (BN_copy(r, a) != NULL);
    749 
    750 	BN_CTX_start(ctx);
    751 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
    752 
    753 	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
    754 
    755 	n = BN_num_bits(b) - 1;
    756 	for (i = n - 1; i >= 0; i--)
    757 		{
    758 		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
    759 		if (BN_is_bit_set(b, i))
    760 			{
    761 			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
    762 			}
    763 		}
    764 	if (!BN_copy(r, u)) goto err;
    765 	bn_check_top(r);
    766 	ret = 1;
    767 err:
    768 	BN_CTX_end(ctx);
    769 	return ret;
    770 	}
    771 
    772 /* Compute the bth power of a, reduce modulo p, and store
    773  * the result in r.  r could be a.
    774  *
    775  * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
    776  * function is only provided for convenience; for best performance, use the
    777  * BN_GF2m_mod_exp_arr function.
    778  */
    779 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
    780 	{
    781 	int ret = 0;
    782 	const int max = BN_num_bits(p) + 1;
    783 	int *arr=NULL;
    784 	bn_check_top(a);
    785 	bn_check_top(b);
    786 	bn_check_top(p);
    787 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    788 	ret = BN_GF2m_poly2arr(p, arr, max);
    789 	if (!ret || ret > max)
    790 		{
    791 		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
    792 		goto err;
    793 		}
    794 	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
    795 	bn_check_top(r);
    796 err:
    797 	if (arr) OPENSSL_free(arr);
    798 	return ret;
    799 	}
    800 
    801 /* Compute the square root of a, reduce modulo p, and store
    802  * the result in r.  r could be a.
    803  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
    804  */
    805 int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
    806 	{
    807 	int ret = 0;
    808 	BIGNUM *u;
    809 
    810 	bn_check_top(a);
    811 
    812 	if (!p[0])
    813 		{
    814 		/* reduction mod 1 => return 0 */
    815 		BN_zero(r);
    816 		return 1;
    817 		}
    818 
    819 	BN_CTX_start(ctx);
    820 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
    821 
    822 	if (!BN_set_bit(u, p[0] - 1)) goto err;
    823 	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
    824 	bn_check_top(r);
    825 
    826 err:
    827 	BN_CTX_end(ctx);
    828 	return ret;
    829 	}
    830 
    831 /* Compute the square root of a, reduce modulo p, and store
    832  * the result in r.  r could be a.
    833  *
    834  * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
    835  * function is only provided for convenience; for best performance, use the
    836  * BN_GF2m_mod_sqrt_arr function.
    837  */
    838 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    839 	{
    840 	int ret = 0;
    841 	const int max = BN_num_bits(p) + 1;
    842 	int *arr=NULL;
    843 	bn_check_top(a);
    844 	bn_check_top(p);
    845 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
    846 	ret = BN_GF2m_poly2arr(p, arr, max);
    847 	if (!ret || ret > max)
    848 		{
    849 		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
    850 		goto err;
    851 		}
    852 	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
    853 	bn_check_top(r);
    854 err:
    855 	if (arr) OPENSSL_free(arr);
    856 	return ret;
    857 	}
    858 
    859 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
    860  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
    861  */
    862 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
    863 	{
    864 	int ret = 0, count = 0, j;
    865 	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
    866 
    867 	bn_check_top(a_);
    868 
    869 	if (!p[0])
    870 		{
    871 		/* reduction mod 1 => return 0 */
    872 		BN_zero(r);
    873 		return 1;
    874 		}
    875 
    876 	BN_CTX_start(ctx);
    877 	a = BN_CTX_get(ctx);
    878 	z = BN_CTX_get(ctx);
    879 	w = BN_CTX_get(ctx);
    880 	if (w == NULL) goto err;
    881 
    882 	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
    883 
    884 	if (BN_is_zero(a))
    885 		{
    886 		BN_zero(r);
    887 		ret = 1;
    888 		goto err;
    889 		}
    890 
    891 	if (p[0] & 0x1) /* m is odd */
    892 		{
    893 		/* compute half-trace of a */
    894 		if (!BN_copy(z, a)) goto err;
    895 		for (j = 1; j <= (p[0] - 1) / 2; j++)
    896 			{
    897 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    898 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    899 			if (!BN_GF2m_add(z, z, a)) goto err;
    900 			}
    901 
    902 		}
    903 	else /* m is even */
    904 		{
    905 		rho = BN_CTX_get(ctx);
    906 		w2 = BN_CTX_get(ctx);
    907 		tmp = BN_CTX_get(ctx);
    908 		if (tmp == NULL) goto err;
    909 		do
    910 			{
    911 			if (!BN_rand(rho, p[0], 0, 0)) goto err;
    912 			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
    913 			BN_zero(z);
    914 			if (!BN_copy(w, rho)) goto err;
    915 			for (j = 1; j <= p[0] - 1; j++)
    916 				{
    917 				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    918 				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
    919 				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
    920 				if (!BN_GF2m_add(z, z, tmp)) goto err;
    921 				if (!BN_GF2m_add(w, w2, rho)) goto err;
    922 				}
    923 			count++;
    924 			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
    925 		if (BN_is_zero(w))
    926 			{
    927 			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
    928 			goto err;
    929 			}
    930 		}
    931 
    932 	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
    933 	if (!BN_GF2m_add(w, z, w)) goto err;
    934 	if (BN_GF2m_cmp(w, a))
    935 		{
    936 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
    937 		goto err;
    938 		}
    939 
    940 	if (!BN_copy(r, z)) goto err;
    941 	bn_check_top(r);
    942 
    943 	ret = 1;
    944 
    945 err:
    946 	BN_CTX_end(ctx);
    947 	return ret;
    948 	}
    949 
    950 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
    951  *
    952  * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
    953  * function is only provided for convenience; for best performance, use the
    954  * BN_GF2m_mod_solve_quad_arr function.
    955  */
    956 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    957 	{
    958 	int ret = 0;
    959 	const int max = BN_num_bits(p) + 1;
    960 	int *arr=NULL;
    961 	bn_check_top(a);
    962 	bn_check_top(p);
    963 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
    964 						max)) == NULL) goto err;
    965 	ret = BN_GF2m_poly2arr(p, arr, max);
    966 	if (!ret || ret > max)
    967 		{
    968 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
    969 		goto err;
    970 		}
    971 	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
    972 	bn_check_top(r);
    973 err:
    974 	if (arr) OPENSSL_free(arr);
    975 	return ret;
    976 	}
    977 
    978 /* Convert the bit-string representation of a polynomial
    979  * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
    980  * to the bits with non-zero coefficient.  Array is terminated with -1.
    981  * Up to max elements of the array will be filled.  Return value is total
    982  * number of array elements that would be filled if array was large enough.
    983  */
    984 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
    985 	{
    986 	int i, j, k = 0;
    987 	BN_ULONG mask;
    988 
    989 	if (BN_is_zero(a))
    990 		return 0;
    991 
    992 	for (i = a->top - 1; i >= 0; i--)
    993 		{
    994 		if (!a->d[i])
    995 			/* skip word if a->d[i] == 0 */
    996 			continue;
    997 		mask = BN_TBIT;
    998 		for (j = BN_BITS2 - 1; j >= 0; j--)
    999 			{
   1000 			if (a->d[i] & mask)
   1001 				{
   1002 				if (k < max) p[k] = BN_BITS2 * i + j;
   1003 				k++;
   1004 				}
   1005 			mask >>= 1;
   1006 			}
   1007 		}
   1008 
   1009 	if (k < max) {
   1010 		p[k] = -1;
   1011 		k++;
   1012 	}
   1013 
   1014 	return k;
   1015 	}
   1016 
   1017 /* Convert the coefficient array representation of a polynomial to a
   1018  * bit-string.  The array must be terminated by -1.
   1019  */
   1020 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
   1021 	{
   1022 	int i;
   1023 
   1024 	bn_check_top(a);
   1025 	BN_zero(a);
   1026 	for (i = 0; p[i] != -1; i++)
   1027 		{
   1028 		if (BN_set_bit(a, p[i]) == 0)
   1029 			return 0;
   1030 		}
   1031 	bn_check_top(a);
   1032 
   1033 	return 1;
   1034 	}
   1035 
   1036