Home | History | Annotate | Download | only in Analysis
      1 //===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the CFG and CFGBuilder classes for representing and
     11 //  building Control-Flow Graphs (CFGs) from ASTs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_CFG_H
     16 #define LLVM_CLANG_CFG_H
     17 
     18 #include "llvm/ADT/PointerIntPair.h"
     19 #include "llvm/ADT/GraphTraits.h"
     20 #include "llvm/Support/Allocator.h"
     21 #include "llvm/Support/Casting.h"
     22 #include "llvm/ADT/OwningPtr.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/BitVector.h"
     25 #include "clang/AST/Stmt.h"
     26 #include "clang/Analysis/Support/BumpVector.h"
     27 #include "clang/Basic/SourceLocation.h"
     28 #include <cassert>
     29 #include <iterator>
     30 
     31 namespace llvm {
     32   class raw_ostream;
     33 }
     34 
     35 namespace clang {
     36   class CXXDestructorDecl;
     37   class Decl;
     38   class Stmt;
     39   class Expr;
     40   class FieldDecl;
     41   class VarDecl;
     42   class CXXCtorInitializer;
     43   class CXXBaseSpecifier;
     44   class CXXBindTemporaryExpr;
     45   class CFG;
     46   class PrinterHelper;
     47   class LangOptions;
     48   class ASTContext;
     49 
     50 /// CFGElement - Represents a top-level expression in a basic block.
     51 class CFGElement {
     52 public:
     53   enum Kind {
     54     // main kind
     55     Invalid,
     56     Statement,
     57     Initializer,
     58     // dtor kind
     59     AutomaticObjectDtor,
     60     BaseDtor,
     61     MemberDtor,
     62     TemporaryDtor,
     63     DTOR_BEGIN = AutomaticObjectDtor,
     64     DTOR_END = TemporaryDtor
     65   };
     66 
     67 protected:
     68   // The int bits are used to mark the kind.
     69   llvm::PointerIntPair<void *, 2> Data1;
     70   llvm::PointerIntPair<void *, 2> Data2;
     71 
     72   CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0)
     73     : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
     74       Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {}
     75 
     76 public:
     77   CFGElement() {}
     78 
     79   Kind getKind() const {
     80     unsigned x = Data2.getInt();
     81     x <<= 2;
     82     x |= Data1.getInt();
     83     return (Kind) x;
     84   }
     85 
     86   bool isValid() const { return getKind() != Invalid; }
     87 
     88   operator bool() const { return isValid(); }
     89 
     90   template<class ElemTy> const ElemTy *getAs() const {
     91     if (llvm::isa<ElemTy>(this))
     92       return static_cast<const ElemTy*>(this);
     93     return 0;
     94   }
     95 
     96   static bool classof(const CFGElement *E) { return true; }
     97 };
     98 
     99 class CFGStmt : public CFGElement {
    100 public:
    101   CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
    102 
    103   Stmt *getStmt() const { return static_cast<Stmt *>(Data1.getPointer()); }
    104 
    105   static bool classof(const CFGElement *E) {
    106     return E->getKind() == Statement;
    107   }
    108 };
    109 
    110 /// CFGInitializer - Represents C++ base or member initializer from
    111 /// constructor's initialization list.
    112 class CFGInitializer : public CFGElement {
    113 public:
    114   CFGInitializer(CXXCtorInitializer *initializer)
    115       : CFGElement(Initializer, initializer) {}
    116 
    117   CXXCtorInitializer* getInitializer() const {
    118     return static_cast<CXXCtorInitializer*>(Data1.getPointer());
    119   }
    120 
    121   static bool classof(const CFGElement *E) {
    122     return E->getKind() == Initializer;
    123   }
    124 };
    125 
    126 /// CFGImplicitDtor - Represents C++ object destructor implicitly generated
    127 /// by compiler on various occasions.
    128 class CFGImplicitDtor : public CFGElement {
    129 protected:
    130   CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0)
    131     : CFGElement(kind, data1, data2) {
    132     assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
    133   }
    134 
    135 public:
    136   const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
    137   bool isNoReturn(ASTContext &astContext) const;
    138 
    139   static bool classof(const CFGElement *E) {
    140     Kind kind = E->getKind();
    141     return kind >= DTOR_BEGIN && kind <= DTOR_END;
    142   }
    143 };
    144 
    145 /// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
    146 /// for automatic object or temporary bound to const reference at the point
    147 /// of leaving its local scope.
    148 class CFGAutomaticObjDtor: public CFGImplicitDtor {
    149 public:
    150   CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
    151       : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
    152 
    153   const VarDecl *getVarDecl() const {
    154     return static_cast<VarDecl*>(Data1.getPointer());
    155   }
    156 
    157   // Get statement end of which triggered the destructor call.
    158   const Stmt *getTriggerStmt() const {
    159     return static_cast<Stmt*>(Data2.getPointer());
    160   }
    161 
    162   static bool classof(const CFGElement *elem) {
    163     return elem->getKind() == AutomaticObjectDtor;
    164   }
    165 };
    166 
    167 /// CFGBaseDtor - Represents C++ object destructor implicitly generated for
    168 /// base object in destructor.
    169 class CFGBaseDtor : public CFGImplicitDtor {
    170 public:
    171   CFGBaseDtor(const CXXBaseSpecifier *base)
    172       : CFGImplicitDtor(BaseDtor, base) {}
    173 
    174   const CXXBaseSpecifier *getBaseSpecifier() const {
    175     return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
    176   }
    177 
    178   static bool classof(const CFGElement *E) {
    179     return E->getKind() == BaseDtor;
    180   }
    181 };
    182 
    183 /// CFGMemberDtor - Represents C++ object destructor implicitly generated for
    184 /// member object in destructor.
    185 class CFGMemberDtor : public CFGImplicitDtor {
    186 public:
    187   CFGMemberDtor(const FieldDecl *field)
    188       : CFGImplicitDtor(MemberDtor, field, 0) {}
    189 
    190   const FieldDecl *getFieldDecl() const {
    191     return static_cast<const FieldDecl*>(Data1.getPointer());
    192   }
    193 
    194   static bool classof(const CFGElement *E) {
    195     return E->getKind() == MemberDtor;
    196   }
    197 };
    198 
    199 /// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
    200 /// at the end of full expression for temporary object.
    201 class CFGTemporaryDtor : public CFGImplicitDtor {
    202 public:
    203   CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
    204       : CFGImplicitDtor(TemporaryDtor, expr, 0) {}
    205 
    206   const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
    207     return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
    208   }
    209 
    210   static bool classof(const CFGElement *E) {
    211     return E->getKind() == TemporaryDtor;
    212   }
    213 };
    214 
    215 /// CFGTerminator - Represents CFGBlock terminator statement.
    216 ///
    217 /// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
    218 /// in control flow of destructors of temporaries. In this case terminator
    219 /// statement is the same statement that branches control flow in evaluation
    220 /// of matching full expression.
    221 class CFGTerminator {
    222   llvm::PointerIntPair<Stmt *, 1> Data;
    223 public:
    224   CFGTerminator() {}
    225   CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
    226       : Data(S, TemporaryDtorsBranch) {}
    227 
    228   Stmt *getStmt() { return Data.getPointer(); }
    229   const Stmt *getStmt() const { return Data.getPointer(); }
    230 
    231   bool isTemporaryDtorsBranch() const { return Data.getInt(); }
    232 
    233   operator Stmt *() { return getStmt(); }
    234   operator const Stmt *() const { return getStmt(); }
    235 
    236   Stmt *operator->() { return getStmt(); }
    237   const Stmt *operator->() const { return getStmt(); }
    238 
    239   Stmt &operator*() { return *getStmt(); }
    240   const Stmt &operator*() const { return *getStmt(); }
    241 
    242   operator bool() const { return getStmt(); }
    243 };
    244 
    245 /// CFGBlock - Represents a single basic block in a source-level CFG.
    246 ///  It consists of:
    247 ///
    248 ///  (1) A set of statements/expressions (which may contain subexpressions).
    249 ///  (2) A "terminator" statement (not in the set of statements).
    250 ///  (3) A list of successors and predecessors.
    251 ///
    252 /// Terminator: The terminator represents the type of control-flow that occurs
    253 /// at the end of the basic block.  The terminator is a Stmt* referring to an
    254 /// AST node that has control-flow: if-statements, breaks, loops, etc.
    255 /// If the control-flow is conditional, the condition expression will appear
    256 /// within the set of statements in the block (usually the last statement).
    257 ///
    258 /// Predecessors: the order in the set of predecessors is arbitrary.
    259 ///
    260 /// Successors: the order in the set of successors is NOT arbitrary.  We
    261 ///  currently have the following orderings based on the terminator:
    262 ///
    263 ///     Terminator       Successor Ordering
    264 ///  -----------------------------------------------------
    265 ///       if            Then Block;  Else Block
    266 ///     ? operator      LHS expression;  RHS expression
    267 ///     &&, ||          expression that uses result of && or ||, RHS
    268 ///
    269 /// But note that any of that may be NULL in case of optimized-out edges.
    270 ///
    271 class CFGBlock {
    272   class ElementList {
    273     typedef BumpVector<CFGElement> ImplTy;
    274     ImplTy Impl;
    275   public:
    276     ElementList(BumpVectorContext &C) : Impl(C, 4) {}
    277 
    278     typedef std::reverse_iterator<ImplTy::iterator>       iterator;
    279     typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
    280     typedef ImplTy::iterator                              reverse_iterator;
    281     typedef ImplTy::const_iterator                        const_reverse_iterator;
    282 
    283     void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
    284     reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
    285         BumpVectorContext& C) {
    286       return Impl.insert(I, Cnt, E, C);
    287     }
    288 
    289     CFGElement front() const { return Impl.back(); }
    290     CFGElement back() const { return Impl.front(); }
    291 
    292     iterator begin() { return Impl.rbegin(); }
    293     iterator end() { return Impl.rend(); }
    294     const_iterator begin() const { return Impl.rbegin(); }
    295     const_iterator end() const { return Impl.rend(); }
    296     reverse_iterator rbegin() { return Impl.begin(); }
    297     reverse_iterator rend() { return Impl.end(); }
    298     const_reverse_iterator rbegin() const { return Impl.begin(); }
    299     const_reverse_iterator rend() const { return Impl.end(); }
    300 
    301    CFGElement operator[](size_t i) const  {
    302      assert(i < Impl.size());
    303      return Impl[Impl.size() - 1 - i];
    304    }
    305 
    306     size_t size() const { return Impl.size(); }
    307     bool empty() const { return Impl.empty(); }
    308   };
    309 
    310   /// Stmts - The set of statements in the basic block.
    311   ElementList Elements;
    312 
    313   /// Label - An (optional) label that prefixes the executable
    314   ///  statements in the block.  When this variable is non-NULL, it is
    315   ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
    316   Stmt *Label;
    317 
    318   /// Terminator - The terminator for a basic block that
    319   ///  indicates the type of control-flow that occurs between a block
    320   ///  and its successors.
    321   CFGTerminator Terminator;
    322 
    323   /// LoopTarget - Some blocks are used to represent the "loop edge" to
    324   ///  the start of a loop from within the loop body.  This Stmt* will be
    325   ///  refer to the loop statement for such blocks (and be null otherwise).
    326   const Stmt *LoopTarget;
    327 
    328   /// BlockID - A numerical ID assigned to a CFGBlock during construction
    329   ///   of the CFG.
    330   unsigned BlockID;
    331 
    332   /// Predecessors/Successors - Keep track of the predecessor / successor
    333   /// CFG blocks.
    334   typedef BumpVector<CFGBlock*> AdjacentBlocks;
    335   AdjacentBlocks Preds;
    336   AdjacentBlocks Succs;
    337 
    338 public:
    339   explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
    340     : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
    341       BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
    342   ~CFGBlock() {}
    343 
    344   // Statement iterators
    345   typedef ElementList::iterator                      iterator;
    346   typedef ElementList::const_iterator                const_iterator;
    347   typedef ElementList::reverse_iterator              reverse_iterator;
    348   typedef ElementList::const_reverse_iterator        const_reverse_iterator;
    349 
    350   CFGElement                 front()       const { return Elements.front();   }
    351   CFGElement                 back()        const { return Elements.back();    }
    352 
    353   iterator                   begin()             { return Elements.begin();   }
    354   iterator                   end()               { return Elements.end();     }
    355   const_iterator             begin()       const { return Elements.begin();   }
    356   const_iterator             end()         const { return Elements.end();     }
    357 
    358   reverse_iterator           rbegin()            { return Elements.rbegin();  }
    359   reverse_iterator           rend()              { return Elements.rend();    }
    360   const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
    361   const_reverse_iterator     rend()        const { return Elements.rend();    }
    362 
    363   unsigned                   size()        const { return Elements.size();    }
    364   bool                       empty()       const { return Elements.empty();   }
    365 
    366   CFGElement operator[](size_t i) const  { return Elements[i]; }
    367 
    368   // CFG iterators
    369   typedef AdjacentBlocks::iterator                              pred_iterator;
    370   typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
    371   typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
    372   typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
    373 
    374   typedef AdjacentBlocks::iterator                              succ_iterator;
    375   typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
    376   typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
    377   typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
    378 
    379   pred_iterator                pred_begin()        { return Preds.begin();   }
    380   pred_iterator                pred_end()          { return Preds.end();     }
    381   const_pred_iterator          pred_begin()  const { return Preds.begin();   }
    382   const_pred_iterator          pred_end()    const { return Preds.end();     }
    383 
    384   pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
    385   pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
    386   const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
    387   const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
    388 
    389   succ_iterator                succ_begin()        { return Succs.begin();   }
    390   succ_iterator                succ_end()          { return Succs.end();     }
    391   const_succ_iterator          succ_begin()  const { return Succs.begin();   }
    392   const_succ_iterator          succ_end()    const { return Succs.end();     }
    393 
    394   succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
    395   succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
    396   const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
    397   const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
    398 
    399   unsigned                     succ_size()   const { return Succs.size();    }
    400   bool                         succ_empty()  const { return Succs.empty();   }
    401 
    402   unsigned                     pred_size()   const { return Preds.size();    }
    403   bool                         pred_empty()  const { return Preds.empty();   }
    404 
    405 
    406   class FilterOptions {
    407   public:
    408     FilterOptions() {
    409       IgnoreDefaultsWithCoveredEnums = 0;
    410     }
    411 
    412     unsigned IgnoreDefaultsWithCoveredEnums : 1;
    413   };
    414 
    415   static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
    416        const CFGBlock *Dst);
    417 
    418   template <typename IMPL, bool IsPred>
    419   class FilteredCFGBlockIterator {
    420   private:
    421     IMPL I, E;
    422     const FilterOptions F;
    423     const CFGBlock *From;
    424    public:
    425     explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
    426               const CFGBlock *from,
    427               const FilterOptions &f)
    428       : I(i), E(e), F(f), From(from) {}
    429 
    430     bool hasMore() const { return I != E; }
    431 
    432     FilteredCFGBlockIterator &operator++() {
    433       do { ++I; } while (hasMore() && Filter(*I));
    434       return *this;
    435     }
    436 
    437     const CFGBlock *operator*() const { return *I; }
    438   private:
    439     bool Filter(const CFGBlock *To) {
    440       return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
    441     }
    442   };
    443 
    444   typedef FilteredCFGBlockIterator<const_pred_iterator, true>
    445           filtered_pred_iterator;
    446 
    447   typedef FilteredCFGBlockIterator<const_succ_iterator, false>
    448           filtered_succ_iterator;
    449 
    450   filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
    451     return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
    452   }
    453 
    454   filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
    455     return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
    456   }
    457 
    458   // Manipulation of block contents
    459 
    460   void setTerminator(Stmt* Statement) { Terminator = Statement; }
    461   void setLabel(Stmt* Statement) { Label = Statement; }
    462   void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
    463 
    464   CFGTerminator getTerminator() { return Terminator; }
    465   const CFGTerminator getTerminator() const { return Terminator; }
    466 
    467   Stmt* getTerminatorCondition();
    468 
    469   const Stmt* getTerminatorCondition() const {
    470     return const_cast<CFGBlock*>(this)->getTerminatorCondition();
    471   }
    472 
    473   const Stmt *getLoopTarget() const { return LoopTarget; }
    474 
    475   Stmt* getLabel() { return Label; }
    476   const Stmt* getLabel() const { return Label; }
    477 
    478   unsigned getBlockID() const { return BlockID; }
    479 
    480   void dump(const CFG *cfg, const LangOptions &LO) const;
    481   void print(llvm::raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
    482   void printTerminator(llvm::raw_ostream &OS, const LangOptions &LO) const;
    483 
    484   void addSuccessor(CFGBlock* Block, BumpVectorContext &C) {
    485     if (Block)
    486       Block->Preds.push_back(this, C);
    487     Succs.push_back(Block, C);
    488   }
    489 
    490   void appendStmt(Stmt* statement, BumpVectorContext &C) {
    491     Elements.push_back(CFGStmt(statement), C);
    492   }
    493 
    494   void appendInitializer(CXXCtorInitializer *initializer,
    495                         BumpVectorContext& C) {
    496     Elements.push_back(CFGInitializer(initializer), C);
    497   }
    498 
    499   void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
    500     Elements.push_back(CFGBaseDtor(BS), C);
    501   }
    502 
    503   void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
    504     Elements.push_back(CFGMemberDtor(FD), C);
    505   }
    506 
    507   void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
    508     Elements.push_back(CFGTemporaryDtor(E), C);
    509   }
    510 
    511   // Destructors must be inserted in reversed order. So insertion is in two
    512   // steps. First we prepare space for some number of elements, then we insert
    513   // the elements beginning at the last position in prepared space.
    514   iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
    515       BumpVectorContext& C) {
    516     return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
    517   }
    518   iterator insertAutomaticObjDtor(iterator I, VarDecl* VD, Stmt* S) {
    519     *I = CFGAutomaticObjDtor(VD, S);
    520     return ++I;
    521   }
    522 };
    523 
    524 /// CFG - Represents a source-level, intra-procedural CFG that represents the
    525 ///  control-flow of a Stmt.  The Stmt can represent an entire function body,
    526 ///  or a single expression.  A CFG will always contain one empty block that
    527 ///  represents the Exit point of the CFG.  A CFG will also contain a designated
    528 ///  Entry block.  The CFG solely represents control-flow; it consists of
    529 ///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
    530 ///  was constructed from.
    531 class CFG {
    532 public:
    533   //===--------------------------------------------------------------------===//
    534   // CFG Construction & Manipulation.
    535   //===--------------------------------------------------------------------===//
    536 
    537   class BuildOptions {
    538     llvm::BitVector alwaysAddMask;
    539   public:
    540     typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
    541     ForcedBlkExprs **forcedBlkExprs;
    542 
    543     bool PruneTriviallyFalseEdges:1;
    544     bool AddEHEdges:1;
    545     bool AddInitializers:1;
    546     bool AddImplicitDtors:1;
    547 
    548     bool alwaysAdd(const Stmt *stmt) const {
    549       return alwaysAddMask[stmt->getStmtClass()];
    550     }
    551 
    552     void setAlwaysAdd(Stmt::StmtClass stmtClass) {
    553       alwaysAddMask[stmtClass] = true;
    554     }
    555 
    556     BuildOptions()
    557     : alwaysAddMask(Stmt::lastStmtConstant, false)
    558       ,forcedBlkExprs(0), PruneTriviallyFalseEdges(true)
    559       ,AddEHEdges(false)
    560       ,AddInitializers(false)
    561       ,AddImplicitDtors(false) {}
    562   };
    563 
    564   /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
    565   ///   constructed CFG belongs to the caller.
    566   static CFG* buildCFG(const Decl *D, Stmt* AST, ASTContext *C,
    567                        const BuildOptions &BO);
    568 
    569   /// createBlock - Create a new block in the CFG.  The CFG owns the block;
    570   ///  the caller should not directly free it.
    571   CFGBlock* createBlock();
    572 
    573   /// setEntry - Set the entry block of the CFG.  This is typically used
    574   ///  only during CFG construction.  Most CFG clients expect that the
    575   ///  entry block has no predecessors and contains no statements.
    576   void setEntry(CFGBlock *B) { Entry = B; }
    577 
    578   /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
    579   ///  This is typically used only during CFG construction.
    580   void setIndirectGotoBlock(CFGBlock* B) { IndirectGotoBlock = B; }
    581 
    582   //===--------------------------------------------------------------------===//
    583   // Block Iterators
    584   //===--------------------------------------------------------------------===//
    585 
    586   typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
    587   typedef CFGBlockListTy::iterator                 iterator;
    588   typedef CFGBlockListTy::const_iterator           const_iterator;
    589   typedef std::reverse_iterator<iterator>          reverse_iterator;
    590   typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
    591 
    592   CFGBlock&                 front()                { return *Blocks.front(); }
    593   CFGBlock&                 back()                 { return *Blocks.back(); }
    594 
    595   iterator                  begin()                { return Blocks.begin(); }
    596   iterator                  end()                  { return Blocks.end(); }
    597   const_iterator            begin()       const    { return Blocks.begin(); }
    598   const_iterator            end()         const    { return Blocks.end(); }
    599 
    600   reverse_iterator          rbegin()               { return Blocks.rbegin(); }
    601   reverse_iterator          rend()                 { return Blocks.rend(); }
    602   const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
    603   const_reverse_iterator    rend()        const    { return Blocks.rend(); }
    604 
    605   CFGBlock&                 getEntry()             { return *Entry; }
    606   const CFGBlock&           getEntry()    const    { return *Entry; }
    607   CFGBlock&                 getExit()              { return *Exit; }
    608   const CFGBlock&           getExit()     const    { return *Exit; }
    609 
    610   CFGBlock*        getIndirectGotoBlock() { return IndirectGotoBlock; }
    611   const CFGBlock*  getIndirectGotoBlock() const { return IndirectGotoBlock; }
    612 
    613   //===--------------------------------------------------------------------===//
    614   // Member templates useful for various batch operations over CFGs.
    615   //===--------------------------------------------------------------------===//
    616 
    617   template <typename CALLBACK>
    618   void VisitBlockStmts(CALLBACK& O) const {
    619     for (const_iterator I=begin(), E=end(); I != E; ++I)
    620       for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
    621            BI != BE; ++BI) {
    622         if (const CFGStmt *stmt = BI->getAs<CFGStmt>())
    623           O(stmt->getStmt());
    624       }
    625   }
    626 
    627   //===--------------------------------------------------------------------===//
    628   // CFG Introspection.
    629   //===--------------------------------------------------------------------===//
    630 
    631   struct   BlkExprNumTy {
    632     const signed Idx;
    633     explicit BlkExprNumTy(signed idx) : Idx(idx) {}
    634     explicit BlkExprNumTy() : Idx(-1) {}
    635     operator bool() const { return Idx >= 0; }
    636     operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
    637   };
    638 
    639   bool isBlkExpr(const Stmt* S) { return getBlkExprNum(S); }
    640   bool isBlkExpr(const Stmt *S) const {
    641     return const_cast<CFG*>(this)->isBlkExpr(S);
    642   }
    643   BlkExprNumTy  getBlkExprNum(const Stmt* S);
    644   unsigned      getNumBlkExprs();
    645 
    646   /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
    647   /// start at 0).
    648   unsigned getNumBlockIDs() const { return NumBlockIDs; }
    649 
    650   //===--------------------------------------------------------------------===//
    651   // CFG Debugging: Pretty-Printing and Visualization.
    652   //===--------------------------------------------------------------------===//
    653 
    654   void viewCFG(const LangOptions &LO) const;
    655   void print(llvm::raw_ostream& OS, const LangOptions &LO) const;
    656   void dump(const LangOptions &LO) const;
    657 
    658   //===--------------------------------------------------------------------===//
    659   // Internal: constructors and data.
    660   //===--------------------------------------------------------------------===//
    661 
    662   CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
    663           BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
    664 
    665   ~CFG();
    666 
    667   llvm::BumpPtrAllocator& getAllocator() {
    668     return BlkBVC.getAllocator();
    669   }
    670 
    671   BumpVectorContext &getBumpVectorContext() {
    672     return BlkBVC;
    673   }
    674 
    675 private:
    676   CFGBlock* Entry;
    677   CFGBlock* Exit;
    678   CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
    679                                 // for indirect gotos
    680   unsigned  NumBlockIDs;
    681 
    682   // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
    683   //  It represents a map from Expr* to integers to record the set of
    684   //  block-level expressions and their "statement number" in the CFG.
    685   void*     BlkExprMap;
    686 
    687   BumpVectorContext BlkBVC;
    688 
    689   CFGBlockListTy Blocks;
    690 
    691 };
    692 } // end namespace clang
    693 
    694 //===----------------------------------------------------------------------===//
    695 // GraphTraits specializations for CFG basic block graphs (source-level CFGs)
    696 //===----------------------------------------------------------------------===//
    697 
    698 namespace llvm {
    699 
    700 /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
    701 /// CFGTerminator to a specific Stmt class.
    702 template <> struct simplify_type<const ::clang::CFGTerminator> {
    703   typedef const ::clang::Stmt *SimpleType;
    704   static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
    705     return Val.getStmt();
    706   }
    707 };
    708 
    709 template <> struct simplify_type< ::clang::CFGTerminator> {
    710   typedef ::clang::Stmt *SimpleType;
    711   static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
    712     return const_cast<SimpleType>(Val.getStmt());
    713   }
    714 };
    715 
    716 // Traits for: CFGBlock
    717 
    718 template <> struct GraphTraits< ::clang::CFGBlock* > {
    719   typedef ::clang::CFGBlock NodeType;
    720   typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
    721 
    722   static NodeType* getEntryNode(::clang::CFGBlock* BB)
    723   { return BB; }
    724 
    725   static inline ChildIteratorType child_begin(NodeType* N)
    726   { return N->succ_begin(); }
    727 
    728   static inline ChildIteratorType child_end(NodeType* N)
    729   { return N->succ_end(); }
    730 };
    731 
    732 template <> struct GraphTraits< const ::clang::CFGBlock* > {
    733   typedef const ::clang::CFGBlock NodeType;
    734   typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
    735 
    736   static NodeType* getEntryNode(const clang::CFGBlock* BB)
    737   { return BB; }
    738 
    739   static inline ChildIteratorType child_begin(NodeType* N)
    740   { return N->succ_begin(); }
    741 
    742   static inline ChildIteratorType child_end(NodeType* N)
    743   { return N->succ_end(); }
    744 };
    745 
    746 template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
    747   typedef const ::clang::CFGBlock NodeType;
    748   typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
    749 
    750   static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
    751   { return G.Graph; }
    752 
    753   static inline ChildIteratorType child_begin(NodeType* N)
    754   { return N->pred_begin(); }
    755 
    756   static inline ChildIteratorType child_end(NodeType* N)
    757   { return N->pred_end(); }
    758 };
    759 
    760 // Traits for: CFG
    761 
    762 template <> struct GraphTraits< ::clang::CFG* >
    763     : public GraphTraits< ::clang::CFGBlock* >  {
    764 
    765   typedef ::clang::CFG::iterator nodes_iterator;
    766 
    767   static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
    768   static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
    769   static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
    770 };
    771 
    772 template <> struct GraphTraits<const ::clang::CFG* >
    773     : public GraphTraits<const ::clang::CFGBlock* >  {
    774 
    775   typedef ::clang::CFG::const_iterator nodes_iterator;
    776 
    777   static NodeType *getEntryNode( const ::clang::CFG* F) {
    778     return &F->getEntry();
    779   }
    780   static nodes_iterator nodes_begin( const ::clang::CFG* F) {
    781     return F->begin();
    782   }
    783   static nodes_iterator nodes_end( const ::clang::CFG* F) {
    784     return F->end();
    785   }
    786 };
    787 
    788 template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
    789   : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
    790 
    791   typedef ::clang::CFG::const_iterator nodes_iterator;
    792 
    793   static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
    794   static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
    795   static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
    796 };
    797 } // end llvm namespace
    798 #endif
    799