Home | History | Annotate | Download | only in src
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 #include "lithium-allocator-inl.h"
     30 
     31 #include "hydrogen.h"
     32 #include "string-stream.h"
     33 
     34 #if V8_TARGET_ARCH_IA32
     35 #include "ia32/lithium-ia32.h"
     36 #elif V8_TARGET_ARCH_X64
     37 #include "x64/lithium-x64.h"
     38 #elif V8_TARGET_ARCH_ARM
     39 #include "arm/lithium-arm.h"
     40 #elif V8_TARGET_ARCH_MIPS
     41 #include "mips/lithium-mips.h"
     42 #else
     43 #error "Unknown architecture."
     44 #endif
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 
     50 #define DEFINE_OPERAND_CACHE(name, type)                      \
     51   name name::cache[name::kNumCachedOperands];                 \
     52   void name::SetupCache() {                                   \
     53     for (int i = 0; i < kNumCachedOperands; i++) {            \
     54       cache[i].ConvertTo(type, i);                            \
     55     }                                                         \
     56   }                                                           \
     57   static bool name##_initialize() {                           \
     58     name::SetupCache();                                       \
     59     return true;                                              \
     60   }                                                           \
     61   static bool name##_cache_initialized = name##_initialize();
     62 
     63 DEFINE_OPERAND_CACHE(LConstantOperand, CONSTANT_OPERAND)
     64 DEFINE_OPERAND_CACHE(LStackSlot,       STACK_SLOT)
     65 DEFINE_OPERAND_CACHE(LDoubleStackSlot, DOUBLE_STACK_SLOT)
     66 DEFINE_OPERAND_CACHE(LRegister,        REGISTER)
     67 DEFINE_OPERAND_CACHE(LDoubleRegister,  DOUBLE_REGISTER)
     68 
     69 #undef DEFINE_OPERAND_CACHE
     70 
     71 
     72 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
     73   return a.Value() < b.Value() ? a : b;
     74 }
     75 
     76 
     77 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
     78   return a.Value() > b.Value() ? a : b;
     79 }
     80 
     81 
     82 UsePosition::UsePosition(LifetimePosition pos, LOperand* operand)
     83     : operand_(operand),
     84       hint_(NULL),
     85       pos_(pos),
     86       next_(NULL),
     87       requires_reg_(false),
     88       register_beneficial_(true) {
     89   if (operand_ != NULL && operand_->IsUnallocated()) {
     90     LUnallocated* unalloc = LUnallocated::cast(operand_);
     91     requires_reg_ = unalloc->HasRegisterPolicy();
     92     register_beneficial_ = !unalloc->HasAnyPolicy();
     93   }
     94   ASSERT(pos_.IsValid());
     95 }
     96 
     97 
     98 bool UsePosition::HasHint() const {
     99   return hint_ != NULL && !hint_->IsUnallocated();
    100 }
    101 
    102 
    103 bool UsePosition::RequiresRegister() const {
    104   return requires_reg_;
    105 }
    106 
    107 
    108 bool UsePosition::RegisterIsBeneficial() const {
    109   return register_beneficial_;
    110 }
    111 
    112 
    113 void UseInterval::SplitAt(LifetimePosition pos) {
    114   ASSERT(Contains(pos) && pos.Value() != start().Value());
    115   UseInterval* after = new UseInterval(pos, end_);
    116   after->next_ = next_;
    117   next_ = after;
    118   end_ = pos;
    119 }
    120 
    121 
    122 #ifdef DEBUG
    123 
    124 
    125 void LiveRange::Verify() const {
    126   UsePosition* cur = first_pos_;
    127   while (cur != NULL) {
    128     ASSERT(Start().Value() <= cur->pos().Value() &&
    129            cur->pos().Value() <= End().Value());
    130     cur = cur->next();
    131   }
    132 }
    133 
    134 
    135 bool LiveRange::HasOverlap(UseInterval* target) const {
    136   UseInterval* current_interval = first_interval_;
    137   while (current_interval != NULL) {
    138     // Intervals overlap if the start of one is contained in the other.
    139     if (current_interval->Contains(target->start()) ||
    140         target->Contains(current_interval->start())) {
    141       return true;
    142     }
    143     current_interval = current_interval->next();
    144   }
    145   return false;
    146 }
    147 
    148 
    149 #endif
    150 
    151 
    152 LiveRange::LiveRange(int id)
    153     : id_(id),
    154       spilled_(false),
    155       assigned_register_(kInvalidAssignment),
    156       assigned_register_kind_(NONE),
    157       last_interval_(NULL),
    158       first_interval_(NULL),
    159       first_pos_(NULL),
    160       parent_(NULL),
    161       next_(NULL),
    162       current_interval_(NULL),
    163       last_processed_use_(NULL),
    164       spill_start_index_(kMaxInt) {
    165   spill_operand_ = new LUnallocated(LUnallocated::IGNORE);
    166 }
    167 
    168 
    169 void LiveRange::set_assigned_register(int reg, RegisterKind register_kind) {
    170   ASSERT(!HasRegisterAssigned() && !IsSpilled());
    171   assigned_register_ = reg;
    172   assigned_register_kind_ = register_kind;
    173   ConvertOperands();
    174 }
    175 
    176 
    177 void LiveRange::MakeSpilled() {
    178   ASSERT(!IsSpilled());
    179   ASSERT(TopLevel()->HasAllocatedSpillOperand());
    180   spilled_ = true;
    181   assigned_register_ = kInvalidAssignment;
    182   ConvertOperands();
    183 }
    184 
    185 
    186 bool LiveRange::HasAllocatedSpillOperand() const {
    187   return spill_operand_ != NULL && !spill_operand_->IsUnallocated();
    188 }
    189 
    190 
    191 void LiveRange::SetSpillOperand(LOperand* operand) {
    192   ASSERT(!operand->IsUnallocated());
    193   ASSERT(spill_operand_ != NULL);
    194   ASSERT(spill_operand_->IsUnallocated());
    195   spill_operand_->ConvertTo(operand->kind(), operand->index());
    196 }
    197 
    198 
    199 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
    200   UsePosition* use_pos = last_processed_use_;
    201   if (use_pos == NULL) use_pos = first_pos();
    202   while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
    203     use_pos = use_pos->next();
    204   }
    205   last_processed_use_ = use_pos;
    206   return use_pos;
    207 }
    208 
    209 
    210 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
    211     LifetimePosition start) {
    212   UsePosition* pos = NextUsePosition(start);
    213   while (pos != NULL && !pos->RegisterIsBeneficial()) {
    214     pos = pos->next();
    215   }
    216   return pos;
    217 }
    218 
    219 
    220 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
    221   UsePosition* pos = NextUsePosition(start);
    222   while (pos != NULL && !pos->RequiresRegister()) {
    223     pos = pos->next();
    224   }
    225   return pos;
    226 }
    227 
    228 
    229 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
    230   // TODO(kmillikin): Comment. Now.
    231   if (pos.Value() <= Start().Value() && HasRegisterAssigned()) return false;
    232 
    233   // We cannot spill a live range that has a use requiring a register
    234   // at the current or the immediate next position.
    235   UsePosition* use_pos = NextRegisterPosition(pos);
    236   if (use_pos == NULL) return true;
    237   return use_pos->pos().Value() > pos.NextInstruction().Value();
    238 }
    239 
    240 
    241 UsePosition* LiveRange::FirstPosWithHint() const {
    242   UsePosition* pos = first_pos_;
    243   while (pos != NULL && !pos->HasHint()) pos = pos->next();
    244   return pos;
    245 }
    246 
    247 
    248 LOperand* LiveRange::CreateAssignedOperand() {
    249   LOperand* op = NULL;
    250   if (HasRegisterAssigned()) {
    251     ASSERT(!IsSpilled());
    252     if (IsDouble()) {
    253       op = LDoubleRegister::Create(assigned_register());
    254     } else {
    255       op = LRegister::Create(assigned_register());
    256     }
    257   } else if (IsSpilled()) {
    258     ASSERT(!HasRegisterAssigned());
    259     op = TopLevel()->GetSpillOperand();
    260     ASSERT(!op->IsUnallocated());
    261   } else {
    262     LUnallocated* unalloc = new LUnallocated(LUnallocated::NONE);
    263     unalloc->set_virtual_register(id_);
    264     op = unalloc;
    265   }
    266   return op;
    267 }
    268 
    269 
    270 UseInterval* LiveRange::FirstSearchIntervalForPosition(
    271     LifetimePosition position) const {
    272   if (current_interval_ == NULL) return first_interval_;
    273   if (current_interval_->start().Value() > position.Value()) {
    274     current_interval_ = NULL;
    275     return first_interval_;
    276   }
    277   return current_interval_;
    278 }
    279 
    280 
    281 void LiveRange::AdvanceLastProcessedMarker(
    282     UseInterval* to_start_of, LifetimePosition but_not_past) const {
    283   if (to_start_of == NULL) return;
    284   if (to_start_of->start().Value() > but_not_past.Value()) return;
    285   LifetimePosition start =
    286       current_interval_ == NULL ? LifetimePosition::Invalid()
    287                                 : current_interval_->start();
    288   if (to_start_of->start().Value() > start.Value()) {
    289     current_interval_ = to_start_of;
    290   }
    291 }
    292 
    293 
    294 void LiveRange::SplitAt(LifetimePosition position, LiveRange* result) {
    295   ASSERT(Start().Value() < position.Value());
    296   ASSERT(result->IsEmpty());
    297   // Find the last interval that ends before the position. If the
    298   // position is contained in one of the intervals in the chain, we
    299   // split that interval and use the first part.
    300   UseInterval* current = FirstSearchIntervalForPosition(position);
    301 
    302   // If the split position coincides with the beginning of a use interval
    303   // we need to split use positons in a special way.
    304   bool split_at_start = false;
    305 
    306   while (current != NULL) {
    307     if (current->Contains(position)) {
    308       current->SplitAt(position);
    309       break;
    310     }
    311     UseInterval* next = current->next();
    312     if (next->start().Value() >= position.Value()) {
    313       split_at_start = (next->start().Value() == position.Value());
    314       break;
    315     }
    316     current = next;
    317   }
    318 
    319   // Partition original use intervals to the two live ranges.
    320   UseInterval* before = current;
    321   UseInterval* after = before->next();
    322   result->last_interval_ = (last_interval_ == before)
    323       ? after            // Only interval in the range after split.
    324       : last_interval_;  // Last interval of the original range.
    325   result->first_interval_ = after;
    326   last_interval_ = before;
    327 
    328   // Find the last use position before the split and the first use
    329   // position after it.
    330   UsePosition* use_after = first_pos_;
    331   UsePosition* use_before = NULL;
    332   if (split_at_start) {
    333     // The split position coincides with the beginning of a use interval (the
    334     // end of a lifetime hole). Use at this position should be attributed to
    335     // the split child because split child owns use interval covering it.
    336     while (use_after != NULL && use_after->pos().Value() < position.Value()) {
    337       use_before = use_after;
    338       use_after = use_after->next();
    339     }
    340   } else {
    341     while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
    342       use_before = use_after;
    343       use_after = use_after->next();
    344     }
    345   }
    346 
    347   // Partition original use positions to the two live ranges.
    348   if (use_before != NULL) {
    349     use_before->next_ = NULL;
    350   } else {
    351     first_pos_ = NULL;
    352   }
    353   result->first_pos_ = use_after;
    354 
    355   // Link the new live range in the chain before any of the other
    356   // ranges linked from the range before the split.
    357   result->parent_ = (parent_ == NULL) ? this : parent_;
    358   result->next_ = next_;
    359   next_ = result;
    360 
    361 #ifdef DEBUG
    362   Verify();
    363   result->Verify();
    364 #endif
    365 }
    366 
    367 
    368 // This implements an ordering on live ranges so that they are ordered by their
    369 // start positions.  This is needed for the correctness of the register
    370 // allocation algorithm.  If two live ranges start at the same offset then there
    371 // is a tie breaker based on where the value is first used.  This part of the
    372 // ordering is merely a heuristic.
    373 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
    374   LifetimePosition start = Start();
    375   LifetimePosition other_start = other->Start();
    376   if (start.Value() == other_start.Value()) {
    377     UsePosition* pos = FirstPosWithHint();
    378     if (pos == NULL) return false;
    379     UsePosition* other_pos = other->first_pos();
    380     if (other_pos == NULL) return true;
    381     return pos->pos().Value() < other_pos->pos().Value();
    382   }
    383   return start.Value() < other_start.Value();
    384 }
    385 
    386 
    387 void LiveRange::ShortenTo(LifetimePosition start) {
    388   LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
    389   ASSERT(first_interval_ != NULL);
    390   ASSERT(first_interval_->start().Value() <= start.Value());
    391   ASSERT(start.Value() < first_interval_->end().Value());
    392   first_interval_->set_start(start);
    393 }
    394 
    395 
    396 void LiveRange::EnsureInterval(LifetimePosition start, LifetimePosition end) {
    397   LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
    398                          id_,
    399                          start.Value(),
    400                          end.Value());
    401   LifetimePosition new_end = end;
    402   while (first_interval_ != NULL &&
    403          first_interval_->start().Value() <= end.Value()) {
    404     if (first_interval_->end().Value() > end.Value()) {
    405       new_end = first_interval_->end();
    406     }
    407     first_interval_ = first_interval_->next();
    408   }
    409 
    410   UseInterval* new_interval = new UseInterval(start, new_end);
    411   new_interval->next_ = first_interval_;
    412   first_interval_ = new_interval;
    413   if (new_interval->next() == NULL) {
    414     last_interval_ = new_interval;
    415   }
    416 }
    417 
    418 
    419 void LiveRange::AddUseInterval(LifetimePosition start, LifetimePosition end) {
    420   LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
    421                          id_,
    422                          start.Value(),
    423                          end.Value());
    424   if (first_interval_ == NULL) {
    425     UseInterval* interval = new UseInterval(start, end);
    426     first_interval_ = interval;
    427     last_interval_ = interval;
    428   } else {
    429     if (end.Value() == first_interval_->start().Value()) {
    430       first_interval_->set_start(start);
    431     } else if (end.Value() < first_interval_->start().Value()) {
    432       UseInterval* interval = new UseInterval(start, end);
    433       interval->set_next(first_interval_);
    434       first_interval_ = interval;
    435     } else {
    436       // Order of instruction's processing (see ProcessInstructions) guarantees
    437       // that each new use interval either precedes or intersects with
    438       // last added interval.
    439       ASSERT(start.Value() < first_interval_->end().Value());
    440       first_interval_->start_ = Min(start, first_interval_->start_);
    441       first_interval_->end_ = Max(end, first_interval_->end_);
    442     }
    443   }
    444 }
    445 
    446 
    447 UsePosition* LiveRange::AddUsePosition(LifetimePosition pos,
    448                                        LOperand* operand) {
    449   LAllocator::TraceAlloc("Add to live range %d use position %d\n",
    450                          id_,
    451                          pos.Value());
    452   UsePosition* use_pos = new UsePosition(pos, operand);
    453   UsePosition* prev = NULL;
    454   UsePosition* current = first_pos_;
    455   while (current != NULL && current->pos().Value() < pos.Value()) {
    456     prev = current;
    457     current = current->next();
    458   }
    459 
    460   if (prev == NULL) {
    461     use_pos->set_next(first_pos_);
    462     first_pos_ = use_pos;
    463   } else {
    464     use_pos->next_ = prev->next_;
    465     prev->next_ = use_pos;
    466   }
    467 
    468   return use_pos;
    469 }
    470 
    471 
    472 void LiveRange::ConvertOperands() {
    473   LOperand* op = CreateAssignedOperand();
    474   UsePosition* use_pos = first_pos();
    475   while (use_pos != NULL) {
    476     ASSERT(Start().Value() <= use_pos->pos().Value() &&
    477            use_pos->pos().Value() <= End().Value());
    478 
    479     if (use_pos->HasOperand()) {
    480       ASSERT(op->IsRegister() || op->IsDoubleRegister() ||
    481              !use_pos->RequiresRegister());
    482       use_pos->operand()->ConvertTo(op->kind(), op->index());
    483     }
    484     use_pos = use_pos->next();
    485   }
    486 }
    487 
    488 
    489 bool LiveRange::CanCover(LifetimePosition position) const {
    490   if (IsEmpty()) return false;
    491   return Start().Value() <= position.Value() &&
    492          position.Value() < End().Value();
    493 }
    494 
    495 
    496 bool LiveRange::Covers(LifetimePosition position) {
    497   if (!CanCover(position)) return false;
    498   UseInterval* start_search = FirstSearchIntervalForPosition(position);
    499   for (UseInterval* interval = start_search;
    500        interval != NULL;
    501        interval = interval->next()) {
    502     ASSERT(interval->next() == NULL ||
    503            interval->next()->start().Value() >= interval->start().Value());
    504     AdvanceLastProcessedMarker(interval, position);
    505     if (interval->Contains(position)) return true;
    506     if (interval->start().Value() > position.Value()) return false;
    507   }
    508   return false;
    509 }
    510 
    511 
    512 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
    513   UseInterval* b = other->first_interval();
    514   if (b == NULL) return LifetimePosition::Invalid();
    515   LifetimePosition advance_last_processed_up_to = b->start();
    516   UseInterval* a = FirstSearchIntervalForPosition(b->start());
    517   while (a != NULL && b != NULL) {
    518     if (a->start().Value() > other->End().Value()) break;
    519     if (b->start().Value() > End().Value()) break;
    520     LifetimePosition cur_intersection = a->Intersect(b);
    521     if (cur_intersection.IsValid()) {
    522       return cur_intersection;
    523     }
    524     if (a->start().Value() < b->start().Value()) {
    525       a = a->next();
    526       if (a == NULL || a->start().Value() > other->End().Value()) break;
    527       AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
    528     } else {
    529       b = b->next();
    530     }
    531   }
    532   return LifetimePosition::Invalid();
    533 }
    534 
    535 
    536 LAllocator::LAllocator(int num_values, HGraph* graph)
    537     : chunk_(NULL),
    538       live_in_sets_(graph->blocks()->length()),
    539       live_ranges_(num_values * 2),
    540       fixed_live_ranges_(NULL),
    541       fixed_double_live_ranges_(NULL),
    542       unhandled_live_ranges_(num_values * 2),
    543       active_live_ranges_(8),
    544       inactive_live_ranges_(8),
    545       reusable_slots_(8),
    546       next_virtual_register_(num_values),
    547       first_artificial_register_(num_values),
    548       mode_(NONE),
    549       num_registers_(-1),
    550       graph_(graph),
    551       has_osr_entry_(false) {}
    552 
    553 
    554 void LAllocator::InitializeLivenessAnalysis() {
    555   // Initialize the live_in sets for each block to NULL.
    556   int block_count = graph_->blocks()->length();
    557   live_in_sets_.Initialize(block_count);
    558   live_in_sets_.AddBlock(NULL, block_count);
    559 }
    560 
    561 
    562 BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
    563   // Compute live out for the given block, except not including backward
    564   // successor edges.
    565   BitVector* live_out = new BitVector(next_virtual_register_);
    566 
    567   // Process all successor blocks.
    568   HBasicBlock* successor = block->end()->FirstSuccessor();
    569   while (successor != NULL) {
    570     // Add values live on entry to the successor. Note the successor's
    571     // live_in will not be computed yet for backwards edges.
    572     BitVector* live_in = live_in_sets_[successor->block_id()];
    573     if (live_in != NULL) live_out->Union(*live_in);
    574 
    575     // All phi input operands corresponding to this successor edge are live
    576     // out from this block.
    577     int index = successor->PredecessorIndexOf(block);
    578     const ZoneList<HPhi*>* phis = successor->phis();
    579     for (int i = 0; i < phis->length(); ++i) {
    580       HPhi* phi = phis->at(i);
    581       if (!phi->OperandAt(index)->IsConstant()) {
    582         live_out->Add(phi->OperandAt(index)->id());
    583       }
    584     }
    585 
    586     // Check if we are done with second successor.
    587     if (successor == block->end()->SecondSuccessor()) break;
    588 
    589     successor = block->end()->SecondSuccessor();
    590   }
    591 
    592   return live_out;
    593 }
    594 
    595 
    596 void LAllocator::AddInitialIntervals(HBasicBlock* block,
    597                                      BitVector* live_out) {
    598   // Add an interval that includes the entire block to the live range for
    599   // each live_out value.
    600   LifetimePosition start = LifetimePosition::FromInstructionIndex(
    601       block->first_instruction_index());
    602   LifetimePosition end = LifetimePosition::FromInstructionIndex(
    603       block->last_instruction_index()).NextInstruction();
    604   BitVector::Iterator iterator(live_out);
    605   while (!iterator.Done()) {
    606     int operand_index = iterator.Current();
    607     LiveRange* range = LiveRangeFor(operand_index);
    608     range->AddUseInterval(start, end);
    609     iterator.Advance();
    610   }
    611 }
    612 
    613 
    614 int LAllocator::FixedDoubleLiveRangeID(int index) {
    615   return -index - 1 - Register::kNumAllocatableRegisters;
    616 }
    617 
    618 
    619 LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
    620                                     int pos,
    621                                     bool is_tagged) {
    622   TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
    623   ASSERT(operand->HasFixedPolicy());
    624   if (operand->policy() == LUnallocated::FIXED_SLOT) {
    625     operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_index());
    626   } else if (operand->policy() == LUnallocated::FIXED_REGISTER) {
    627     int reg_index = operand->fixed_index();
    628     operand->ConvertTo(LOperand::REGISTER, reg_index);
    629   } else if (operand->policy() == LUnallocated::FIXED_DOUBLE_REGISTER) {
    630     int reg_index = operand->fixed_index();
    631     operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
    632   } else {
    633     UNREACHABLE();
    634   }
    635   if (is_tagged) {
    636     TraceAlloc("Fixed reg is tagged at %d\n", pos);
    637     LInstruction* instr = InstructionAt(pos);
    638     if (instr->HasPointerMap()) {
    639       instr->pointer_map()->RecordPointer(operand);
    640     }
    641   }
    642   return operand;
    643 }
    644 
    645 
    646 LiveRange* LAllocator::FixedLiveRangeFor(int index) {
    647   ASSERT(index < Register::kNumAllocatableRegisters);
    648   LiveRange* result = fixed_live_ranges_[index];
    649   if (result == NULL) {
    650     result = new LiveRange(FixedLiveRangeID(index));
    651     ASSERT(result->IsFixed());
    652     result->set_assigned_register(index, GENERAL_REGISTERS);
    653     fixed_live_ranges_[index] = result;
    654   }
    655   return result;
    656 }
    657 
    658 
    659 LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
    660   ASSERT(index < DoubleRegister::kNumAllocatableRegisters);
    661   LiveRange* result = fixed_double_live_ranges_[index];
    662   if (result == NULL) {
    663     result = new LiveRange(FixedDoubleLiveRangeID(index));
    664     ASSERT(result->IsFixed());
    665     result->set_assigned_register(index, DOUBLE_REGISTERS);
    666     fixed_double_live_ranges_[index] = result;
    667   }
    668   return result;
    669 }
    670 
    671 
    672 LiveRange* LAllocator::LiveRangeFor(int index) {
    673   if (index >= live_ranges_.length()) {
    674     live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1);
    675   }
    676   LiveRange* result = live_ranges_[index];
    677   if (result == NULL) {
    678     result = new LiveRange(index);
    679     live_ranges_[index] = result;
    680   }
    681   return result;
    682 }
    683 
    684 
    685 LGap* LAllocator::GetLastGap(HBasicBlock* block) {
    686   int last_instruction = block->last_instruction_index();
    687   int index = chunk_->NearestGapPos(last_instruction);
    688   return GapAt(index);
    689 }
    690 
    691 
    692 HPhi* LAllocator::LookupPhi(LOperand* operand) const {
    693   if (!operand->IsUnallocated()) return NULL;
    694   int index = operand->VirtualRegister();
    695   HValue* instr = graph_->LookupValue(index);
    696   if (instr != NULL && instr->IsPhi()) {
    697     return HPhi::cast(instr);
    698   }
    699   return NULL;
    700 }
    701 
    702 
    703 LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
    704   if (operand->IsUnallocated()) {
    705     return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
    706   } else if (operand->IsRegister()) {
    707     return FixedLiveRangeFor(operand->index());
    708   } else if (operand->IsDoubleRegister()) {
    709     return FixedDoubleLiveRangeFor(operand->index());
    710   } else {
    711     return NULL;
    712   }
    713 }
    714 
    715 
    716 void LAllocator::Define(LifetimePosition position,
    717                         LOperand* operand,
    718                         LOperand* hint) {
    719   LiveRange* range = LiveRangeFor(operand);
    720   if (range == NULL) return;
    721 
    722   if (range->IsEmpty() || range->Start().Value() > position.Value()) {
    723     // Can happen if there is a definition without use.
    724     range->AddUseInterval(position, position.NextInstruction());
    725     range->AddUsePosition(position.NextInstruction(), NULL);
    726   } else {
    727     range->ShortenTo(position);
    728   }
    729 
    730   if (operand->IsUnallocated()) {
    731     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
    732     range->AddUsePosition(position, unalloc_operand)->set_hint(hint);
    733   }
    734 }
    735 
    736 
    737 void LAllocator::Use(LifetimePosition block_start,
    738                      LifetimePosition position,
    739                      LOperand* operand,
    740                      LOperand* hint) {
    741   LiveRange* range = LiveRangeFor(operand);
    742   if (range == NULL) return;
    743   if (operand->IsUnallocated()) {
    744     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
    745     range->AddUsePosition(position, unalloc_operand)->set_hint(hint);
    746   }
    747   range->AddUseInterval(block_start, position);
    748 }
    749 
    750 
    751 void LAllocator::AddConstraintsGapMove(int index,
    752                                        LOperand* from,
    753                                        LOperand* to) {
    754   LGap* gap = GapAt(index);
    755   LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
    756   if (from->IsUnallocated()) {
    757     const ZoneList<LMoveOperands>* move_operands = move->move_operands();
    758     for (int i = 0; i < move_operands->length(); ++i) {
    759       LMoveOperands cur = move_operands->at(i);
    760       LOperand* cur_to = cur.destination();
    761       if (cur_to->IsUnallocated()) {
    762         if (cur_to->VirtualRegister() == from->VirtualRegister()) {
    763           move->AddMove(cur.source(), to);
    764           return;
    765         }
    766       }
    767     }
    768   }
    769   move->AddMove(from, to);
    770 }
    771 
    772 
    773 void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
    774   int start = block->first_instruction_index();
    775   int end = block->last_instruction_index();
    776   for (int i = start; i <= end; ++i) {
    777     if (IsGapAt(i)) {
    778       LInstruction* instr = NULL;
    779       LInstruction* prev_instr = NULL;
    780       if (i < end) instr = InstructionAt(i + 1);
    781       if (i > start) prev_instr = InstructionAt(i - 1);
    782       MeetConstraintsBetween(prev_instr, instr, i);
    783     }
    784   }
    785 }
    786 
    787 
    788 void LAllocator::MeetConstraintsBetween(LInstruction* first,
    789                                         LInstruction* second,
    790                                         int gap_index) {
    791   // Handle fixed temporaries.
    792   if (first != NULL) {
    793     for (TempIterator it(first); it.HasNext(); it.Advance()) {
    794       LUnallocated* temp = LUnallocated::cast(it.Next());
    795       if (temp->HasFixedPolicy()) {
    796         AllocateFixed(temp, gap_index - 1, false);
    797       }
    798     }
    799   }
    800 
    801   // Handle fixed output operand.
    802   if (first != NULL && first->Output() != NULL) {
    803     LUnallocated* first_output = LUnallocated::cast(first->Output());
    804     LiveRange* range = LiveRangeFor(first_output->VirtualRegister());
    805     bool assigned = false;
    806     if (first_output->HasFixedPolicy()) {
    807       LUnallocated* output_copy = first_output->CopyUnconstrained();
    808       bool is_tagged = HasTaggedValue(first_output->VirtualRegister());
    809       AllocateFixed(first_output, gap_index, is_tagged);
    810 
    811       // This value is produced on the stack, we never need to spill it.
    812       if (first_output->IsStackSlot()) {
    813         range->SetSpillOperand(first_output);
    814         range->SetSpillStartIndex(gap_index - 1);
    815         assigned = true;
    816       }
    817       chunk_->AddGapMove(gap_index, first_output, output_copy);
    818     }
    819 
    820     if (!assigned) {
    821       range->SetSpillStartIndex(gap_index);
    822 
    823       // This move to spill operand is not a real use. Liveness analysis
    824       // and splitting of live ranges do not account for it.
    825       // Thus it should be inserted to a lifetime position corresponding to
    826       // the instruction end.
    827       LGap* gap = GapAt(gap_index);
    828       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE);
    829       move->AddMove(first_output, range->GetSpillOperand());
    830     }
    831   }
    832 
    833   // Handle fixed input operands of second instruction.
    834   if (second != NULL) {
    835     for (UseIterator it(second); it.HasNext(); it.Advance()) {
    836       LUnallocated* cur_input = LUnallocated::cast(it.Next());
    837       if (cur_input->HasFixedPolicy()) {
    838         LUnallocated* input_copy = cur_input->CopyUnconstrained();
    839         bool is_tagged = HasTaggedValue(cur_input->VirtualRegister());
    840         AllocateFixed(cur_input, gap_index + 1, is_tagged);
    841         AddConstraintsGapMove(gap_index, input_copy, cur_input);
    842       } else if (cur_input->policy() == LUnallocated::WRITABLE_REGISTER) {
    843         // The live range of writable input registers always goes until the end
    844         // of the instruction.
    845         ASSERT(!cur_input->IsUsedAtStart());
    846 
    847         LUnallocated* input_copy = cur_input->CopyUnconstrained();
    848         cur_input->set_virtual_register(next_virtual_register_++);
    849 
    850         if (RequiredRegisterKind(input_copy->virtual_register()) ==
    851             DOUBLE_REGISTERS) {
    852           double_artificial_registers_.Add(
    853               cur_input->virtual_register() - first_artificial_register_);
    854         }
    855 
    856         AddConstraintsGapMove(gap_index, input_copy, cur_input);
    857       }
    858     }
    859   }
    860 
    861   // Handle "output same as input" for second instruction.
    862   if (second != NULL && second->Output() != NULL) {
    863     LUnallocated* second_output = LUnallocated::cast(second->Output());
    864     if (second_output->HasSameAsInputPolicy()) {
    865       LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
    866       int output_vreg = second_output->VirtualRegister();
    867       int input_vreg = cur_input->VirtualRegister();
    868 
    869       LUnallocated* input_copy = cur_input->CopyUnconstrained();
    870       cur_input->set_virtual_register(second_output->virtual_register());
    871       AddConstraintsGapMove(gap_index, input_copy, cur_input);
    872 
    873       if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
    874         int index = gap_index + 1;
    875         LInstruction* instr = InstructionAt(index);
    876         if (instr->HasPointerMap()) {
    877           instr->pointer_map()->RecordPointer(input_copy);
    878         }
    879       } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
    880         // The input is assumed to immediately have a tagged representation,
    881         // before the pointer map can be used. I.e. the pointer map at the
    882         // instruction will include the output operand (whose value at the
    883         // beginning of the instruction is equal to the input operand). If
    884         // this is not desired, then the pointer map at this instruction needs
    885         // to be adjusted manually.
    886       }
    887     }
    888   }
    889 }
    890 
    891 
    892 void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
    893   int block_start = block->first_instruction_index();
    894   int index = block->last_instruction_index();
    895 
    896   LifetimePosition block_start_position =
    897       LifetimePosition::FromInstructionIndex(block_start);
    898 
    899   while (index >= block_start) {
    900     LifetimePosition curr_position =
    901         LifetimePosition::FromInstructionIndex(index);
    902 
    903     if (IsGapAt(index)) {
    904       // We have a gap at this position.
    905       LGap* gap = GapAt(index);
    906       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
    907       const ZoneList<LMoveOperands>* move_operands = move->move_operands();
    908       for (int i = 0; i < move_operands->length(); ++i) {
    909         LMoveOperands* cur = &move_operands->at(i);
    910         if (cur->IsIgnored()) continue;
    911         LOperand* from = cur->source();
    912         LOperand* to = cur->destination();
    913         HPhi* phi = LookupPhi(to);
    914         LOperand* hint = to;
    915         if (phi != NULL) {
    916           // This is a phi resolving move.
    917           if (!phi->block()->IsLoopHeader()) {
    918             hint = LiveRangeFor(phi->id())->FirstHint();
    919           }
    920         } else {
    921           if (to->IsUnallocated()) {
    922             if (live->Contains(to->VirtualRegister())) {
    923               Define(curr_position, to, from);
    924               live->Remove(to->VirtualRegister());
    925             } else {
    926               cur->Eliminate();
    927               continue;
    928             }
    929           } else {
    930             Define(curr_position, to, from);
    931           }
    932         }
    933         Use(block_start_position, curr_position, from, hint);
    934         if (from->IsUnallocated()) {
    935           live->Add(from->VirtualRegister());
    936         }
    937       }
    938     } else {
    939       ASSERT(!IsGapAt(index));
    940       LInstruction* instr = InstructionAt(index);
    941 
    942       if (instr != NULL) {
    943         LOperand* output = instr->Output();
    944         if (output != NULL) {
    945           if (output->IsUnallocated()) live->Remove(output->VirtualRegister());
    946           Define(curr_position, output, NULL);
    947         }
    948 
    949         if (instr->IsMarkedAsCall()) {
    950           for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) {
    951             if (output == NULL || !output->IsRegister() ||
    952                 output->index() != i) {
    953               LiveRange* range = FixedLiveRangeFor(i);
    954               range->AddUseInterval(curr_position,
    955                                     curr_position.InstructionEnd());
    956             }
    957           }
    958         }
    959 
    960         if (instr->IsMarkedAsCall() || instr->IsMarkedAsSaveDoubles()) {
    961           for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) {
    962             if (output == NULL || !output->IsDoubleRegister() ||
    963                 output->index() != i) {
    964               LiveRange* range = FixedDoubleLiveRangeFor(i);
    965               range->AddUseInterval(curr_position,
    966                                     curr_position.InstructionEnd());
    967             }
    968           }
    969         }
    970 
    971         for (UseIterator it(instr); it.HasNext(); it.Advance()) {
    972           LOperand* input = it.Next();
    973 
    974           LifetimePosition use_pos;
    975           if (input->IsUnallocated() &&
    976               LUnallocated::cast(input)->IsUsedAtStart()) {
    977             use_pos = curr_position;
    978           } else {
    979             use_pos = curr_position.InstructionEnd();
    980           }
    981 
    982           Use(block_start_position, use_pos, input, NULL);
    983           if (input->IsUnallocated()) live->Add(input->VirtualRegister());
    984         }
    985 
    986         for (TempIterator it(instr); it.HasNext(); it.Advance()) {
    987           LOperand* temp = it.Next();
    988           if (instr->IsMarkedAsCall()) {
    989             if (temp->IsRegister()) continue;
    990             if (temp->IsUnallocated()) {
    991               LUnallocated* temp_unalloc = LUnallocated::cast(temp);
    992               if (temp_unalloc->HasFixedPolicy()) {
    993                 continue;
    994               }
    995             }
    996           }
    997           Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
    998           Define(curr_position, temp, NULL);
    999         }
   1000       }
   1001     }
   1002 
   1003     index = index - 1;
   1004   }
   1005 }
   1006 
   1007 
   1008 void LAllocator::ResolvePhis(HBasicBlock* block) {
   1009   const ZoneList<HPhi*>* phis = block->phis();
   1010   for (int i = 0; i < phis->length(); ++i) {
   1011     HPhi* phi = phis->at(i);
   1012     LUnallocated* phi_operand = new LUnallocated(LUnallocated::NONE);
   1013     phi_operand->set_virtual_register(phi->id());
   1014     for (int j = 0; j < phi->OperandCount(); ++j) {
   1015       HValue* op = phi->OperandAt(j);
   1016       LOperand* operand = NULL;
   1017       if (op->IsConstant() && op->EmitAtUses()) {
   1018         HConstant* constant = HConstant::cast(op);
   1019         operand = chunk_->DefineConstantOperand(constant);
   1020       } else {
   1021         ASSERT(!op->EmitAtUses());
   1022         LUnallocated* unalloc = new LUnallocated(LUnallocated::NONE);
   1023         unalloc->set_virtual_register(op->id());
   1024         operand = unalloc;
   1025       }
   1026       HBasicBlock* cur_block = block->predecessors()->at(j);
   1027       // The gap move must be added without any special processing as in
   1028       // the AddConstraintsGapMove.
   1029       chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
   1030                          operand,
   1031                          phi_operand);
   1032     }
   1033 
   1034     LiveRange* live_range = LiveRangeFor(phi->id());
   1035     LLabel* label = chunk_->GetLabel(phi->block()->block_id());
   1036     label->GetOrCreateParallelMove(LGap::START)->
   1037         AddMove(phi_operand, live_range->GetSpillOperand());
   1038     live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
   1039   }
   1040 }
   1041 
   1042 
   1043 void LAllocator::Allocate(LChunk* chunk) {
   1044   ASSERT(chunk_ == NULL);
   1045   chunk_ = chunk;
   1046   MeetRegisterConstraints();
   1047   ResolvePhis();
   1048   BuildLiveRanges();
   1049   AllocateGeneralRegisters();
   1050   AllocateDoubleRegisters();
   1051   PopulatePointerMaps();
   1052   if (has_osr_entry_) ProcessOsrEntry();
   1053   ConnectRanges();
   1054   ResolveControlFlow();
   1055 }
   1056 
   1057 
   1058 void LAllocator::MeetRegisterConstraints() {
   1059   HPhase phase("Register constraints", chunk_);
   1060   first_artificial_register_ = next_virtual_register_;
   1061   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
   1062   for (int i = 0; i < blocks->length(); ++i) {
   1063     HBasicBlock* block = blocks->at(i);
   1064     MeetRegisterConstraints(block);
   1065   }
   1066 }
   1067 
   1068 
   1069 void LAllocator::ResolvePhis() {
   1070   HPhase phase("Resolve phis", chunk_);
   1071 
   1072   // Process the blocks in reverse order.
   1073   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
   1074   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
   1075     HBasicBlock* block = blocks->at(block_id);
   1076     ResolvePhis(block);
   1077   }
   1078 }
   1079 
   1080 
   1081 void LAllocator::ResolveControlFlow(LiveRange* range,
   1082                                     HBasicBlock* block,
   1083                                     HBasicBlock* pred) {
   1084   LifetimePosition pred_end =
   1085       LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
   1086   LifetimePosition cur_start =
   1087       LifetimePosition::FromInstructionIndex(block->first_instruction_index());
   1088   LiveRange* pred_cover = NULL;
   1089   LiveRange* cur_cover = NULL;
   1090   LiveRange* cur_range = range;
   1091   while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
   1092     if (cur_range->CanCover(cur_start)) {
   1093       ASSERT(cur_cover == NULL);
   1094       cur_cover = cur_range;
   1095     }
   1096     if (cur_range->CanCover(pred_end)) {
   1097       ASSERT(pred_cover == NULL);
   1098       pred_cover = cur_range;
   1099     }
   1100     cur_range = cur_range->next();
   1101   }
   1102 
   1103   if (cur_cover->IsSpilled()) return;
   1104   ASSERT(pred_cover != NULL && cur_cover != NULL);
   1105   if (pred_cover != cur_cover) {
   1106     LOperand* pred_op = pred_cover->CreateAssignedOperand();
   1107     LOperand* cur_op = cur_cover->CreateAssignedOperand();
   1108     if (!pred_op->Equals(cur_op)) {
   1109       LGap* gap = NULL;
   1110       if (block->predecessors()->length() == 1) {
   1111         gap = GapAt(block->first_instruction_index());
   1112       } else {
   1113         ASSERT(pred->end()->SecondSuccessor() == NULL);
   1114         gap = GetLastGap(pred);
   1115 
   1116         // We are going to insert a move before the branch instruction.
   1117         // Some branch instructions (e.g. loops' back edges)
   1118         // can potentially cause a GC so they have a pointer map.
   1119         // By insterting a move we essentially create a copy of a
   1120         // value which is invisible to PopulatePointerMaps(), because we store
   1121         // it into a location different from the operand of a live range
   1122         // covering a branch instruction.
   1123         // Thus we need to manually record a pointer.
   1124         if (HasTaggedValue(range->id())) {
   1125           LInstruction* branch = InstructionAt(pred->last_instruction_index());
   1126           if (branch->HasPointerMap()) {
   1127             branch->pointer_map()->RecordPointer(cur_op);
   1128           }
   1129         }
   1130       }
   1131       gap->GetOrCreateParallelMove(LGap::START)->AddMove(pred_op, cur_op);
   1132     }
   1133   }
   1134 }
   1135 
   1136 
   1137 LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
   1138   int index = pos.InstructionIndex();
   1139   if (IsGapAt(index)) {
   1140     LGap* gap = GapAt(index);
   1141     return gap->GetOrCreateParallelMove(
   1142         pos.IsInstructionStart() ? LGap::START : LGap::END);
   1143   }
   1144   int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
   1145   return GapAt(gap_pos)->GetOrCreateParallelMove(
   1146       (gap_pos < index) ? LGap::AFTER : LGap::BEFORE);
   1147 }
   1148 
   1149 
   1150 HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
   1151   LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
   1152   return gap->block();
   1153 }
   1154 
   1155 
   1156 void LAllocator::ConnectRanges() {
   1157   HPhase phase("Connect ranges", this);
   1158   for (int i = 0; i < live_ranges()->length(); ++i) {
   1159     LiveRange* first_range = live_ranges()->at(i);
   1160     if (first_range == NULL || first_range->parent() != NULL) continue;
   1161 
   1162     LiveRange* second_range = first_range->next();
   1163     while (second_range != NULL) {
   1164       LifetimePosition pos = second_range->Start();
   1165 
   1166       if (!second_range->IsSpilled()) {
   1167         // Add gap move if the two live ranges touch and there is no block
   1168         // boundary.
   1169         if (first_range->End().Value() == pos.Value()) {
   1170           bool should_insert = true;
   1171           if (IsBlockBoundary(pos)) {
   1172             should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
   1173           }
   1174           if (should_insert) {
   1175             LParallelMove* move = GetConnectingParallelMove(pos);
   1176             LOperand* prev_operand = first_range->CreateAssignedOperand();
   1177             LOperand* cur_operand = second_range->CreateAssignedOperand();
   1178             move->AddMove(prev_operand, cur_operand);
   1179           }
   1180         }
   1181       }
   1182 
   1183       first_range = second_range;
   1184       second_range = second_range->next();
   1185     }
   1186   }
   1187 }
   1188 
   1189 
   1190 bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
   1191   if (block->predecessors()->length() != 1) return false;
   1192   return block->predecessors()->first()->block_id() == block->block_id() - 1;
   1193 }
   1194 
   1195 
   1196 void LAllocator::ResolveControlFlow() {
   1197   HPhase phase("Resolve control flow", this);
   1198   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
   1199   for (int block_id = 1; block_id < blocks->length(); ++block_id) {
   1200     HBasicBlock* block = blocks->at(block_id);
   1201     if (CanEagerlyResolveControlFlow(block)) continue;
   1202     BitVector* live = live_in_sets_[block->block_id()];
   1203     BitVector::Iterator iterator(live);
   1204     while (!iterator.Done()) {
   1205       int operand_index = iterator.Current();
   1206       for (int i = 0; i < block->predecessors()->length(); ++i) {
   1207         HBasicBlock* cur = block->predecessors()->at(i);
   1208         LiveRange* cur_range = LiveRangeFor(operand_index);
   1209         ResolveControlFlow(cur_range, block, cur);
   1210       }
   1211       iterator.Advance();
   1212     }
   1213   }
   1214 }
   1215 
   1216 
   1217 void LAllocator::BuildLiveRanges() {
   1218   HPhase phase("Build live ranges", this);
   1219   InitializeLivenessAnalysis();
   1220   // Process the blocks in reverse order.
   1221   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
   1222   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
   1223     HBasicBlock* block = blocks->at(block_id);
   1224     BitVector* live = ComputeLiveOut(block);
   1225     // Initially consider all live_out values live for the entire block. We
   1226     // will shorten these intervals if necessary.
   1227     AddInitialIntervals(block, live);
   1228 
   1229     // Process the instructions in reverse order, generating and killing
   1230     // live values.
   1231     ProcessInstructions(block, live);
   1232     // All phi output operands are killed by this block.
   1233     const ZoneList<HPhi*>* phis = block->phis();
   1234     for (int i = 0; i < phis->length(); ++i) {
   1235       // The live range interval already ends at the first instruction of the
   1236       // block.
   1237       HPhi* phi = phis->at(i);
   1238       live->Remove(phi->id());
   1239 
   1240       LOperand* hint = NULL;
   1241       LOperand* phi_operand = NULL;
   1242       LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
   1243       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
   1244       for (int j = 0; j < move->move_operands()->length(); ++j) {
   1245         LOperand* to = move->move_operands()->at(j).destination();
   1246         if (to->IsUnallocated() && to->VirtualRegister() == phi->id()) {
   1247           hint = move->move_operands()->at(j).source();
   1248           phi_operand = to;
   1249           break;
   1250         }
   1251       }
   1252       ASSERT(hint != NULL);
   1253 
   1254       LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
   1255               block->first_instruction_index());
   1256       Define(block_start, phi_operand, hint);
   1257     }
   1258 
   1259     // Now live is live_in for this block except not including values live
   1260     // out on backward successor edges.
   1261     live_in_sets_[block_id] = live;
   1262 
   1263     // If this block is a loop header go back and patch up the necessary
   1264     // predecessor blocks.
   1265     if (block->IsLoopHeader()) {
   1266       // TODO(kmillikin): Need to be able to get the last block of the loop
   1267       // in the loop information. Add a live range stretching from the first
   1268       // loop instruction to the last for each value live on entry to the
   1269       // header.
   1270       HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
   1271       BitVector::Iterator iterator(live);
   1272       LifetimePosition start = LifetimePosition::FromInstructionIndex(
   1273           block->first_instruction_index());
   1274       LifetimePosition end = LifetimePosition::FromInstructionIndex(
   1275           back_edge->last_instruction_index()).NextInstruction();
   1276       while (!iterator.Done()) {
   1277         int operand_index = iterator.Current();
   1278         LiveRange* range = LiveRangeFor(operand_index);
   1279         range->EnsureInterval(start, end);
   1280         iterator.Advance();
   1281       }
   1282 
   1283       for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
   1284         live_in_sets_[i]->Union(*live);
   1285       }
   1286     }
   1287 
   1288 #ifdef DEBUG
   1289     if (block_id == 0) {
   1290       BitVector::Iterator iterator(live);
   1291       bool found = false;
   1292       while (!iterator.Done()) {
   1293         found = true;
   1294         int operand_index = iterator.Current();
   1295         PrintF("Function: %s\n",
   1296                *chunk_->info()->function()->debug_name()->ToCString());
   1297         PrintF("Value %d used before first definition!\n", operand_index);
   1298         LiveRange* range = LiveRangeFor(operand_index);
   1299         PrintF("First use is at %d\n", range->first_pos()->pos().Value());
   1300         iterator.Advance();
   1301       }
   1302       ASSERT(!found);
   1303     }
   1304 #endif
   1305   }
   1306 }
   1307 
   1308 
   1309 bool LAllocator::SafePointsAreInOrder() const {
   1310   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
   1311   int safe_point = 0;
   1312   for (int i = 0; i < pointer_maps->length(); ++i) {
   1313     LPointerMap* map = pointer_maps->at(i);
   1314     if (safe_point > map->lithium_position()) return false;
   1315     safe_point = map->lithium_position();
   1316   }
   1317   return true;
   1318 }
   1319 
   1320 
   1321 void LAllocator::PopulatePointerMaps() {
   1322   HPhase phase("Populate pointer maps", this);
   1323   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
   1324 
   1325   ASSERT(SafePointsAreInOrder());
   1326 
   1327   // Iterate over all safe point positions and record a pointer
   1328   // for all spilled live ranges at this point.
   1329   int first_safe_point_index = 0;
   1330   int last_range_start = 0;
   1331   for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
   1332     LiveRange* range = live_ranges()->at(range_idx);
   1333     if (range == NULL) continue;
   1334     // Iterate over the first parts of multi-part live ranges.
   1335     if (range->parent() != NULL) continue;
   1336     // Skip non-pointer values.
   1337     if (!HasTaggedValue(range->id())) continue;
   1338     // Skip empty live ranges.
   1339     if (range->IsEmpty()) continue;
   1340 
   1341     // Find the extent of the range and its children.
   1342     int start = range->Start().InstructionIndex();
   1343     int end = 0;
   1344     for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
   1345       LifetimePosition this_end = cur->End();
   1346       if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
   1347       ASSERT(cur->Start().InstructionIndex() >= start);
   1348     }
   1349 
   1350     // Most of the ranges are in order, but not all.  Keep an eye on when
   1351     // they step backwards and reset the first_safe_point_index so we don't
   1352     // miss any safe points.
   1353     if (start < last_range_start) {
   1354       first_safe_point_index = 0;
   1355     }
   1356     last_range_start = start;
   1357 
   1358     // Step across all the safe points that are before the start of this range,
   1359     // recording how far we step in order to save doing this for the next range.
   1360     while (first_safe_point_index < pointer_maps->length()) {
   1361       LPointerMap* map = pointer_maps->at(first_safe_point_index);
   1362       int safe_point = map->lithium_position();
   1363       if (safe_point >= start) break;
   1364       first_safe_point_index++;
   1365     }
   1366 
   1367     // Step through the safe points to see whether they are in the range.
   1368     for (int safe_point_index = first_safe_point_index;
   1369          safe_point_index < pointer_maps->length();
   1370          ++safe_point_index) {
   1371       LPointerMap* map = pointer_maps->at(safe_point_index);
   1372       int safe_point = map->lithium_position();
   1373 
   1374       // The safe points are sorted so we can stop searching here.
   1375       if (safe_point - 1 > end) break;
   1376 
   1377       // Advance to the next active range that covers the current
   1378       // safe point position.
   1379       LifetimePosition safe_point_pos =
   1380           LifetimePosition::FromInstructionIndex(safe_point);
   1381       LiveRange* cur = range;
   1382       while (cur != NULL && !cur->Covers(safe_point_pos.PrevInstruction())) {
   1383         cur = cur->next();
   1384       }
   1385       if (cur == NULL) continue;
   1386 
   1387       // Check if the live range is spilled and the safe point is after
   1388       // the spill position.
   1389       if (range->HasAllocatedSpillOperand() &&
   1390           safe_point >= range->spill_start_index()) {
   1391         TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
   1392                    range->id(), range->spill_start_index(), safe_point);
   1393         map->RecordPointer(range->GetSpillOperand());
   1394       }
   1395 
   1396       if (!cur->IsSpilled()) {
   1397         TraceAlloc("Pointer in register for range %d (start at %d) "
   1398                    "at safe point %d\n",
   1399                    cur->id(), cur->Start().Value(), safe_point);
   1400         LOperand* operand = cur->CreateAssignedOperand();
   1401         ASSERT(!operand->IsStackSlot());
   1402         map->RecordPointer(operand);
   1403       }
   1404     }
   1405   }
   1406 }
   1407 
   1408 
   1409 void LAllocator::ProcessOsrEntry() {
   1410   const ZoneList<LInstruction*>* instrs = chunk_->instructions();
   1411 
   1412   // Linear search for the OSR entry instruction in the chunk.
   1413   int index = -1;
   1414   while (++index < instrs->length() &&
   1415          !instrs->at(index)->IsOsrEntry()) {
   1416   }
   1417   ASSERT(index < instrs->length());
   1418   LOsrEntry* instruction = LOsrEntry::cast(instrs->at(index));
   1419 
   1420   LifetimePosition position = LifetimePosition::FromInstructionIndex(index);
   1421   for (int i = 0; i < live_ranges()->length(); ++i) {
   1422     LiveRange* range = live_ranges()->at(i);
   1423     if (range != NULL) {
   1424       if (range->Covers(position) &&
   1425           range->HasRegisterAssigned() &&
   1426           range->TopLevel()->HasAllocatedSpillOperand()) {
   1427         int reg_index = range->assigned_register();
   1428         LOperand* spill_operand = range->TopLevel()->GetSpillOperand();
   1429         if (range->IsDouble()) {
   1430           instruction->MarkSpilledDoubleRegister(reg_index, spill_operand);
   1431         } else {
   1432           instruction->MarkSpilledRegister(reg_index, spill_operand);
   1433         }
   1434       }
   1435     }
   1436   }
   1437 }
   1438 
   1439 
   1440 void LAllocator::AllocateGeneralRegisters() {
   1441   HPhase phase("Allocate general registers", this);
   1442   num_registers_ = Register::kNumAllocatableRegisters;
   1443   mode_ = GENERAL_REGISTERS;
   1444   AllocateRegisters();
   1445 }
   1446 
   1447 
   1448 void LAllocator::AllocateDoubleRegisters() {
   1449   HPhase phase("Allocate double registers", this);
   1450   num_registers_ = DoubleRegister::kNumAllocatableRegisters;
   1451   mode_ = DOUBLE_REGISTERS;
   1452   AllocateRegisters();
   1453 }
   1454 
   1455 
   1456 void LAllocator::AllocateRegisters() {
   1457   ASSERT(mode_ != NONE);
   1458   ASSERT(unhandled_live_ranges_.is_empty());
   1459 
   1460   for (int i = 0; i < live_ranges_.length(); ++i) {
   1461     if (live_ranges_[i] != NULL) {
   1462       if (RequiredRegisterKind(live_ranges_[i]->id()) == mode_) {
   1463         AddToUnhandledUnsorted(live_ranges_[i]);
   1464       }
   1465     }
   1466   }
   1467   SortUnhandled();
   1468   ASSERT(UnhandledIsSorted());
   1469 
   1470   ASSERT(reusable_slots_.is_empty());
   1471   ASSERT(active_live_ranges_.is_empty());
   1472   ASSERT(inactive_live_ranges_.is_empty());
   1473 
   1474   if (mode_ == DOUBLE_REGISTERS) {
   1475     for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) {
   1476       LiveRange* current = fixed_double_live_ranges_.at(i);
   1477       if (current != NULL) {
   1478         AddToInactive(current);
   1479       }
   1480     }
   1481   } else {
   1482     for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
   1483       LiveRange* current = fixed_live_ranges_.at(i);
   1484       if (current != NULL) {
   1485         AddToInactive(current);
   1486       }
   1487     }
   1488   }
   1489 
   1490   while (!unhandled_live_ranges_.is_empty()) {
   1491     ASSERT(UnhandledIsSorted());
   1492     LiveRange* current = unhandled_live_ranges_.RemoveLast();
   1493     ASSERT(UnhandledIsSorted());
   1494     LifetimePosition position = current->Start();
   1495     TraceAlloc("Processing interval %d start=%d\n",
   1496                current->id(),
   1497                position.Value());
   1498 
   1499     if (current->HasAllocatedSpillOperand()) {
   1500       TraceAlloc("Live range %d already has a spill operand\n", current->id());
   1501       LifetimePosition next_pos = position;
   1502       if (IsGapAt(next_pos.InstructionIndex())) {
   1503         next_pos = next_pos.NextInstruction();
   1504       }
   1505       UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
   1506       // If the range already has a spill operand and it doesn't need a
   1507       // register immediately, split it and spill the first part of the range.
   1508       if (pos == NULL) {
   1509         Spill(current);
   1510         continue;
   1511       } else if (pos->pos().Value() >
   1512                  current->Start().NextInstruction().Value()) {
   1513         // Do not spill live range eagerly if use position that can benefit from
   1514         // the register is too close to the start of live range.
   1515         SpillBetween(current, current->Start(), pos->pos());
   1516         ASSERT(UnhandledIsSorted());
   1517         continue;
   1518       }
   1519     }
   1520 
   1521     for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1522       LiveRange* cur_active = active_live_ranges_.at(i);
   1523       if (cur_active->End().Value() <= position.Value()) {
   1524         ActiveToHandled(cur_active);
   1525         --i;  // The live range was removed from the list of active live ranges.
   1526       } else if (!cur_active->Covers(position)) {
   1527         ActiveToInactive(cur_active);
   1528         --i;  // The live range was removed from the list of active live ranges.
   1529       }
   1530     }
   1531 
   1532     for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1533       LiveRange* cur_inactive = inactive_live_ranges_.at(i);
   1534       if (cur_inactive->End().Value() <= position.Value()) {
   1535         InactiveToHandled(cur_inactive);
   1536         --i;  // Live range was removed from the list of inactive live ranges.
   1537       } else if (cur_inactive->Covers(position)) {
   1538         InactiveToActive(cur_inactive);
   1539         --i;  // Live range was removed from the list of inactive live ranges.
   1540       }
   1541     }
   1542 
   1543     ASSERT(!current->HasRegisterAssigned() && !current->IsSpilled());
   1544 
   1545     bool result = TryAllocateFreeReg(current);
   1546     if (!result) {
   1547       AllocateBlockedReg(current);
   1548     }
   1549 
   1550     if (current->HasRegisterAssigned()) {
   1551       AddToActive(current);
   1552     }
   1553   }
   1554 
   1555   reusable_slots_.Rewind(0);
   1556   active_live_ranges_.Rewind(0);
   1557   inactive_live_ranges_.Rewind(0);
   1558 }
   1559 
   1560 
   1561 const char* LAllocator::RegisterName(int allocation_index) {
   1562   ASSERT(mode_ != NONE);
   1563   if (mode_ == GENERAL_REGISTERS) {
   1564     return Register::AllocationIndexToString(allocation_index);
   1565   } else {
   1566     return DoubleRegister::AllocationIndexToString(allocation_index);
   1567   }
   1568 }
   1569 
   1570 
   1571 void LAllocator::TraceAlloc(const char* msg, ...) {
   1572   if (FLAG_trace_alloc) {
   1573     va_list arguments;
   1574     va_start(arguments, msg);
   1575     OS::VPrint(msg, arguments);
   1576     va_end(arguments);
   1577   }
   1578 }
   1579 
   1580 
   1581 bool LAllocator::HasTaggedValue(int virtual_register) const {
   1582   HValue* value = graph_->LookupValue(virtual_register);
   1583   if (value == NULL) return false;
   1584   return value->representation().IsTagged();
   1585 }
   1586 
   1587 
   1588 RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
   1589   if (virtual_register < first_artificial_register_) {
   1590     HValue* value = graph_->LookupValue(virtual_register);
   1591     if (value != NULL && value->representation().IsDouble()) {
   1592       return DOUBLE_REGISTERS;
   1593     }
   1594   } else if (double_artificial_registers_.Contains(
   1595       virtual_register - first_artificial_register_)) {
   1596     return DOUBLE_REGISTERS;
   1597   }
   1598 
   1599   return GENERAL_REGISTERS;
   1600 }
   1601 
   1602 
   1603 void LAllocator::RecordDefinition(HInstruction* instr, LUnallocated* operand) {
   1604   operand->set_virtual_register(instr->id());
   1605 }
   1606 
   1607 
   1608 void LAllocator::RecordTemporary(LUnallocated* operand) {
   1609   ASSERT(next_virtual_register_ < LUnallocated::kMaxVirtualRegisters);
   1610   if (!operand->HasFixedPolicy()) {
   1611     operand->set_virtual_register(next_virtual_register_++);
   1612   }
   1613 }
   1614 
   1615 
   1616 void LAllocator::RecordUse(HValue* value, LUnallocated* operand) {
   1617   operand->set_virtual_register(value->id());
   1618 }
   1619 
   1620 
   1621 int LAllocator::max_initial_value_ids() {
   1622   return LUnallocated::kMaxVirtualRegisters / 32;
   1623 }
   1624 
   1625 
   1626 void LAllocator::AddToActive(LiveRange* range) {
   1627   TraceAlloc("Add live range %d to active\n", range->id());
   1628   active_live_ranges_.Add(range);
   1629 }
   1630 
   1631 
   1632 void LAllocator::AddToInactive(LiveRange* range) {
   1633   TraceAlloc("Add live range %d to inactive\n", range->id());
   1634   inactive_live_ranges_.Add(range);
   1635 }
   1636 
   1637 
   1638 void LAllocator::AddToUnhandledSorted(LiveRange* range) {
   1639   if (range == NULL || range->IsEmpty()) return;
   1640   ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
   1641   for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
   1642     LiveRange* cur_range = unhandled_live_ranges_.at(i);
   1643     if (range->ShouldBeAllocatedBefore(cur_range)) {
   1644       TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
   1645       unhandled_live_ranges_.InsertAt(i + 1, range);
   1646       ASSERT(UnhandledIsSorted());
   1647       return;
   1648     }
   1649   }
   1650   TraceAlloc("Add live range %d to unhandled at start\n", range->id());
   1651   unhandled_live_ranges_.InsertAt(0, range);
   1652   ASSERT(UnhandledIsSorted());
   1653 }
   1654 
   1655 
   1656 void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
   1657   if (range == NULL || range->IsEmpty()) return;
   1658   ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
   1659   TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
   1660   unhandled_live_ranges_.Add(range);
   1661 }
   1662 
   1663 
   1664 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
   1665   ASSERT(!(*a)->ShouldBeAllocatedBefore(*b) ||
   1666          !(*b)->ShouldBeAllocatedBefore(*a));
   1667   if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
   1668   if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
   1669   return (*a)->id() - (*b)->id();
   1670 }
   1671 
   1672 
   1673 // Sort the unhandled live ranges so that the ranges to be processed first are
   1674 // at the end of the array list.  This is convenient for the register allocation
   1675 // algorithm because it is efficient to remove elements from the end.
   1676 void LAllocator::SortUnhandled() {
   1677   TraceAlloc("Sort unhandled\n");
   1678   unhandled_live_ranges_.Sort(&UnhandledSortHelper);
   1679 }
   1680 
   1681 
   1682 bool LAllocator::UnhandledIsSorted() {
   1683   int len = unhandled_live_ranges_.length();
   1684   for (int i = 1; i < len; i++) {
   1685     LiveRange* a = unhandled_live_ranges_.at(i - 1);
   1686     LiveRange* b = unhandled_live_ranges_.at(i);
   1687     if (a->Start().Value() < b->Start().Value()) return false;
   1688   }
   1689   return true;
   1690 }
   1691 
   1692 
   1693 void LAllocator::FreeSpillSlot(LiveRange* range) {
   1694   // Check that we are the last range.
   1695   if (range->next() != NULL) return;
   1696 
   1697   if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
   1698 
   1699   int index = range->TopLevel()->GetSpillOperand()->index();
   1700   if (index >= 0) {
   1701     reusable_slots_.Add(range);
   1702   }
   1703 }
   1704 
   1705 
   1706 LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
   1707   if (reusable_slots_.is_empty()) return NULL;
   1708   if (reusable_slots_.first()->End().Value() >
   1709       range->TopLevel()->Start().Value()) {
   1710     return NULL;
   1711   }
   1712   LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
   1713   reusable_slots_.Remove(0);
   1714   return result;
   1715 }
   1716 
   1717 
   1718 void LAllocator::ActiveToHandled(LiveRange* range) {
   1719   ASSERT(active_live_ranges_.Contains(range));
   1720   active_live_ranges_.RemoveElement(range);
   1721   TraceAlloc("Moving live range %d from active to handled\n", range->id());
   1722   FreeSpillSlot(range);
   1723 }
   1724 
   1725 
   1726 void LAllocator::ActiveToInactive(LiveRange* range) {
   1727   ASSERT(active_live_ranges_.Contains(range));
   1728   active_live_ranges_.RemoveElement(range);
   1729   inactive_live_ranges_.Add(range);
   1730   TraceAlloc("Moving live range %d from active to inactive\n", range->id());
   1731 }
   1732 
   1733 
   1734 void LAllocator::InactiveToHandled(LiveRange* range) {
   1735   ASSERT(inactive_live_ranges_.Contains(range));
   1736   inactive_live_ranges_.RemoveElement(range);
   1737   TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
   1738   FreeSpillSlot(range);
   1739 }
   1740 
   1741 
   1742 void LAllocator::InactiveToActive(LiveRange* range) {
   1743   ASSERT(inactive_live_ranges_.Contains(range));
   1744   inactive_live_ranges_.RemoveElement(range);
   1745   active_live_ranges_.Add(range);
   1746   TraceAlloc("Moving live range %d from inactive to active\n", range->id());
   1747 }
   1748 
   1749 
   1750 // TryAllocateFreeReg and AllocateBlockedReg assume this
   1751 // when allocating local arrays.
   1752 STATIC_ASSERT(DoubleRegister::kNumAllocatableRegisters >=
   1753               Register::kNumAllocatableRegisters);
   1754 
   1755 
   1756 bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
   1757   LifetimePosition free_until_pos[DoubleRegister::kNumAllocatableRegisters];
   1758 
   1759   for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
   1760     free_until_pos[i] = LifetimePosition::MaxPosition();
   1761   }
   1762 
   1763   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1764     LiveRange* cur_active = active_live_ranges_.at(i);
   1765     free_until_pos[cur_active->assigned_register()] =
   1766         LifetimePosition::FromInstructionIndex(0);
   1767   }
   1768 
   1769   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1770     LiveRange* cur_inactive = inactive_live_ranges_.at(i);
   1771     ASSERT(cur_inactive->End().Value() > current->Start().Value());
   1772     LifetimePosition next_intersection =
   1773         cur_inactive->FirstIntersection(current);
   1774     if (!next_intersection.IsValid()) continue;
   1775     int cur_reg = cur_inactive->assigned_register();
   1776     free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
   1777   }
   1778 
   1779   UsePosition* hinted_use = current->FirstPosWithHint();
   1780   if (hinted_use != NULL) {
   1781     LOperand* hint = hinted_use->hint();
   1782     if (hint->IsRegister() || hint->IsDoubleRegister()) {
   1783       int register_index = hint->index();
   1784       TraceAlloc(
   1785           "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
   1786           RegisterName(register_index),
   1787           free_until_pos[register_index].Value(),
   1788           current->id(),
   1789           current->End().Value());
   1790 
   1791       // The desired register is free until the end of the current live range.
   1792       if (free_until_pos[register_index].Value() >= current->End().Value()) {
   1793         TraceAlloc("Assigning preferred reg %s to live range %d\n",
   1794                    RegisterName(register_index),
   1795                    current->id());
   1796         current->set_assigned_register(register_index, mode_);
   1797         return true;
   1798       }
   1799     }
   1800   }
   1801 
   1802   // Find the register which stays free for the longest time.
   1803   int reg = 0;
   1804   for (int i = 1; i < RegisterCount(); ++i) {
   1805     if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
   1806       reg = i;
   1807     }
   1808   }
   1809 
   1810   LifetimePosition pos = free_until_pos[reg];
   1811 
   1812   if (pos.Value() <= current->Start().Value()) {
   1813     // All registers are blocked.
   1814     return false;
   1815   }
   1816 
   1817   if (pos.Value() < current->End().Value()) {
   1818     // Register reg is available at the range start but becomes blocked before
   1819     // the range end. Split current at position where it becomes blocked.
   1820     LiveRange* tail = SplitAt(current, pos);
   1821     AddToUnhandledSorted(tail);
   1822   }
   1823 
   1824 
   1825   // Register reg is available at the range start and is free until
   1826   // the range end.
   1827   ASSERT(pos.Value() >= current->End().Value());
   1828   TraceAlloc("Assigning free reg %s to live range %d\n",
   1829              RegisterName(reg),
   1830              current->id());
   1831   current->set_assigned_register(reg, mode_);
   1832 
   1833   return true;
   1834 }
   1835 
   1836 
   1837 void LAllocator::AllocateBlockedReg(LiveRange* current) {
   1838   UsePosition* register_use = current->NextRegisterPosition(current->Start());
   1839   if (register_use == NULL) {
   1840     // There is no use in the current live range that requires a register.
   1841     // We can just spill it.
   1842     Spill(current);
   1843     return;
   1844   }
   1845 
   1846 
   1847   LifetimePosition use_pos[DoubleRegister::kNumAllocatableRegisters];
   1848   LifetimePosition block_pos[DoubleRegister::kNumAllocatableRegisters];
   1849 
   1850   for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
   1851     use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
   1852   }
   1853 
   1854   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1855     LiveRange* range = active_live_ranges_[i];
   1856     int cur_reg = range->assigned_register();
   1857     if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
   1858       block_pos[cur_reg] = use_pos[cur_reg] =
   1859           LifetimePosition::FromInstructionIndex(0);
   1860     } else {
   1861       UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
   1862           current->Start());
   1863       if (next_use == NULL) {
   1864         use_pos[cur_reg] = range->End();
   1865       } else {
   1866         use_pos[cur_reg] = next_use->pos();
   1867       }
   1868     }
   1869   }
   1870 
   1871   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1872     LiveRange* range = inactive_live_ranges_.at(i);
   1873     ASSERT(range->End().Value() > current->Start().Value());
   1874     LifetimePosition next_intersection = range->FirstIntersection(current);
   1875     if (!next_intersection.IsValid()) continue;
   1876     int cur_reg = range->assigned_register();
   1877     if (range->IsFixed()) {
   1878       block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
   1879       use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
   1880     } else {
   1881       use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
   1882     }
   1883   }
   1884 
   1885   int reg = 0;
   1886   for (int i = 1; i < RegisterCount(); ++i) {
   1887     if (use_pos[i].Value() > use_pos[reg].Value()) {
   1888       reg = i;
   1889     }
   1890   }
   1891 
   1892   LifetimePosition pos = use_pos[reg];
   1893 
   1894   if (pos.Value() < register_use->pos().Value()) {
   1895     // All registers are blocked before the first use that requires a register.
   1896     // Spill starting part of live range up to that use.
   1897     //
   1898     // Corner case: the first use position is equal to the start of the range.
   1899     // In this case we have nothing to spill and SpillBetween will just return
   1900     // this range to the list of unhandled ones. This will lead to the infinite
   1901     // loop.
   1902     ASSERT(current->Start().Value() < register_use->pos().Value());
   1903     SpillBetween(current, current->Start(), register_use->pos());
   1904     return;
   1905   }
   1906 
   1907   if (block_pos[reg].Value() < current->End().Value()) {
   1908     // Register becomes blocked before the current range end. Split before that
   1909     // position.
   1910     LiveRange* tail = SplitBetween(current,
   1911                                    current->Start(),
   1912                                    block_pos[reg].InstructionStart());
   1913     AddToUnhandledSorted(tail);
   1914   }
   1915 
   1916   // Register reg is not blocked for the whole range.
   1917   ASSERT(block_pos[reg].Value() >= current->End().Value());
   1918   TraceAlloc("Assigning blocked reg %s to live range %d\n",
   1919              RegisterName(reg),
   1920              current->id());
   1921   current->set_assigned_register(reg, mode_);
   1922 
   1923   // This register was not free. Thus we need to find and spill
   1924   // parts of active and inactive live regions that use the same register
   1925   // at the same lifetime positions as current.
   1926   SplitAndSpillIntersecting(current);
   1927 }
   1928 
   1929 
   1930 void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
   1931   ASSERT(current->HasRegisterAssigned());
   1932   int reg = current->assigned_register();
   1933   LifetimePosition split_pos = current->Start();
   1934   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1935     LiveRange* range = active_live_ranges_[i];
   1936     if (range->assigned_register() == reg) {
   1937       UsePosition* next_pos = range->NextRegisterPosition(current->Start());
   1938       if (next_pos == NULL) {
   1939         SpillAfter(range, split_pos);
   1940       } else {
   1941         SpillBetween(range, split_pos, next_pos->pos());
   1942       }
   1943       ActiveToHandled(range);
   1944       --i;
   1945     }
   1946   }
   1947 
   1948   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1949     LiveRange* range = inactive_live_ranges_[i];
   1950     ASSERT(range->End().Value() > current->Start().Value());
   1951     if (range->assigned_register() == reg && !range->IsFixed()) {
   1952       LifetimePosition next_intersection = range->FirstIntersection(current);
   1953       if (next_intersection.IsValid()) {
   1954         UsePosition* next_pos = range->NextRegisterPosition(current->Start());
   1955         if (next_pos == NULL) {
   1956           SpillAfter(range, split_pos);
   1957         } else {
   1958           next_intersection = Min(next_intersection, next_pos->pos());
   1959           SpillBetween(range, split_pos, next_intersection);
   1960         }
   1961         InactiveToHandled(range);
   1962         --i;
   1963       }
   1964     }
   1965   }
   1966 }
   1967 
   1968 
   1969 bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
   1970   return pos.IsInstructionStart() &&
   1971       InstructionAt(pos.InstructionIndex())->IsLabel();
   1972 }
   1973 
   1974 
   1975 LiveRange* LAllocator::SplitAt(LiveRange* range, LifetimePosition pos) {
   1976   ASSERT(!range->IsFixed());
   1977   TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
   1978 
   1979   if (pos.Value() <= range->Start().Value()) return range;
   1980 
   1981   // We can't properly connect liveranges if split occured at the end
   1982   // of control instruction.
   1983   ASSERT(pos.IsInstructionStart() ||
   1984          !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
   1985 
   1986   LiveRange* result = LiveRangeFor(next_virtual_register_++);
   1987   range->SplitAt(pos, result);
   1988   return result;
   1989 }
   1990 
   1991 
   1992 LiveRange* LAllocator::SplitBetween(LiveRange* range,
   1993                                     LifetimePosition start,
   1994                                     LifetimePosition end) {
   1995   ASSERT(!range->IsFixed());
   1996   TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
   1997              range->id(),
   1998              start.Value(),
   1999              end.Value());
   2000 
   2001   LifetimePosition split_pos = FindOptimalSplitPos(start, end);
   2002   ASSERT(split_pos.Value() >= start.Value());
   2003   return SplitAt(range, split_pos);
   2004 }
   2005 
   2006 
   2007 LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
   2008                                                  LifetimePosition end) {
   2009   int start_instr = start.InstructionIndex();
   2010   int end_instr = end.InstructionIndex();
   2011   ASSERT(start_instr <= end_instr);
   2012 
   2013   // We have no choice
   2014   if (start_instr == end_instr) return end;
   2015 
   2016   HBasicBlock* end_block = GetBlock(start);
   2017   HBasicBlock* start_block = GetBlock(end);
   2018 
   2019   if (end_block == start_block) {
   2020     // The interval is split in the same basic block. Split at latest possible
   2021     // position.
   2022     return end;
   2023   }
   2024 
   2025   HBasicBlock* block = end_block;
   2026   // Find header of outermost loop.
   2027   while (block->parent_loop_header() != NULL &&
   2028       block->parent_loop_header()->block_id() > start_block->block_id()) {
   2029     block = block->parent_loop_header();
   2030   }
   2031 
   2032   if (block == end_block) return end;
   2033 
   2034   return LifetimePosition::FromInstructionIndex(
   2035       block->first_instruction_index());
   2036 }
   2037 
   2038 
   2039 void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
   2040   LiveRange* second_part = SplitAt(range, pos);
   2041   Spill(second_part);
   2042 }
   2043 
   2044 
   2045 void LAllocator::SpillBetween(LiveRange* range,
   2046                               LifetimePosition start,
   2047                               LifetimePosition end) {
   2048   ASSERT(start.Value() < end.Value());
   2049   LiveRange* second_part = SplitAt(range, start);
   2050 
   2051   if (second_part->Start().Value() < end.Value()) {
   2052     // The split result intersects with [start, end[.
   2053     // Split it at position between ]start+1, end[, spill the middle part
   2054     // and put the rest to unhandled.
   2055     LiveRange* third_part = SplitBetween(
   2056         second_part,
   2057         second_part->Start().InstructionEnd(),
   2058         end.PrevInstruction().InstructionEnd());
   2059 
   2060     ASSERT(third_part != second_part);
   2061 
   2062     Spill(second_part);
   2063     AddToUnhandledSorted(third_part);
   2064   } else {
   2065     // The split result does not intersect with [start, end[.
   2066     // Nothing to spill. Just put it to unhandled as whole.
   2067     AddToUnhandledSorted(second_part);
   2068   }
   2069 }
   2070 
   2071 
   2072 void LAllocator::Spill(LiveRange* range) {
   2073   ASSERT(!range->IsSpilled());
   2074   TraceAlloc("Spilling live range %d\n", range->id());
   2075   LiveRange* first = range->TopLevel();
   2076 
   2077   if (!first->HasAllocatedSpillOperand()) {
   2078     LOperand* op = TryReuseSpillSlot(range);
   2079     if (op == NULL) op = chunk_->GetNextSpillSlot(mode_ == DOUBLE_REGISTERS);
   2080     first->SetSpillOperand(op);
   2081   }
   2082   range->MakeSpilled();
   2083 }
   2084 
   2085 
   2086 int LAllocator::RegisterCount() const {
   2087   return num_registers_;
   2088 }
   2089 
   2090 
   2091 #ifdef DEBUG
   2092 
   2093 
   2094 void LAllocator::Verify() const {
   2095   for (int i = 0; i < live_ranges()->length(); ++i) {
   2096     LiveRange* current = live_ranges()->at(i);
   2097     if (current != NULL) current->Verify();
   2098   }
   2099 }
   2100 
   2101 
   2102 #endif
   2103 
   2104 
   2105 } }  // namespace v8::internal
   2106