Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // TargetData information. These functions cannot go in VMCore due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/DerivedTypes.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/Instructions.h"
     25 #include "llvm/Intrinsics.h"
     26 #include "llvm/Operator.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/ADT/SmallVector.h"
     30 #include "llvm/ADT/StringMap.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/GetElementPtrTypeIterator.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Support/FEnv.h"
     35 #include <cerrno>
     36 #include <cmath>
     37 using namespace llvm;
     38 
     39 //===----------------------------------------------------------------------===//
     40 // Constant Folding internal helper functions
     41 //===----------------------------------------------------------------------===//
     42 
     43 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
     44 /// TargetData.  This always returns a non-null constant, but it may be a
     45 /// ConstantExpr if unfoldable.
     46 static Constant *FoldBitCast(Constant *C, Type *DestTy,
     47                              const TargetData &TD) {
     48 
     49   // This only handles casts to vectors currently.
     50   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
     51   if (DestVTy == 0)
     52     return ConstantExpr::getBitCast(C, DestTy);
     53 
     54   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
     55   // vector so the code below can handle it uniformly.
     56   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
     57     Constant *Ops = C; // don't take the address of C!
     58     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
     59   }
     60 
     61   // If this is a bitcast from constant vector -> vector, fold it.
     62   ConstantVector *CV = dyn_cast<ConstantVector>(C);
     63   if (CV == 0)
     64     return ConstantExpr::getBitCast(C, DestTy);
     65 
     66   // If the element types match, VMCore can fold it.
     67   unsigned NumDstElt = DestVTy->getNumElements();
     68   unsigned NumSrcElt = CV->getNumOperands();
     69   if (NumDstElt == NumSrcElt)
     70     return ConstantExpr::getBitCast(C, DestTy);
     71 
     72   Type *SrcEltTy = CV->getType()->getElementType();
     73   Type *DstEltTy = DestVTy->getElementType();
     74 
     75   // Otherwise, we're changing the number of elements in a vector, which
     76   // requires endianness information to do the right thing.  For example,
     77   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
     78   // folds to (little endian):
     79   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
     80   // and to (big endian):
     81   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
     82 
     83   // First thing is first.  We only want to think about integer here, so if
     84   // we have something in FP form, recast it as integer.
     85   if (DstEltTy->isFloatingPointTy()) {
     86     // Fold to an vector of integers with same size as our FP type.
     87     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
     88     Type *DestIVTy =
     89       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
     90     // Recursively handle this integer conversion, if possible.
     91     C = FoldBitCast(C, DestIVTy, TD);
     92     if (!C) return ConstantExpr::getBitCast(C, DestTy);
     93 
     94     // Finally, VMCore can handle this now that #elts line up.
     95     return ConstantExpr::getBitCast(C, DestTy);
     96   }
     97 
     98   // Okay, we know the destination is integer, if the input is FP, convert
     99   // it to integer first.
    100   if (SrcEltTy->isFloatingPointTy()) {
    101     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    102     Type *SrcIVTy =
    103       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    104     // Ask VMCore to do the conversion now that #elts line up.
    105     C = ConstantExpr::getBitCast(C, SrcIVTy);
    106     CV = dyn_cast<ConstantVector>(C);
    107     if (!CV)  // If VMCore wasn't able to fold it, bail out.
    108       return C;
    109   }
    110 
    111   // Now we know that the input and output vectors are both integer vectors
    112   // of the same size, and that their #elements is not the same.  Do the
    113   // conversion here, which depends on whether the input or output has
    114   // more elements.
    115   bool isLittleEndian = TD.isLittleEndian();
    116 
    117   SmallVector<Constant*, 32> Result;
    118   if (NumDstElt < NumSrcElt) {
    119     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    120     Constant *Zero = Constant::getNullValue(DstEltTy);
    121     unsigned Ratio = NumSrcElt/NumDstElt;
    122     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    123     unsigned SrcElt = 0;
    124     for (unsigned i = 0; i != NumDstElt; ++i) {
    125       // Build each element of the result.
    126       Constant *Elt = Zero;
    127       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    128       for (unsigned j = 0; j != Ratio; ++j) {
    129         Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
    130         if (!Src)  // Reject constantexpr elements.
    131           return ConstantExpr::getBitCast(C, DestTy);
    132 
    133         // Zero extend the element to the right size.
    134         Src = ConstantExpr::getZExt(Src, Elt->getType());
    135 
    136         // Shift it to the right place, depending on endianness.
    137         Src = ConstantExpr::getShl(Src,
    138                                    ConstantInt::get(Src->getType(), ShiftAmt));
    139         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    140 
    141         // Mix it in.
    142         Elt = ConstantExpr::getOr(Elt, Src);
    143       }
    144       Result.push_back(Elt);
    145     }
    146   } else {
    147     // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    148     unsigned Ratio = NumDstElt/NumSrcElt;
    149     unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
    150 
    151     // Loop over each source value, expanding into multiple results.
    152     for (unsigned i = 0; i != NumSrcElt; ++i) {
    153       Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
    154       if (!Src)  // Reject constantexpr elements.
    155         return ConstantExpr::getBitCast(C, DestTy);
    156 
    157       unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    158       for (unsigned j = 0; j != Ratio; ++j) {
    159         // Shift the piece of the value into the right place, depending on
    160         // endianness.
    161         Constant *Elt = ConstantExpr::getLShr(Src,
    162                                     ConstantInt::get(Src->getType(), ShiftAmt));
    163         ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    164 
    165         // Truncate and remember this piece.
    166         Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    167       }
    168     }
    169   }
    170 
    171   return ConstantVector::get(Result);
    172 }
    173 
    174 
    175 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
    176 /// from a global, return the global and the constant.  Because of
    177 /// constantexprs, this function is recursive.
    178 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    179                                        int64_t &Offset, const TargetData &TD) {
    180   // Trivial case, constant is the global.
    181   if ((GV = dyn_cast<GlobalValue>(C))) {
    182     Offset = 0;
    183     return true;
    184   }
    185 
    186   // Otherwise, if this isn't a constant expr, bail out.
    187   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    188   if (!CE) return false;
    189 
    190   // Look through ptr->int and ptr->ptr casts.
    191   if (CE->getOpcode() == Instruction::PtrToInt ||
    192       CE->getOpcode() == Instruction::BitCast)
    193     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
    194 
    195   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    196   if (CE->getOpcode() == Instruction::GetElementPtr) {
    197     // Cannot compute this if the element type of the pointer is missing size
    198     // info.
    199     if (!cast<PointerType>(CE->getOperand(0)->getType())
    200                  ->getElementType()->isSized())
    201       return false;
    202 
    203     // If the base isn't a global+constant, we aren't either.
    204     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
    205       return false;
    206 
    207     // Otherwise, add any offset that our operands provide.
    208     gep_type_iterator GTI = gep_type_begin(CE);
    209     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
    210          i != e; ++i, ++GTI) {
    211       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
    212       if (!CI) return false;  // Index isn't a simple constant?
    213       if (CI->isZero()) continue;  // Not adding anything.
    214 
    215       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
    216         // N = N + Offset
    217         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
    218       } else {
    219         SequentialType *SQT = cast<SequentialType>(*GTI);
    220         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
    221       }
    222     }
    223     return true;
    224   }
    225 
    226   return false;
    227 }
    228 
    229 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
    230 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
    231 /// pointer to copy results into and BytesLeft is the number of bytes left in
    232 /// the CurPtr buffer.  TD is the target data.
    233 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
    234                                unsigned char *CurPtr, unsigned BytesLeft,
    235                                const TargetData &TD) {
    236   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
    237          "Out of range access");
    238 
    239   // If this element is zero or undefined, we can just return since *CurPtr is
    240   // zero initialized.
    241   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    242     return true;
    243 
    244   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    245     if (CI->getBitWidth() > 64 ||
    246         (CI->getBitWidth() & 7) != 0)
    247       return false;
    248 
    249     uint64_t Val = CI->getZExtValue();
    250     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    251 
    252     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    253       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
    254       ++ByteOffset;
    255     }
    256     return true;
    257   }
    258 
    259   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    260     if (CFP->getType()->isDoubleTy()) {
    261       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
    262       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    263     }
    264     if (CFP->getType()->isFloatTy()){
    265       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
    266       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    267     }
    268     return false;
    269   }
    270 
    271   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    272     const StructLayout *SL = TD.getStructLayout(CS->getType());
    273     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    274     uint64_t CurEltOffset = SL->getElementOffset(Index);
    275     ByteOffset -= CurEltOffset;
    276 
    277     while (1) {
    278       // If the element access is to the element itself and not to tail padding,
    279       // read the bytes from the element.
    280       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
    281 
    282       if (ByteOffset < EltSize &&
    283           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    284                               BytesLeft, TD))
    285         return false;
    286 
    287       ++Index;
    288 
    289       // Check to see if we read from the last struct element, if so we're done.
    290       if (Index == CS->getType()->getNumElements())
    291         return true;
    292 
    293       // If we read all of the bytes we needed from this element we're done.
    294       uint64_t NextEltOffset = SL->getElementOffset(Index);
    295 
    296       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
    297         return true;
    298 
    299       // Move to the next element of the struct.
    300       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
    301       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
    302       ByteOffset = 0;
    303       CurEltOffset = NextEltOffset;
    304     }
    305     // not reached.
    306   }
    307 
    308   if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
    309     uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
    310     uint64_t Index = ByteOffset / EltSize;
    311     uint64_t Offset = ByteOffset - Index * EltSize;
    312     for (; Index != CA->getType()->getNumElements(); ++Index) {
    313       if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
    314                               BytesLeft, TD))
    315         return false;
    316       if (EltSize >= BytesLeft)
    317         return true;
    318 
    319       Offset = 0;
    320       BytesLeft -= EltSize;
    321       CurPtr += EltSize;
    322     }
    323     return true;
    324   }
    325 
    326   if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
    327     uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
    328     uint64_t Index = ByteOffset / EltSize;
    329     uint64_t Offset = ByteOffset - Index * EltSize;
    330     for (; Index != CV->getType()->getNumElements(); ++Index) {
    331       if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
    332                               BytesLeft, TD))
    333         return false;
    334       if (EltSize >= BytesLeft)
    335         return true;
    336 
    337       Offset = 0;
    338       BytesLeft -= EltSize;
    339       CurPtr += EltSize;
    340     }
    341     return true;
    342   }
    343 
    344   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    345     if (CE->getOpcode() == Instruction::IntToPtr &&
    346         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
    347         return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    348                                   BytesLeft, TD);
    349   }
    350 
    351   // Otherwise, unknown initializer type.
    352   return false;
    353 }
    354 
    355 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
    356                                                  const TargetData &TD) {
    357   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
    358   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
    359 
    360   // If this isn't an integer load we can't fold it directly.
    361   if (!IntType) {
    362     // If this is a float/double load, we can try folding it as an int32/64 load
    363     // and then bitcast the result.  This can be useful for union cases.  Note
    364     // that address spaces don't matter here since we're not going to result in
    365     // an actual new load.
    366     Type *MapTy;
    367     if (LoadTy->isFloatTy())
    368       MapTy = Type::getInt32PtrTy(C->getContext());
    369     else if (LoadTy->isDoubleTy())
    370       MapTy = Type::getInt64PtrTy(C->getContext());
    371     else if (LoadTy->isVectorTy()) {
    372       MapTy = IntegerType::get(C->getContext(),
    373                                TD.getTypeAllocSizeInBits(LoadTy));
    374       MapTy = PointerType::getUnqual(MapTy);
    375     } else
    376       return 0;
    377 
    378     C = FoldBitCast(C, MapTy, TD);
    379     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
    380       return FoldBitCast(Res, LoadTy, TD);
    381     return 0;
    382   }
    383 
    384   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    385   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
    386 
    387   GlobalValue *GVal;
    388   int64_t Offset;
    389   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
    390     return 0;
    391 
    392   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
    393   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    394       !GV->getInitializer()->getType()->isSized())
    395     return 0;
    396 
    397   // If we're loading off the beginning of the global, some bytes may be valid,
    398   // but we don't try to handle this.
    399   if (Offset < 0) return 0;
    400 
    401   // If we're not accessing anything in this constant, the result is undefined.
    402   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
    403     return UndefValue::get(IntType);
    404 
    405   unsigned char RawBytes[32] = {0};
    406   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
    407                           BytesLoaded, TD))
    408     return 0;
    409 
    410   APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
    411   for (unsigned i = 1; i != BytesLoaded; ++i) {
    412     ResultVal <<= 8;
    413     ResultVal |= RawBytes[BytesLoaded-1-i];
    414   }
    415 
    416   return ConstantInt::get(IntType->getContext(), ResultVal);
    417 }
    418 
    419 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
    420 /// produce if it is constant and determinable.  If this is not determinable,
    421 /// return null.
    422 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
    423                                              const TargetData *TD) {
    424   // First, try the easy cases:
    425   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    426     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    427       return GV->getInitializer();
    428 
    429   // If the loaded value isn't a constant expr, we can't handle it.
    430   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    431   if (!CE) return 0;
    432 
    433   if (CE->getOpcode() == Instruction::GetElementPtr) {
    434     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
    435       if (GV->isConstant() && GV->hasDefinitiveInitializer())
    436         if (Constant *V =
    437              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    438           return V;
    439   }
    440 
    441   // Instead of loading constant c string, use corresponding integer value
    442   // directly if string length is small enough.
    443   std::string Str;
    444   if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
    445     unsigned StrLen = Str.length();
    446     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
    447     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    448     // Replace load with immediate integer if the result is an integer or fp
    449     // value.
    450     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    451         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    452       APInt StrVal(NumBits, 0);
    453       APInt SingleChar(NumBits, 0);
    454       if (TD->isLittleEndian()) {
    455         for (signed i = StrLen-1; i >= 0; i--) {
    456           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    457           StrVal = (StrVal << 8) | SingleChar;
    458         }
    459       } else {
    460         for (unsigned i = 0; i < StrLen; i++) {
    461           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    462           StrVal = (StrVal << 8) | SingleChar;
    463         }
    464         // Append NULL at the end.
    465         SingleChar = 0;
    466         StrVal = (StrVal << 8) | SingleChar;
    467       }
    468 
    469       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    470       if (Ty->isFloatingPointTy())
    471         Res = ConstantExpr::getBitCast(Res, Ty);
    472       return Res;
    473     }
    474   }
    475 
    476   // If this load comes from anywhere in a constant global, and if the global
    477   // is all undef or zero, we know what it loads.
    478   if (GlobalVariable *GV =
    479         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
    480     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    481       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
    482       if (GV->getInitializer()->isNullValue())
    483         return Constant::getNullValue(ResTy);
    484       if (isa<UndefValue>(GV->getInitializer()))
    485         return UndefValue::get(ResTy);
    486     }
    487   }
    488 
    489   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
    490   // currently don't do any of this for big endian systems.  It can be
    491   // generalized in the future if someone is interested.
    492   if (TD && TD->isLittleEndian())
    493     return FoldReinterpretLoadFromConstPtr(CE, *TD);
    494   return 0;
    495 }
    496 
    497 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
    498   if (LI->isVolatile()) return 0;
    499 
    500   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
    501     return ConstantFoldLoadFromConstPtr(C, TD);
    502 
    503   return 0;
    504 }
    505 
    506 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
    507 /// Attempt to symbolically evaluate the result of a binary operator merging
    508 /// these together.  If target data info is available, it is provided as TD,
    509 /// otherwise TD is null.
    510 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
    511                                            Constant *Op1, const TargetData *TD){
    512   // SROA
    513 
    514   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    515   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    516   // bits.
    517 
    518 
    519   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    520   // constant.  This happens frequently when iterating over a global array.
    521   if (Opc == Instruction::Sub && TD) {
    522     GlobalValue *GV1, *GV2;
    523     int64_t Offs1, Offs2;
    524 
    525     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
    526       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
    527           GV1 == GV2) {
    528         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    529         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
    530       }
    531   }
    532 
    533   return 0;
    534 }
    535 
    536 /// CastGEPIndices - If array indices are not pointer-sized integers,
    537 /// explicitly cast them so that they aren't implicitly casted by the
    538 /// getelementptr.
    539 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
    540                                 Type *ResultTy,
    541                                 const TargetData *TD) {
    542   if (!TD) return 0;
    543   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
    544 
    545   bool Any = false;
    546   SmallVector<Constant*, 32> NewIdxs;
    547   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    548     if ((i == 1 ||
    549          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
    550                                                             Ops.data() + 1,
    551                                                             i-1))) &&
    552         Ops[i]->getType() != IntPtrTy) {
    553       Any = true;
    554       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    555                                                                       true,
    556                                                                       IntPtrTy,
    557                                                                       true),
    558                                               Ops[i], IntPtrTy));
    559     } else
    560       NewIdxs.push_back(Ops[i]);
    561   }
    562   if (!Any) return 0;
    563 
    564   Constant *C =
    565     ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
    566   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    567     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
    568       C = Folded;
    569   return C;
    570 }
    571 
    572 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
    573 /// constant expression, do so.
    574 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
    575                                          Type *ResultTy,
    576                                          const TargetData *TD) {
    577   Constant *Ptr = Ops[0];
    578   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
    579     return 0;
    580 
    581   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
    582 
    583   // If this is a constant expr gep that is effectively computing an
    584   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    585   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    586     if (!isa<ConstantInt>(Ops[i])) {
    587 
    588       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    589       // "inttoptr (sub (ptrtoint Ptr), V)"
    590       if (Ops.size() == 2 &&
    591           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
    592         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
    593         assert((CE == 0 || CE->getType() == IntPtrTy) &&
    594                "CastGEPIndices didn't canonicalize index types!");
    595         if (CE && CE->getOpcode() == Instruction::Sub &&
    596             CE->getOperand(0)->isNullValue()) {
    597           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    598           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    599           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
    600           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
    601             Res = ConstantFoldConstantExpression(ResCE, TD);
    602           return Res;
    603         }
    604       }
    605       return 0;
    606     }
    607 
    608   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
    609   APInt Offset =
    610     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
    611                                          makeArrayRef((Value **)Ops.data() + 1,
    612                                                       Ops.size() - 1)));
    613   Ptr = cast<Constant>(Ptr->stripPointerCasts());
    614 
    615   // If this is a GEP of a GEP, fold it all into a single GEP.
    616   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
    617     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
    618 
    619     // Do not try the incorporate the sub-GEP if some index is not a number.
    620     bool AllConstantInt = true;
    621     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
    622       if (!isa<ConstantInt>(NestedOps[i])) {
    623         AllConstantInt = false;
    624         break;
    625       }
    626     if (!AllConstantInt)
    627       break;
    628 
    629     Ptr = cast<Constant>(GEP->getOperand(0));
    630     Offset += APInt(BitWidth,
    631                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
    632     Ptr = cast<Constant>(Ptr->stripPointerCasts());
    633   }
    634 
    635   // If the base value for this address is a literal integer value, fold the
    636   // getelementptr to the resulting integer value casted to the pointer type.
    637   APInt BasePtr(BitWidth, 0);
    638   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
    639     if (CE->getOpcode() == Instruction::IntToPtr)
    640       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    641         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    642   if (Ptr->isNullValue() || BasePtr != 0) {
    643     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
    644     return ConstantExpr::getIntToPtr(C, ResultTy);
    645   }
    646 
    647   // Otherwise form a regular getelementptr. Recompute the indices so that
    648   // we eliminate over-indexing of the notional static type array bounds.
    649   // This makes it easy to determine if the getelementptr is "inbounds".
    650   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    651   Type *Ty = Ptr->getType();
    652   SmallVector<Constant*, 32> NewIdxs;
    653   do {
    654     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
    655       if (ATy->isPointerTy()) {
    656         // The only pointer indexing we'll do is on the first index of the GEP.
    657         if (!NewIdxs.empty())
    658           break;
    659 
    660         // Only handle pointers to sized types, not pointers to functions.
    661         if (!ATy->getElementType()->isSized())
    662           return 0;
    663       }
    664 
    665       // Determine which element of the array the offset points into.
    666       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
    667       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
    668       if (ElemSize == 0)
    669         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    670         // index for this level and proceed to the next level to see if it can
    671         // accommodate the offset.
    672         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    673       else {
    674         // The element size is non-zero divide the offset by the element
    675         // size (rounding down), to compute the index at this level.
    676         APInt NewIdx = Offset.udiv(ElemSize);
    677         Offset -= NewIdx * ElemSize;
    678         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    679       }
    680       Ty = ATy->getElementType();
    681     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    682       // Determine which field of the struct the offset points into. The
    683       // getZExtValue is at least as safe as the StructLayout API because we
    684       // know the offset is within the struct at this point.
    685       const StructLayout &SL = *TD->getStructLayout(STy);
    686       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    687       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    688                                          ElIdx));
    689       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    690       Ty = STy->getTypeAtIndex(ElIdx);
    691     } else {
    692       // We've reached some non-indexable type.
    693       break;
    694     }
    695   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
    696 
    697   // If we haven't used up the entire offset by descending the static
    698   // type, then the offset is pointing into the middle of an indivisible
    699   // member, so we can't simplify it.
    700   if (Offset != 0)
    701     return 0;
    702 
    703   // Create a GEP.
    704   Constant *C =
    705     ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
    706   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
    707          "Computed GetElementPtr has unexpected type!");
    708 
    709   // If we ended up indexing a member with a type that doesn't match
    710   // the type of what the original indices indexed, add a cast.
    711   if (Ty != cast<PointerType>(ResultTy)->getElementType())
    712     C = FoldBitCast(C, ResultTy, *TD);
    713 
    714   return C;
    715 }
    716 
    717 
    718 
    719 //===----------------------------------------------------------------------===//
    720 // Constant Folding public APIs
    721 //===----------------------------------------------------------------------===//
    722 
    723 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
    724 /// If successful, the constant result is returned, if not, null is returned.
    725 /// Note that this fails if not all of the operands are constant.  Otherwise,
    726 /// this function can only fail when attempting to fold instructions like loads
    727 /// and stores, which have no constant expression form.
    728 Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
    729   // Handle PHI nodes quickly here...
    730   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    731     Constant *CommonValue = 0;
    732 
    733     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    734       Value *Incoming = PN->getIncomingValue(i);
    735       // If the incoming value is undef then skip it.  Note that while we could
    736       // skip the value if it is equal to the phi node itself we choose not to
    737       // because that would break the rule that constant folding only applies if
    738       // all operands are constants.
    739       if (isa<UndefValue>(Incoming))
    740         continue;
    741       // If the incoming value is not a constant, or is a different constant to
    742       // the one we saw previously, then give up.
    743       Constant *C = dyn_cast<Constant>(Incoming);
    744       if (!C || (CommonValue && C != CommonValue))
    745         return 0;
    746       CommonValue = C;
    747     }
    748 
    749     // If we reach here, all incoming values are the same constant or undef.
    750     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
    751   }
    752 
    753   // Scan the operand list, checking to see if they are all constants, if so,
    754   // hand off to ConstantFoldInstOperands.
    755   SmallVector<Constant*, 8> Ops;
    756   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    757     if (Constant *Op = dyn_cast<Constant>(*i))
    758       Ops.push_back(Op);
    759     else
    760       return 0;  // All operands not constant!
    761 
    762   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    763     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
    764                                            TD);
    765 
    766   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    767     return ConstantFoldLoadInst(LI, TD);
    768 
    769   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
    770     return ConstantExpr::getInsertValue(
    771                                 cast<Constant>(IVI->getAggregateOperand()),
    772                                 cast<Constant>(IVI->getInsertedValueOperand()),
    773                                 IVI->getIndices());
    774 
    775   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
    776     return ConstantExpr::getExtractValue(
    777                                     cast<Constant>(EVI->getAggregateOperand()),
    778                                     EVI->getIndices());
    779 
    780   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD);
    781 }
    782 
    783 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
    784 /// using the specified TargetData.  If successful, the constant result is
    785 /// result is returned, if not, null is returned.
    786 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
    787                                                const TargetData *TD) {
    788   SmallVector<Constant*, 8> Ops;
    789   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
    790        i != e; ++i) {
    791     Constant *NewC = cast<Constant>(*i);
    792     // Recursively fold the ConstantExpr's operands.
    793     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
    794       NewC = ConstantFoldConstantExpression(NewCE, TD);
    795     Ops.push_back(NewC);
    796   }
    797 
    798   if (CE->isCompare())
    799     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
    800                                            TD);
    801   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD);
    802 }
    803 
    804 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
    805 /// specified opcode and operands.  If successful, the constant result is
    806 /// returned, if not, null is returned.  Note that this function can fail when
    807 /// attempting to fold instructions like loads and stores, which have no
    808 /// constant expression form.
    809 ///
    810 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
    811 /// information, due to only being passed an opcode and operands. Constant
    812 /// folding using this function strips this information.
    813 ///
    814 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
    815                                          ArrayRef<Constant *> Ops,
    816                                          const TargetData *TD) {
    817   // Handle easy binops first.
    818   if (Instruction::isBinaryOp(Opcode)) {
    819     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
    820       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
    821         return C;
    822 
    823     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
    824   }
    825 
    826   switch (Opcode) {
    827   default: return 0;
    828   case Instruction::ICmp:
    829   case Instruction::FCmp: assert(0 && "Invalid for compares");
    830   case Instruction::Call:
    831     if (Function *F = dyn_cast<Function>(Ops.back()))
    832       if (canConstantFoldCallTo(F))
    833         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1));
    834     return 0;
    835   case Instruction::PtrToInt:
    836     // If the input is a inttoptr, eliminate the pair.  This requires knowing
    837     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
    838     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
    839       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
    840         Constant *Input = CE->getOperand(0);
    841         unsigned InWidth = Input->getType()->getScalarSizeInBits();
    842         if (TD->getPointerSizeInBits() < InWidth) {
    843           Constant *Mask =
    844             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
    845                                                   TD->getPointerSizeInBits()));
    846           Input = ConstantExpr::getAnd(Input, Mask);
    847         }
    848         // Do a zext or trunc to get to the dest size.
    849         return ConstantExpr::getIntegerCast(Input, DestTy, false);
    850       }
    851     }
    852     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    853   case Instruction::IntToPtr:
    854     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
    855     // the int size is >= the ptr size.  This requires knowing the width of a
    856     // pointer, so it can't be done in ConstantExpr::getCast.
    857     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
    858       if (TD &&
    859           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
    860           CE->getOpcode() == Instruction::PtrToInt)
    861         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
    862 
    863     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    864   case Instruction::Trunc:
    865   case Instruction::ZExt:
    866   case Instruction::SExt:
    867   case Instruction::FPTrunc:
    868   case Instruction::FPExt:
    869   case Instruction::UIToFP:
    870   case Instruction::SIToFP:
    871   case Instruction::FPToUI:
    872   case Instruction::FPToSI:
    873       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    874   case Instruction::BitCast:
    875     if (TD)
    876       return FoldBitCast(Ops[0], DestTy, *TD);
    877     return ConstantExpr::getBitCast(Ops[0], DestTy);
    878   case Instruction::Select:
    879     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
    880   case Instruction::ExtractElement:
    881     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
    882   case Instruction::InsertElement:
    883     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
    884   case Instruction::ShuffleVector:
    885     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
    886   case Instruction::GetElementPtr:
    887     if (Constant *C = CastGEPIndices(Ops, DestTy, TD))
    888       return C;
    889     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD))
    890       return C;
    891 
    892     return ConstantExpr::getGetElementPtr(Ops[0], Ops.data() + 1,
    893                                           Ops.size() - 1);
    894   }
    895 }
    896 
    897 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
    898 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
    899 /// returns a constant expression of the specified operands.
    900 ///
    901 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
    902                                                 Constant *Ops0, Constant *Ops1,
    903                                                 const TargetData *TD) {
    904   // fold: icmp (inttoptr x), null         -> icmp x, 0
    905   // fold: icmp (ptrtoint x), 0            -> icmp x, null
    906   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
    907   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
    908   //
    909   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
    910   // around to know if bit truncation is happening.
    911   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
    912     if (TD && Ops1->isNullValue()) {
    913       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
    914       if (CE0->getOpcode() == Instruction::IntToPtr) {
    915         // Convert the integer value to the right size to ensure we get the
    916         // proper extension or truncation.
    917         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
    918                                                    IntPtrTy, false);
    919         Constant *Null = Constant::getNullValue(C->getType());
    920         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
    921       }
    922 
    923       // Only do this transformation if the int is intptrty in size, otherwise
    924       // there is a truncation or extension that we aren't modeling.
    925       if (CE0->getOpcode() == Instruction::PtrToInt &&
    926           CE0->getType() == IntPtrTy) {
    927         Constant *C = CE0->getOperand(0);
    928         Constant *Null = Constant::getNullValue(C->getType());
    929         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
    930       }
    931     }
    932 
    933     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
    934       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
    935         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
    936 
    937         if (CE0->getOpcode() == Instruction::IntToPtr) {
    938           // Convert the integer value to the right size to ensure we get the
    939           // proper extension or truncation.
    940           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
    941                                                       IntPtrTy, false);
    942           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
    943                                                       IntPtrTy, false);
    944           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
    945         }
    946 
    947         // Only do this transformation if the int is intptrty in size, otherwise
    948         // there is a truncation or extension that we aren't modeling.
    949         if ((CE0->getOpcode() == Instruction::PtrToInt &&
    950              CE0->getType() == IntPtrTy &&
    951              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
    952           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
    953                                                  CE1->getOperand(0), TD);
    954       }
    955     }
    956 
    957     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
    958     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
    959     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
    960         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
    961       Constant *LHS =
    962         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
    963       Constant *RHS =
    964         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
    965       unsigned OpC =
    966         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
    967       Constant *Ops[] = { LHS, RHS };
    968       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD);
    969     }
    970   }
    971 
    972   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
    973 }
    974 
    975 
    976 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
    977 /// getelementptr constantexpr, return the constant value being addressed by the
    978 /// constant expression, or null if something is funny and we can't decide.
    979 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
    980                                                        ConstantExpr *CE) {
    981   if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
    982     return 0;  // Do not allow stepping over the value!
    983 
    984   // Loop over all of the operands, tracking down which value we are
    985   // addressing...
    986   gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
    987   for (++I; I != E; ++I)
    988     if (StructType *STy = dyn_cast<StructType>(*I)) {
    989       ConstantInt *CU = cast<ConstantInt>(I.getOperand());
    990       assert(CU->getZExtValue() < STy->getNumElements() &&
    991              "Struct index out of range!");
    992       unsigned El = (unsigned)CU->getZExtValue();
    993       if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    994         C = CS->getOperand(El);
    995       } else if (isa<ConstantAggregateZero>(C)) {
    996         C = Constant::getNullValue(STy->getElementType(El));
    997       } else if (isa<UndefValue>(C)) {
    998         C = UndefValue::get(STy->getElementType(El));
    999       } else {
   1000         return 0;
   1001       }
   1002     } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
   1003       if (ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
   1004         if (CI->getZExtValue() >= ATy->getNumElements())
   1005          return 0;
   1006         if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
   1007           C = CA->getOperand(CI->getZExtValue());
   1008         else if (isa<ConstantAggregateZero>(C))
   1009           C = Constant::getNullValue(ATy->getElementType());
   1010         else if (isa<UndefValue>(C))
   1011           C = UndefValue::get(ATy->getElementType());
   1012         else
   1013           return 0;
   1014       } else if (VectorType *VTy = dyn_cast<VectorType>(*I)) {
   1015         if (CI->getZExtValue() >= VTy->getNumElements())
   1016           return 0;
   1017         if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
   1018           C = CP->getOperand(CI->getZExtValue());
   1019         else if (isa<ConstantAggregateZero>(C))
   1020           C = Constant::getNullValue(VTy->getElementType());
   1021         else if (isa<UndefValue>(C))
   1022           C = UndefValue::get(VTy->getElementType());
   1023         else
   1024           return 0;
   1025       } else {
   1026         return 0;
   1027       }
   1028     } else {
   1029       return 0;
   1030     }
   1031   return C;
   1032 }
   1033 
   1034 
   1035 //===----------------------------------------------------------------------===//
   1036 //  Constant Folding for Calls
   1037 //
   1038 
   1039 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
   1040 /// the specified function.
   1041 bool
   1042 llvm::canConstantFoldCallTo(const Function *F) {
   1043   switch (F->getIntrinsicID()) {
   1044   case Intrinsic::sqrt:
   1045   case Intrinsic::powi:
   1046   case Intrinsic::bswap:
   1047   case Intrinsic::ctpop:
   1048   case Intrinsic::ctlz:
   1049   case Intrinsic::cttz:
   1050   case Intrinsic::sadd_with_overflow:
   1051   case Intrinsic::uadd_with_overflow:
   1052   case Intrinsic::ssub_with_overflow:
   1053   case Intrinsic::usub_with_overflow:
   1054   case Intrinsic::smul_with_overflow:
   1055   case Intrinsic::umul_with_overflow:
   1056   case Intrinsic::convert_from_fp16:
   1057   case Intrinsic::convert_to_fp16:
   1058   case Intrinsic::x86_sse_cvtss2si:
   1059   case Intrinsic::x86_sse_cvtss2si64:
   1060   case Intrinsic::x86_sse_cvttss2si:
   1061   case Intrinsic::x86_sse_cvttss2si64:
   1062   case Intrinsic::x86_sse2_cvtsd2si:
   1063   case Intrinsic::x86_sse2_cvtsd2si64:
   1064   case Intrinsic::x86_sse2_cvttsd2si:
   1065   case Intrinsic::x86_sse2_cvttsd2si64:
   1066     return true;
   1067   default:
   1068     return false;
   1069   case 0: break;
   1070   }
   1071 
   1072   if (!F->hasName()) return false;
   1073   StringRef Name = F->getName();
   1074 
   1075   // In these cases, the check of the length is required.  We don't want to
   1076   // return true for a name like "cos\0blah" which strcmp would return equal to
   1077   // "cos", but has length 8.
   1078   switch (Name[0]) {
   1079   default: return false;
   1080   case 'a':
   1081     return Name == "acos" || Name == "asin" ||
   1082       Name == "atan" || Name == "atan2";
   1083   case 'c':
   1084     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
   1085   case 'e':
   1086     return Name == "exp" || Name == "exp2";
   1087   case 'f':
   1088     return Name == "fabs" || Name == "fmod" || Name == "floor";
   1089   case 'l':
   1090     return Name == "log" || Name == "log10";
   1091   case 'p':
   1092     return Name == "pow";
   1093   case 's':
   1094     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1095       Name == "sinf" || Name == "sqrtf";
   1096   case 't':
   1097     return Name == "tan" || Name == "tanh";
   1098   }
   1099 }
   1100 
   1101 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
   1102                                 Type *Ty) {
   1103   sys::llvm_fenv_clearexcept();
   1104   V = NativeFP(V);
   1105   if (sys::llvm_fenv_testexcept()) {
   1106     sys::llvm_fenv_clearexcept();
   1107     return 0;
   1108   }
   1109 
   1110   if (Ty->isFloatTy())
   1111     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1112   if (Ty->isDoubleTy())
   1113     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1114   llvm_unreachable("Can only constant fold float/double");
   1115   return 0; // dummy return to suppress warning
   1116 }
   1117 
   1118 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
   1119                                       double V, double W, Type *Ty) {
   1120   sys::llvm_fenv_clearexcept();
   1121   V = NativeFP(V, W);
   1122   if (sys::llvm_fenv_testexcept()) {
   1123     sys::llvm_fenv_clearexcept();
   1124     return 0;
   1125   }
   1126 
   1127   if (Ty->isFloatTy())
   1128     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1129   if (Ty->isDoubleTy())
   1130     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1131   llvm_unreachable("Can only constant fold float/double");
   1132   return 0; // dummy return to suppress warning
   1133 }
   1134 
   1135 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
   1136 /// conversion of a constant floating point. If roundTowardZero is false, the
   1137 /// default IEEE rounding is used (toward nearest, ties to even). This matches
   1138 /// the behavior of the non-truncating SSE instructions in the default rounding
   1139 /// mode. The desired integer type Ty is used to select how many bits are
   1140 /// available for the result. Returns null if the conversion cannot be
   1141 /// performed, otherwise returns the Constant value resulting from the
   1142 /// conversion.
   1143 static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
   1144                                           Type *Ty) {
   1145   assert(Op && "Called with NULL operand");
   1146   APFloat Val(Op->getValueAPF());
   1147 
   1148   // All of these conversion intrinsics form an integer of at most 64bits.
   1149   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
   1150   assert(ResultWidth <= 64 &&
   1151          "Can only constant fold conversions to 64 and 32 bit ints");
   1152 
   1153   uint64_t UIntVal;
   1154   bool isExact = false;
   1155   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1156                                               : APFloat::rmNearestTiesToEven;
   1157   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
   1158                                                   /*isSigned=*/true, mode,
   1159                                                   &isExact);
   1160   if (status != APFloat::opOK && status != APFloat::opInexact)
   1161     return 0;
   1162   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1163 }
   1164 
   1165 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
   1166 /// with the specified arguments, returning null if unsuccessful.
   1167 Constant *
   1168 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands) {
   1169   if (!F->hasName()) return 0;
   1170   StringRef Name = F->getName();
   1171 
   1172   Type *Ty = F->getReturnType();
   1173   if (Operands.size() == 1) {
   1174     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1175       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
   1176         APFloat Val(Op->getValueAPF());
   1177 
   1178         bool lost = false;
   1179         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
   1180 
   1181         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
   1182       }
   1183 
   1184       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
   1185         return 0;
   1186 
   1187       /// We only fold functions with finite arguments. Folding NaN and inf is
   1188       /// likely to be aborted with an exception anyway, and some host libms
   1189       /// have known errors raising exceptions.
   1190       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1191         return 0;
   1192 
   1193       /// Currently APFloat versions of these functions do not exist, so we use
   1194       /// the host native double versions.  Float versions are not called
   1195       /// directly but for all these it is true (float)(f((double)arg)) ==
   1196       /// f(arg).  Long double not supported yet.
   1197       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
   1198                                      Op->getValueAPF().convertToDouble();
   1199       switch (Name[0]) {
   1200       case 'a':
   1201         if (Name == "acos")
   1202           return ConstantFoldFP(acos, V, Ty);
   1203         else if (Name == "asin")
   1204           return ConstantFoldFP(asin, V, Ty);
   1205         else if (Name == "atan")
   1206           return ConstantFoldFP(atan, V, Ty);
   1207         break;
   1208       case 'c':
   1209         if (Name == "ceil")
   1210           return ConstantFoldFP(ceil, V, Ty);
   1211         else if (Name == "cos")
   1212           return ConstantFoldFP(cos, V, Ty);
   1213         else if (Name == "cosh")
   1214           return ConstantFoldFP(cosh, V, Ty);
   1215         else if (Name == "cosf")
   1216           return ConstantFoldFP(cos, V, Ty);
   1217         break;
   1218       case 'e':
   1219         if (Name == "exp")
   1220           return ConstantFoldFP(exp, V, Ty);
   1221 
   1222         if (Name == "exp2") {
   1223           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1224           // C99 library.
   1225           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1226         }
   1227         break;
   1228       case 'f':
   1229         if (Name == "fabs")
   1230           return ConstantFoldFP(fabs, V, Ty);
   1231         else if (Name == "floor")
   1232           return ConstantFoldFP(floor, V, Ty);
   1233         break;
   1234       case 'l':
   1235         if (Name == "log" && V > 0)
   1236           return ConstantFoldFP(log, V, Ty);
   1237         else if (Name == "log10" && V > 0)
   1238           return ConstantFoldFP(log10, V, Ty);
   1239         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
   1240                  (Ty->isFloatTy() || Ty->isDoubleTy())) {
   1241           if (V >= -0.0)
   1242             return ConstantFoldFP(sqrt, V, Ty);
   1243           else // Undefined
   1244             return Constant::getNullValue(Ty);
   1245         }
   1246         break;
   1247       case 's':
   1248         if (Name == "sin")
   1249           return ConstantFoldFP(sin, V, Ty);
   1250         else if (Name == "sinh")
   1251           return ConstantFoldFP(sinh, V, Ty);
   1252         else if (Name == "sqrt" && V >= 0)
   1253           return ConstantFoldFP(sqrt, V, Ty);
   1254         else if (Name == "sqrtf" && V >= 0)
   1255           return ConstantFoldFP(sqrt, V, Ty);
   1256         else if (Name == "sinf")
   1257           return ConstantFoldFP(sin, V, Ty);
   1258         break;
   1259       case 't':
   1260         if (Name == "tan")
   1261           return ConstantFoldFP(tan, V, Ty);
   1262         else if (Name == "tanh")
   1263           return ConstantFoldFP(tanh, V, Ty);
   1264         break;
   1265       default:
   1266         break;
   1267       }
   1268       return 0;
   1269     }
   1270 
   1271     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1272       switch (F->getIntrinsicID()) {
   1273       case Intrinsic::bswap:
   1274         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
   1275       case Intrinsic::ctpop:
   1276         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1277       case Intrinsic::cttz:
   1278         return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
   1279       case Intrinsic::ctlz:
   1280         return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
   1281       case Intrinsic::convert_from_fp16: {
   1282         APFloat Val(Op->getValue());
   1283 
   1284         bool lost = false;
   1285         APFloat::opStatus status =
   1286           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
   1287 
   1288         // Conversion is always precise.
   1289         (void)status;
   1290         assert(status == APFloat::opOK && !lost &&
   1291                "Precision lost during fp16 constfolding");
   1292 
   1293         return ConstantFP::get(F->getContext(), Val);
   1294       }
   1295       default:
   1296         return 0;
   1297       }
   1298     }
   1299 
   1300     if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
   1301       switch (F->getIntrinsicID()) {
   1302       default: break;
   1303       case Intrinsic::x86_sse_cvtss2si:
   1304       case Intrinsic::x86_sse_cvtss2si64:
   1305       case Intrinsic::x86_sse2_cvtsd2si:
   1306       case Intrinsic::x86_sse2_cvtsd2si64:
   1307         if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
   1308           return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
   1309       case Intrinsic::x86_sse_cvttss2si:
   1310       case Intrinsic::x86_sse_cvttss2si64:
   1311       case Intrinsic::x86_sse2_cvttsd2si:
   1312       case Intrinsic::x86_sse2_cvttsd2si64:
   1313         if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
   1314           return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
   1315       }
   1316     }
   1317 
   1318     if (isa<UndefValue>(Operands[0])) {
   1319       if (F->getIntrinsicID() == Intrinsic::bswap)
   1320         return Operands[0];
   1321       return 0;
   1322     }
   1323 
   1324     return 0;
   1325   }
   1326 
   1327   if (Operands.size() == 2) {
   1328     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1329       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
   1330         return 0;
   1331       double Op1V = Ty->isFloatTy() ?
   1332                       (double)Op1->getValueAPF().convertToFloat() :
   1333                       Op1->getValueAPF().convertToDouble();
   1334       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1335         if (Op2->getType() != Op1->getType())
   1336           return 0;
   1337 
   1338         double Op2V = Ty->isFloatTy() ?
   1339                       (double)Op2->getValueAPF().convertToFloat():
   1340                       Op2->getValueAPF().convertToDouble();
   1341 
   1342         if (Name == "pow")
   1343           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1344         if (Name == "fmod")
   1345           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1346         if (Name == "atan2")
   1347           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1348       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1349         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
   1350           return ConstantFP::get(F->getContext(),
   1351                                  APFloat((float)std::pow((float)Op1V,
   1352                                                  (int)Op2C->getZExtValue())));
   1353         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
   1354           return ConstantFP::get(F->getContext(),
   1355                                  APFloat((double)std::pow((double)Op1V,
   1356                                                    (int)Op2C->getZExtValue())));
   1357       }
   1358       return 0;
   1359     }
   1360 
   1361 
   1362     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1363       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1364         switch (F->getIntrinsicID()) {
   1365         default: break;
   1366         case Intrinsic::sadd_with_overflow:
   1367         case Intrinsic::uadd_with_overflow:
   1368         case Intrinsic::ssub_with_overflow:
   1369         case Intrinsic::usub_with_overflow:
   1370         case Intrinsic::smul_with_overflow:
   1371         case Intrinsic::umul_with_overflow: {
   1372           APInt Res;
   1373           bool Overflow;
   1374           switch (F->getIntrinsicID()) {
   1375           default: assert(0 && "Invalid case");
   1376           case Intrinsic::sadd_with_overflow:
   1377             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1378             break;
   1379           case Intrinsic::uadd_with_overflow:
   1380             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1381             break;
   1382           case Intrinsic::ssub_with_overflow:
   1383             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1384             break;
   1385           case Intrinsic::usub_with_overflow:
   1386             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1387             break;
   1388           case Intrinsic::smul_with_overflow:
   1389             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1390             break;
   1391           case Intrinsic::umul_with_overflow:
   1392             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1393             break;
   1394           }
   1395           Constant *Ops[] = {
   1396             ConstantInt::get(F->getContext(), Res),
   1397             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
   1398           };
   1399           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
   1400         }
   1401         }
   1402       }
   1403 
   1404       return 0;
   1405     }
   1406     return 0;
   1407   }
   1408   return 0;
   1409 }
   1410