1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 66 TBAA(0), 67 VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (Features.ObjC1) 76 createObjCRuntime(); 77 78 // Enable TBAA unless it's suppressed. 79 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 80 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 81 ABI.getMangleContext()); 82 83 // If debug info or coverage generation is enabled, create the CGDebugInfo 84 // object. 85 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 86 CodeGenOpts.EmitGcovNotes) 87 DebugInfo = new CGDebugInfo(*this); 88 89 Block.GlobalUniqueCount = 0; 90 91 if (C.getLangOptions().ObjCAutoRefCount) 92 ARCData = new ARCEntrypoints(); 93 RRData = new RREntrypoints(); 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 PointerWidthInBits = C.Target.getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 104 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 105 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 106 Int8PtrTy = Int8Ty->getPointerTo(0); 107 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 108 } 109 110 CodeGenModule::~CodeGenModule() { 111 delete Runtime; 112 delete &ABI; 113 delete TBAA; 114 delete DebugInfo; 115 delete ARCData; 116 delete RRData; 117 } 118 119 void CodeGenModule::createObjCRuntime() { 120 if (!Features.NeXTRuntime) 121 Runtime = CreateGNUObjCRuntime(*this); 122 else 123 Runtime = CreateMacObjCRuntime(*this); 124 } 125 126 void CodeGenModule::Release() { 127 EmitDeferred(); 128 EmitCXXGlobalInitFunc(); 129 EmitCXXGlobalDtorFunc(); 130 if (Runtime) 131 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 132 AddGlobalCtor(ObjCInitFunction); 133 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 134 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 135 EmitAnnotations(); 136 EmitLLVMUsed(); 137 138 SimplifyPersonality(); 139 140 if (getCodeGenOpts().EmitDeclMetadata) 141 EmitDeclMetadata(); 142 143 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 144 EmitCoverageFile(); 145 } 146 147 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 148 // Make sure that this type is translated. 149 Types.UpdateCompletedType(TD); 150 if (DebugInfo) 151 DebugInfo->UpdateCompletedType(TD); 152 } 153 154 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 155 if (!TBAA) 156 return 0; 157 return TBAA->getTBAAInfo(QTy); 158 } 159 160 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 161 llvm::MDNode *TBAAInfo) { 162 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 163 } 164 165 bool CodeGenModule::isTargetDarwin() const { 166 return getContext().Target.getTriple().isOSDarwin(); 167 } 168 169 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) { 170 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 171 getDiags().Report(Context.getFullLoc(loc), diagID); 172 } 173 174 /// ErrorUnsupported - Print out an error that codegen doesn't support the 175 /// specified stmt yet. 176 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 177 bool OmitOnError) { 178 if (OmitOnError && getDiags().hasErrorOccurred()) 179 return; 180 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 181 "cannot compile this %0 yet"); 182 std::string Msg = Type; 183 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 184 << Msg << S->getSourceRange(); 185 } 186 187 /// ErrorUnsupported - Print out an error that codegen doesn't support the 188 /// specified decl yet. 189 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 190 bool OmitOnError) { 191 if (OmitOnError && getDiags().hasErrorOccurred()) 192 return; 193 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 194 "cannot compile this %0 yet"); 195 std::string Msg = Type; 196 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 197 } 198 199 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 200 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 201 } 202 203 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 204 const NamedDecl *D) const { 205 // Internal definitions always have default visibility. 206 if (GV->hasLocalLinkage()) { 207 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 208 return; 209 } 210 211 // Set visibility for definitions. 212 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 213 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 214 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 215 } 216 217 /// Set the symbol visibility of type information (vtable and RTTI) 218 /// associated with the given type. 219 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 220 const CXXRecordDecl *RD, 221 TypeVisibilityKind TVK) const { 222 setGlobalVisibility(GV, RD); 223 224 if (!CodeGenOpts.HiddenWeakVTables) 225 return; 226 227 // We never want to drop the visibility for RTTI names. 228 if (TVK == TVK_ForRTTIName) 229 return; 230 231 // We want to drop the visibility to hidden for weak type symbols. 232 // This isn't possible if there might be unresolved references 233 // elsewhere that rely on this symbol being visible. 234 235 // This should be kept roughly in sync with setThunkVisibility 236 // in CGVTables.cpp. 237 238 // Preconditions. 239 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 240 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 241 return; 242 243 // Don't override an explicit visibility attribute. 244 if (RD->getExplicitVisibility()) 245 return; 246 247 switch (RD->getTemplateSpecializationKind()) { 248 // We have to disable the optimization if this is an EI definition 249 // because there might be EI declarations in other shared objects. 250 case TSK_ExplicitInstantiationDefinition: 251 case TSK_ExplicitInstantiationDeclaration: 252 return; 253 254 // Every use of a non-template class's type information has to emit it. 255 case TSK_Undeclared: 256 break; 257 258 // In theory, implicit instantiations can ignore the possibility of 259 // an explicit instantiation declaration because there necessarily 260 // must be an EI definition somewhere with default visibility. In 261 // practice, it's possible to have an explicit instantiation for 262 // an arbitrary template class, and linkers aren't necessarily able 263 // to deal with mixed-visibility symbols. 264 case TSK_ExplicitSpecialization: 265 case TSK_ImplicitInstantiation: 266 if (!CodeGenOpts.HiddenWeakTemplateVTables) 267 return; 268 break; 269 } 270 271 // If there's a key function, there may be translation units 272 // that don't have the key function's definition. But ignore 273 // this if we're emitting RTTI under -fno-rtti. 274 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 275 if (Context.getKeyFunction(RD)) 276 return; 277 } 278 279 // Otherwise, drop the visibility to hidden. 280 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 281 GV->setUnnamedAddr(true); 282 } 283 284 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 285 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 286 287 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 288 if (!Str.empty()) 289 return Str; 290 291 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 292 IdentifierInfo *II = ND->getIdentifier(); 293 assert(II && "Attempt to mangle unnamed decl."); 294 295 Str = II->getName(); 296 return Str; 297 } 298 299 llvm::SmallString<256> Buffer; 300 llvm::raw_svector_ostream Out(Buffer); 301 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 302 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 303 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 304 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 305 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 306 getCXXABI().getMangleContext().mangleBlock(BD, Out); 307 else 308 getCXXABI().getMangleContext().mangleName(ND, Out); 309 310 // Allocate space for the mangled name. 311 Out.flush(); 312 size_t Length = Buffer.size(); 313 char *Name = MangledNamesAllocator.Allocate<char>(Length); 314 std::copy(Buffer.begin(), Buffer.end(), Name); 315 316 Str = llvm::StringRef(Name, Length); 317 318 return Str; 319 } 320 321 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 322 const BlockDecl *BD) { 323 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 324 const Decl *D = GD.getDecl(); 325 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 326 if (D == 0) 327 MangleCtx.mangleGlobalBlock(BD, Out); 328 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 329 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 330 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 331 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 332 else 333 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 334 } 335 336 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 337 return getModule().getNamedValue(Name); 338 } 339 340 /// AddGlobalCtor - Add a function to the list that will be called before 341 /// main() runs. 342 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 343 // FIXME: Type coercion of void()* types. 344 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 345 } 346 347 /// AddGlobalDtor - Add a function to the list that will be called 348 /// when the module is unloaded. 349 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 350 // FIXME: Type coercion of void()* types. 351 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 352 } 353 354 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 355 // Ctor function type is void()*. 356 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 357 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 358 359 // Get the type of a ctor entry, { i32, void ()* }. 360 llvm::StructType *CtorStructTy = 361 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 362 llvm::PointerType::getUnqual(CtorFTy), NULL); 363 364 // Construct the constructor and destructor arrays. 365 std::vector<llvm::Constant*> Ctors; 366 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 367 std::vector<llvm::Constant*> S; 368 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 369 I->second, false)); 370 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 371 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 372 } 373 374 if (!Ctors.empty()) { 375 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 376 new llvm::GlobalVariable(TheModule, AT, false, 377 llvm::GlobalValue::AppendingLinkage, 378 llvm::ConstantArray::get(AT, Ctors), 379 GlobalName); 380 } 381 } 382 383 void CodeGenModule::EmitAnnotations() { 384 if (Annotations.empty()) 385 return; 386 387 // Create a new global variable for the ConstantStruct in the Module. 388 llvm::Constant *Array = 389 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 390 Annotations.size()), 391 Annotations); 392 llvm::GlobalValue *gv = 393 new llvm::GlobalVariable(TheModule, Array->getType(), false, 394 llvm::GlobalValue::AppendingLinkage, Array, 395 "llvm.global.annotations"); 396 gv->setSection("llvm.metadata"); 397 } 398 399 llvm::GlobalValue::LinkageTypes 400 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 401 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 402 403 if (Linkage == GVA_Internal) 404 return llvm::Function::InternalLinkage; 405 406 if (D->hasAttr<DLLExportAttr>()) 407 return llvm::Function::DLLExportLinkage; 408 409 if (D->hasAttr<WeakAttr>()) 410 return llvm::Function::WeakAnyLinkage; 411 412 // In C99 mode, 'inline' functions are guaranteed to have a strong 413 // definition somewhere else, so we can use available_externally linkage. 414 if (Linkage == GVA_C99Inline) 415 return llvm::Function::AvailableExternallyLinkage; 416 417 // In C++, the compiler has to emit a definition in every translation unit 418 // that references the function. We should use linkonce_odr because 419 // a) if all references in this translation unit are optimized away, we 420 // don't need to codegen it. b) if the function persists, it needs to be 421 // merged with other definitions. c) C++ has the ODR, so we know the 422 // definition is dependable. 423 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 424 return !Context.getLangOptions().AppleKext 425 ? llvm::Function::LinkOnceODRLinkage 426 : llvm::Function::InternalLinkage; 427 428 // An explicit instantiation of a template has weak linkage, since 429 // explicit instantiations can occur in multiple translation units 430 // and must all be equivalent. However, we are not allowed to 431 // throw away these explicit instantiations. 432 if (Linkage == GVA_ExplicitTemplateInstantiation) 433 return !Context.getLangOptions().AppleKext 434 ? llvm::Function::WeakODRLinkage 435 : llvm::Function::InternalLinkage; 436 437 // Otherwise, we have strong external linkage. 438 assert(Linkage == GVA_StrongExternal); 439 return llvm::Function::ExternalLinkage; 440 } 441 442 443 /// SetFunctionDefinitionAttributes - Set attributes for a global. 444 /// 445 /// FIXME: This is currently only done for aliases and functions, but not for 446 /// variables (these details are set in EmitGlobalVarDefinition for variables). 447 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 448 llvm::GlobalValue *GV) { 449 SetCommonAttributes(D, GV); 450 } 451 452 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 453 const CGFunctionInfo &Info, 454 llvm::Function *F) { 455 unsigned CallingConv; 456 AttributeListType AttributeList; 457 ConstructAttributeList(Info, D, AttributeList, CallingConv); 458 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 459 AttributeList.size())); 460 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 461 } 462 463 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 464 llvm::Function *F) { 465 if (CodeGenOpts.UnwindTables) 466 F->setHasUWTable(); 467 468 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 469 F->addFnAttr(llvm::Attribute::NoUnwind); 470 471 if (D->hasAttr<AlwaysInlineAttr>()) 472 F->addFnAttr(llvm::Attribute::AlwaysInline); 473 474 if (D->hasAttr<NakedAttr>()) 475 F->addFnAttr(llvm::Attribute::Naked); 476 477 if (D->hasAttr<NoInlineAttr>()) 478 F->addFnAttr(llvm::Attribute::NoInline); 479 480 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 481 F->setUnnamedAddr(true); 482 483 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 484 F->addFnAttr(llvm::Attribute::StackProtect); 485 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 486 F->addFnAttr(llvm::Attribute::StackProtectReq); 487 488 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 489 if (alignment) 490 F->setAlignment(alignment); 491 492 // C++ ABI requires 2-byte alignment for member functions. 493 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 494 F->setAlignment(2); 495 } 496 497 void CodeGenModule::SetCommonAttributes(const Decl *D, 498 llvm::GlobalValue *GV) { 499 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 500 setGlobalVisibility(GV, ND); 501 else 502 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 503 504 if (D->hasAttr<UsedAttr>()) 505 AddUsedGlobal(GV); 506 507 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 508 GV->setSection(SA->getName()); 509 510 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 511 } 512 513 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 514 llvm::Function *F, 515 const CGFunctionInfo &FI) { 516 SetLLVMFunctionAttributes(D, FI, F); 517 SetLLVMFunctionAttributesForDefinition(D, F); 518 519 F->setLinkage(llvm::Function::InternalLinkage); 520 521 SetCommonAttributes(D, F); 522 } 523 524 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 525 llvm::Function *F, 526 bool IsIncompleteFunction) { 527 if (unsigned IID = F->getIntrinsicID()) { 528 // If this is an intrinsic function, set the function's attributes 529 // to the intrinsic's attributes. 530 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 531 return; 532 } 533 534 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 535 536 if (!IsIncompleteFunction) 537 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 538 539 // Only a few attributes are set on declarations; these may later be 540 // overridden by a definition. 541 542 if (FD->hasAttr<DLLImportAttr>()) { 543 F->setLinkage(llvm::Function::DLLImportLinkage); 544 } else if (FD->hasAttr<WeakAttr>() || 545 FD->isWeakImported()) { 546 // "extern_weak" is overloaded in LLVM; we probably should have 547 // separate linkage types for this. 548 F->setLinkage(llvm::Function::ExternalWeakLinkage); 549 } else { 550 F->setLinkage(llvm::Function::ExternalLinkage); 551 552 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 553 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 554 F->setVisibility(GetLLVMVisibility(LV.visibility())); 555 } 556 } 557 558 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 559 F->setSection(SA->getName()); 560 } 561 562 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 563 assert(!GV->isDeclaration() && 564 "Only globals with definition can force usage."); 565 LLVMUsed.push_back(GV); 566 } 567 568 void CodeGenModule::EmitLLVMUsed() { 569 // Don't create llvm.used if there is no need. 570 if (LLVMUsed.empty()) 571 return; 572 573 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 574 575 // Convert LLVMUsed to what ConstantArray needs. 576 std::vector<llvm::Constant*> UsedArray; 577 UsedArray.resize(LLVMUsed.size()); 578 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 579 UsedArray[i] = 580 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 581 i8PTy); 582 } 583 584 if (UsedArray.empty()) 585 return; 586 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 587 588 llvm::GlobalVariable *GV = 589 new llvm::GlobalVariable(getModule(), ATy, false, 590 llvm::GlobalValue::AppendingLinkage, 591 llvm::ConstantArray::get(ATy, UsedArray), 592 "llvm.used"); 593 594 GV->setSection("llvm.metadata"); 595 } 596 597 void CodeGenModule::EmitDeferred() { 598 // Emit code for any potentially referenced deferred decls. Since a 599 // previously unused static decl may become used during the generation of code 600 // for a static function, iterate until no changes are made. 601 602 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 603 if (!DeferredVTables.empty()) { 604 const CXXRecordDecl *RD = DeferredVTables.back(); 605 DeferredVTables.pop_back(); 606 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 607 continue; 608 } 609 610 GlobalDecl D = DeferredDeclsToEmit.back(); 611 DeferredDeclsToEmit.pop_back(); 612 613 // Check to see if we've already emitted this. This is necessary 614 // for a couple of reasons: first, decls can end up in the 615 // deferred-decls queue multiple times, and second, decls can end 616 // up with definitions in unusual ways (e.g. by an extern inline 617 // function acquiring a strong function redefinition). Just 618 // ignore these cases. 619 // 620 // TODO: That said, looking this up multiple times is very wasteful. 621 llvm::StringRef Name = getMangledName(D); 622 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 623 assert(CGRef && "Deferred decl wasn't referenced?"); 624 625 if (!CGRef->isDeclaration()) 626 continue; 627 628 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 629 // purposes an alias counts as a definition. 630 if (isa<llvm::GlobalAlias>(CGRef)) 631 continue; 632 633 // Otherwise, emit the definition and move on to the next one. 634 EmitGlobalDefinition(D); 635 } 636 } 637 638 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 639 /// annotation information for a given GlobalValue. The annotation struct is 640 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 641 /// GlobalValue being annotated. The second field is the constant string 642 /// created from the AnnotateAttr's annotation. The third field is a constant 643 /// string containing the name of the translation unit. The fourth field is 644 /// the line number in the file of the annotated value declaration. 645 /// 646 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 647 /// appears to. 648 /// 649 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 650 const AnnotateAttr *AA, 651 unsigned LineNo) { 652 llvm::Module *M = &getModule(); 653 654 // get [N x i8] constants for the annotation string, and the filename string 655 // which are the 2nd and 3rd elements of the global annotation structure. 656 llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 657 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 658 AA->getAnnotation(), true); 659 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 660 M->getModuleIdentifier(), 661 true); 662 663 // Get the two global values corresponding to the ConstantArrays we just 664 // created to hold the bytes of the strings. 665 llvm::GlobalValue *annoGV = 666 new llvm::GlobalVariable(*M, anno->getType(), false, 667 llvm::GlobalValue::PrivateLinkage, anno, 668 GV->getName()); 669 // translation unit name string, emitted into the llvm.metadata section. 670 llvm::GlobalValue *unitGV = 671 new llvm::GlobalVariable(*M, unit->getType(), false, 672 llvm::GlobalValue::PrivateLinkage, unit, 673 ".str"); 674 unitGV->setUnnamedAddr(true); 675 676 // Create the ConstantStruct for the global annotation. 677 llvm::Constant *Fields[4] = { 678 llvm::ConstantExpr::getBitCast(GV, SBP), 679 llvm::ConstantExpr::getBitCast(annoGV, SBP), 680 llvm::ConstantExpr::getBitCast(unitGV, SBP), 681 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 682 }; 683 return llvm::ConstantStruct::getAnon(Fields); 684 } 685 686 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 687 // Never defer when EmitAllDecls is specified. 688 if (Features.EmitAllDecls) 689 return false; 690 691 return !getContext().DeclMustBeEmitted(Global); 692 } 693 694 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 695 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 696 assert(AA && "No alias?"); 697 698 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 699 700 // See if there is already something with the target's name in the module. 701 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 702 703 llvm::Constant *Aliasee; 704 if (isa<llvm::FunctionType>(DeclTy)) 705 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 706 /*ForVTable=*/false); 707 else 708 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 709 llvm::PointerType::getUnqual(DeclTy), 0); 710 if (!Entry) { 711 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 712 F->setLinkage(llvm::Function::ExternalWeakLinkage); 713 WeakRefReferences.insert(F); 714 } 715 716 return Aliasee; 717 } 718 719 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 720 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 721 722 // Weak references don't produce any output by themselves. 723 if (Global->hasAttr<WeakRefAttr>()) 724 return; 725 726 // If this is an alias definition (which otherwise looks like a declaration) 727 // emit it now. 728 if (Global->hasAttr<AliasAttr>()) 729 return EmitAliasDefinition(GD); 730 731 // Ignore declarations, they will be emitted on their first use. 732 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 733 if (FD->getIdentifier()) { 734 llvm::StringRef Name = FD->getName(); 735 if (Name == "_Block_object_assign") { 736 BlockObjectAssignDecl = FD; 737 } else if (Name == "_Block_object_dispose") { 738 BlockObjectDisposeDecl = FD; 739 } 740 } 741 742 // Forward declarations are emitted lazily on first use. 743 if (!FD->doesThisDeclarationHaveABody()) { 744 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 745 return; 746 747 const FunctionDecl *InlineDefinition = 0; 748 FD->getBody(InlineDefinition); 749 750 llvm::StringRef MangledName = getMangledName(GD); 751 llvm::StringMap<GlobalDecl>::iterator DDI = 752 DeferredDecls.find(MangledName); 753 if (DDI != DeferredDecls.end()) 754 DeferredDecls.erase(DDI); 755 EmitGlobalDefinition(InlineDefinition); 756 return; 757 } 758 } else { 759 const VarDecl *VD = cast<VarDecl>(Global); 760 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 761 762 if (VD->getIdentifier()) { 763 llvm::StringRef Name = VD->getName(); 764 if (Name == "_NSConcreteGlobalBlock") { 765 NSConcreteGlobalBlockDecl = VD; 766 } else if (Name == "_NSConcreteStackBlock") { 767 NSConcreteStackBlockDecl = VD; 768 } 769 } 770 771 772 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 773 return; 774 } 775 776 // Defer code generation when possible if this is a static definition, inline 777 // function etc. These we only want to emit if they are used. 778 if (!MayDeferGeneration(Global)) { 779 // Emit the definition if it can't be deferred. 780 EmitGlobalDefinition(GD); 781 return; 782 } 783 784 // If we're deferring emission of a C++ variable with an 785 // initializer, remember the order in which it appeared in the file. 786 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 787 cast<VarDecl>(Global)->hasInit()) { 788 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 789 CXXGlobalInits.push_back(0); 790 } 791 792 // If the value has already been used, add it directly to the 793 // DeferredDeclsToEmit list. 794 llvm::StringRef MangledName = getMangledName(GD); 795 if (GetGlobalValue(MangledName)) 796 DeferredDeclsToEmit.push_back(GD); 797 else { 798 // Otherwise, remember that we saw a deferred decl with this name. The 799 // first use of the mangled name will cause it to move into 800 // DeferredDeclsToEmit. 801 DeferredDecls[MangledName] = GD; 802 } 803 } 804 805 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 806 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 807 808 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 809 Context.getSourceManager(), 810 "Generating code for declaration"); 811 812 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 813 // At -O0, don't generate IR for functions with available_externally 814 // linkage. 815 if (CodeGenOpts.OptimizationLevel == 0 && 816 !Function->hasAttr<AlwaysInlineAttr>() && 817 getFunctionLinkage(Function) 818 == llvm::Function::AvailableExternallyLinkage) 819 return; 820 821 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 822 // Make sure to emit the definition(s) before we emit the thunks. 823 // This is necessary for the generation of certain thunks. 824 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 825 EmitCXXConstructor(CD, GD.getCtorType()); 826 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 827 EmitCXXDestructor(DD, GD.getDtorType()); 828 else 829 EmitGlobalFunctionDefinition(GD); 830 831 if (Method->isVirtual()) 832 getVTables().EmitThunks(GD); 833 834 return; 835 } 836 837 return EmitGlobalFunctionDefinition(GD); 838 } 839 840 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 841 return EmitGlobalVarDefinition(VD); 842 843 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 844 } 845 846 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 847 /// module, create and return an llvm Function with the specified type. If there 848 /// is something in the module with the specified name, return it potentially 849 /// bitcasted to the right type. 850 /// 851 /// If D is non-null, it specifies a decl that correspond to this. This is used 852 /// to set the attributes on the function when it is first created. 853 llvm::Constant * 854 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 855 llvm::Type *Ty, 856 GlobalDecl D, bool ForVTable, 857 llvm::Attributes ExtraAttrs) { 858 // Lookup the entry, lazily creating it if necessary. 859 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 860 if (Entry) { 861 if (WeakRefReferences.count(Entry)) { 862 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 863 if (FD && !FD->hasAttr<WeakAttr>()) 864 Entry->setLinkage(llvm::Function::ExternalLinkage); 865 866 WeakRefReferences.erase(Entry); 867 } 868 869 if (Entry->getType()->getElementType() == Ty) 870 return Entry; 871 872 // Make sure the result is of the correct type. 873 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 874 } 875 876 // This function doesn't have a complete type (for example, the return 877 // type is an incomplete struct). Use a fake type instead, and make 878 // sure not to try to set attributes. 879 bool IsIncompleteFunction = false; 880 881 llvm::FunctionType *FTy; 882 if (isa<llvm::FunctionType>(Ty)) { 883 FTy = cast<llvm::FunctionType>(Ty); 884 } else { 885 FTy = llvm::FunctionType::get(VoidTy, false); 886 IsIncompleteFunction = true; 887 } 888 889 llvm::Function *F = llvm::Function::Create(FTy, 890 llvm::Function::ExternalLinkage, 891 MangledName, &getModule()); 892 assert(F->getName() == MangledName && "name was uniqued!"); 893 if (D.getDecl()) 894 SetFunctionAttributes(D, F, IsIncompleteFunction); 895 if (ExtraAttrs != llvm::Attribute::None) 896 F->addFnAttr(ExtraAttrs); 897 898 // This is the first use or definition of a mangled name. If there is a 899 // deferred decl with this name, remember that we need to emit it at the end 900 // of the file. 901 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 902 if (DDI != DeferredDecls.end()) { 903 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 904 // list, and remove it from DeferredDecls (since we don't need it anymore). 905 DeferredDeclsToEmit.push_back(DDI->second); 906 DeferredDecls.erase(DDI); 907 908 // Otherwise, there are cases we have to worry about where we're 909 // using a declaration for which we must emit a definition but where 910 // we might not find a top-level definition: 911 // - member functions defined inline in their classes 912 // - friend functions defined inline in some class 913 // - special member functions with implicit definitions 914 // If we ever change our AST traversal to walk into class methods, 915 // this will be unnecessary. 916 // 917 // We also don't emit a definition for a function if it's going to be an entry 918 // in a vtable, unless it's already marked as used. 919 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 920 // Look for a declaration that's lexically in a record. 921 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 922 do { 923 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 924 if (FD->isImplicit() && !ForVTable) { 925 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 926 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 927 break; 928 } else if (FD->doesThisDeclarationHaveABody()) { 929 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 930 break; 931 } 932 } 933 FD = FD->getPreviousDeclaration(); 934 } while (FD); 935 } 936 937 // Make sure the result is of the requested type. 938 if (!IsIncompleteFunction) { 939 assert(F->getType()->getElementType() == Ty); 940 return F; 941 } 942 943 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 944 return llvm::ConstantExpr::getBitCast(F, PTy); 945 } 946 947 /// GetAddrOfFunction - Return the address of the given function. If Ty is 948 /// non-null, then this function will use the specified type if it has to 949 /// create it (this occurs when we see a definition of the function). 950 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 951 llvm::Type *Ty, 952 bool ForVTable) { 953 // If there was no specific requested type, just convert it now. 954 if (!Ty) 955 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 956 957 llvm::StringRef MangledName = getMangledName(GD); 958 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 959 } 960 961 /// CreateRuntimeFunction - Create a new runtime function with the specified 962 /// type and name. 963 llvm::Constant * 964 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 965 llvm::StringRef Name, 966 llvm::Attributes ExtraAttrs) { 967 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 968 ExtraAttrs); 969 } 970 971 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 972 bool ConstantInit) { 973 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 974 return false; 975 976 if (Context.getLangOptions().CPlusPlus) { 977 if (const RecordType *Record 978 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 979 return ConstantInit && 980 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 981 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 982 } 983 984 return true; 985 } 986 987 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 988 /// create and return an llvm GlobalVariable with the specified type. If there 989 /// is something in the module with the specified name, return it potentially 990 /// bitcasted to the right type. 991 /// 992 /// If D is non-null, it specifies a decl that correspond to this. This is used 993 /// to set the attributes on the global when it is first created. 994 llvm::Constant * 995 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 996 llvm::PointerType *Ty, 997 const VarDecl *D, 998 bool UnnamedAddr) { 999 // Lookup the entry, lazily creating it if necessary. 1000 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1001 if (Entry) { 1002 if (WeakRefReferences.count(Entry)) { 1003 if (D && !D->hasAttr<WeakAttr>()) 1004 Entry->setLinkage(llvm::Function::ExternalLinkage); 1005 1006 WeakRefReferences.erase(Entry); 1007 } 1008 1009 if (UnnamedAddr) 1010 Entry->setUnnamedAddr(true); 1011 1012 if (Entry->getType() == Ty) 1013 return Entry; 1014 1015 // Make sure the result is of the correct type. 1016 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1017 } 1018 1019 // This is the first use or definition of a mangled name. If there is a 1020 // deferred decl with this name, remember that we need to emit it at the end 1021 // of the file. 1022 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1023 if (DDI != DeferredDecls.end()) { 1024 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1025 // list, and remove it from DeferredDecls (since we don't need it anymore). 1026 DeferredDeclsToEmit.push_back(DDI->second); 1027 DeferredDecls.erase(DDI); 1028 } 1029 1030 llvm::GlobalVariable *GV = 1031 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1032 llvm::GlobalValue::ExternalLinkage, 1033 0, MangledName, 0, 1034 false, Ty->getAddressSpace()); 1035 1036 // Handle things which are present even on external declarations. 1037 if (D) { 1038 // FIXME: This code is overly simple and should be merged with other global 1039 // handling. 1040 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1041 1042 // Set linkage and visibility in case we never see a definition. 1043 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1044 if (LV.linkage() != ExternalLinkage) { 1045 // Don't set internal linkage on declarations. 1046 } else { 1047 if (D->hasAttr<DLLImportAttr>()) 1048 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1049 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1050 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1051 1052 // Set visibility on a declaration only if it's explicit. 1053 if (LV.visibilityExplicit()) 1054 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1055 } 1056 1057 GV->setThreadLocal(D->isThreadSpecified()); 1058 } 1059 1060 return GV; 1061 } 1062 1063 1064 llvm::GlobalVariable * 1065 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 1066 llvm::Type *Ty, 1067 llvm::GlobalValue::LinkageTypes Linkage) { 1068 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1069 llvm::GlobalVariable *OldGV = 0; 1070 1071 1072 if (GV) { 1073 // Check if the variable has the right type. 1074 if (GV->getType()->getElementType() == Ty) 1075 return GV; 1076 1077 // Because C++ name mangling, the only way we can end up with an already 1078 // existing global with the same name is if it has been declared extern "C". 1079 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1080 OldGV = GV; 1081 } 1082 1083 // Create a new variable. 1084 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1085 Linkage, 0, Name); 1086 1087 if (OldGV) { 1088 // Replace occurrences of the old variable if needed. 1089 GV->takeName(OldGV); 1090 1091 if (!OldGV->use_empty()) { 1092 llvm::Constant *NewPtrForOldDecl = 1093 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1094 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1095 } 1096 1097 OldGV->eraseFromParent(); 1098 } 1099 1100 return GV; 1101 } 1102 1103 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1104 /// given global variable. If Ty is non-null and if the global doesn't exist, 1105 /// then it will be greated with the specified type instead of whatever the 1106 /// normal requested type would be. 1107 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1108 llvm::Type *Ty) { 1109 assert(D->hasGlobalStorage() && "Not a global variable"); 1110 QualType ASTTy = D->getType(); 1111 if (Ty == 0) 1112 Ty = getTypes().ConvertTypeForMem(ASTTy); 1113 1114 llvm::PointerType *PTy = 1115 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1116 1117 llvm::StringRef MangledName = getMangledName(D); 1118 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1119 } 1120 1121 /// CreateRuntimeVariable - Create a new runtime global variable with the 1122 /// specified type and name. 1123 llvm::Constant * 1124 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1125 llvm::StringRef Name) { 1126 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1127 true); 1128 } 1129 1130 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1131 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1132 1133 if (MayDeferGeneration(D)) { 1134 // If we have not seen a reference to this variable yet, place it 1135 // into the deferred declarations table to be emitted if needed 1136 // later. 1137 llvm::StringRef MangledName = getMangledName(D); 1138 if (!GetGlobalValue(MangledName)) { 1139 DeferredDecls[MangledName] = D; 1140 return; 1141 } 1142 } 1143 1144 // The tentative definition is the only definition. 1145 EmitGlobalVarDefinition(D); 1146 } 1147 1148 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1149 if (DefinitionRequired) 1150 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1151 } 1152 1153 llvm::GlobalVariable::LinkageTypes 1154 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1155 if (RD->getLinkage() != ExternalLinkage) 1156 return llvm::GlobalVariable::InternalLinkage; 1157 1158 if (const CXXMethodDecl *KeyFunction 1159 = RD->getASTContext().getKeyFunction(RD)) { 1160 // If this class has a key function, use that to determine the linkage of 1161 // the vtable. 1162 const FunctionDecl *Def = 0; 1163 if (KeyFunction->hasBody(Def)) 1164 KeyFunction = cast<CXXMethodDecl>(Def); 1165 1166 switch (KeyFunction->getTemplateSpecializationKind()) { 1167 case TSK_Undeclared: 1168 case TSK_ExplicitSpecialization: 1169 // When compiling with optimizations turned on, we emit all vtables, 1170 // even if the key function is not defined in the current translation 1171 // unit. If this is the case, use available_externally linkage. 1172 if (!Def && CodeGenOpts.OptimizationLevel) 1173 return llvm::GlobalVariable::AvailableExternallyLinkage; 1174 1175 if (KeyFunction->isInlined()) 1176 return !Context.getLangOptions().AppleKext ? 1177 llvm::GlobalVariable::LinkOnceODRLinkage : 1178 llvm::Function::InternalLinkage; 1179 1180 return llvm::GlobalVariable::ExternalLinkage; 1181 1182 case TSK_ImplicitInstantiation: 1183 return !Context.getLangOptions().AppleKext ? 1184 llvm::GlobalVariable::LinkOnceODRLinkage : 1185 llvm::Function::InternalLinkage; 1186 1187 case TSK_ExplicitInstantiationDefinition: 1188 return !Context.getLangOptions().AppleKext ? 1189 llvm::GlobalVariable::WeakODRLinkage : 1190 llvm::Function::InternalLinkage; 1191 1192 case TSK_ExplicitInstantiationDeclaration: 1193 // FIXME: Use available_externally linkage. However, this currently 1194 // breaks LLVM's build due to undefined symbols. 1195 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1196 return !Context.getLangOptions().AppleKext ? 1197 llvm::GlobalVariable::LinkOnceODRLinkage : 1198 llvm::Function::InternalLinkage; 1199 } 1200 } 1201 1202 if (Context.getLangOptions().AppleKext) 1203 return llvm::Function::InternalLinkage; 1204 1205 switch (RD->getTemplateSpecializationKind()) { 1206 case TSK_Undeclared: 1207 case TSK_ExplicitSpecialization: 1208 case TSK_ImplicitInstantiation: 1209 // FIXME: Use available_externally linkage. However, this currently 1210 // breaks LLVM's build due to undefined symbols. 1211 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1212 case TSK_ExplicitInstantiationDeclaration: 1213 return llvm::GlobalVariable::LinkOnceODRLinkage; 1214 1215 case TSK_ExplicitInstantiationDefinition: 1216 return llvm::GlobalVariable::WeakODRLinkage; 1217 } 1218 1219 // Silence GCC warning. 1220 return llvm::GlobalVariable::LinkOnceODRLinkage; 1221 } 1222 1223 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1224 return Context.toCharUnitsFromBits( 1225 TheTargetData.getTypeStoreSizeInBits(Ty)); 1226 } 1227 1228 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1229 llvm::Constant *Init = 0; 1230 QualType ASTTy = D->getType(); 1231 bool NonConstInit = false; 1232 1233 const Expr *InitExpr = D->getAnyInitializer(); 1234 1235 if (!InitExpr) { 1236 // This is a tentative definition; tentative definitions are 1237 // implicitly initialized with { 0 }. 1238 // 1239 // Note that tentative definitions are only emitted at the end of 1240 // a translation unit, so they should never have incomplete 1241 // type. In addition, EmitTentativeDefinition makes sure that we 1242 // never attempt to emit a tentative definition if a real one 1243 // exists. A use may still exists, however, so we still may need 1244 // to do a RAUW. 1245 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1246 Init = EmitNullConstant(D->getType()); 1247 } else { 1248 Init = EmitConstantExpr(InitExpr, D->getType()); 1249 if (!Init) { 1250 QualType T = InitExpr->getType(); 1251 if (D->getType()->isReferenceType()) 1252 T = D->getType(); 1253 1254 if (getLangOptions().CPlusPlus) { 1255 Init = EmitNullConstant(T); 1256 NonConstInit = true; 1257 } else { 1258 ErrorUnsupported(D, "static initializer"); 1259 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1260 } 1261 } else { 1262 // We don't need an initializer, so remove the entry for the delayed 1263 // initializer position (just in case this entry was delayed). 1264 if (getLangOptions().CPlusPlus) 1265 DelayedCXXInitPosition.erase(D); 1266 } 1267 } 1268 1269 llvm::Type* InitType = Init->getType(); 1270 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1271 1272 // Strip off a bitcast if we got one back. 1273 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1274 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1275 // all zero index gep. 1276 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1277 Entry = CE->getOperand(0); 1278 } 1279 1280 // Entry is now either a Function or GlobalVariable. 1281 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1282 1283 // We have a definition after a declaration with the wrong type. 1284 // We must make a new GlobalVariable* and update everything that used OldGV 1285 // (a declaration or tentative definition) with the new GlobalVariable* 1286 // (which will be a definition). 1287 // 1288 // This happens if there is a prototype for a global (e.g. 1289 // "extern int x[];") and then a definition of a different type (e.g. 1290 // "int x[10];"). This also happens when an initializer has a different type 1291 // from the type of the global (this happens with unions). 1292 if (GV == 0 || 1293 GV->getType()->getElementType() != InitType || 1294 GV->getType()->getAddressSpace() != 1295 getContext().getTargetAddressSpace(ASTTy)) { 1296 1297 // Move the old entry aside so that we'll create a new one. 1298 Entry->setName(llvm::StringRef()); 1299 1300 // Make a new global with the correct type, this is now guaranteed to work. 1301 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1302 1303 // Replace all uses of the old global with the new global 1304 llvm::Constant *NewPtrForOldDecl = 1305 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1306 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1307 1308 // Erase the old global, since it is no longer used. 1309 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1310 } 1311 1312 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1313 SourceManager &SM = Context.getSourceManager(); 1314 AddAnnotation(EmitAnnotateAttr(GV, AA, 1315 SM.getInstantiationLineNumber(D->getLocation()))); 1316 } 1317 1318 GV->setInitializer(Init); 1319 1320 // If it is safe to mark the global 'constant', do so now. 1321 GV->setConstant(false); 1322 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1323 GV->setConstant(true); 1324 1325 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1326 1327 // Set the llvm linkage type as appropriate. 1328 llvm::GlobalValue::LinkageTypes Linkage = 1329 GetLLVMLinkageVarDefinition(D, GV); 1330 GV->setLinkage(Linkage); 1331 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1332 // common vars aren't constant even if declared const. 1333 GV->setConstant(false); 1334 1335 SetCommonAttributes(D, GV); 1336 1337 // Emit the initializer function if necessary. 1338 if (NonConstInit) 1339 EmitCXXGlobalVarDeclInitFunc(D, GV); 1340 1341 // Emit global variable debug information. 1342 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1343 DI->setLocation(D->getLocation()); 1344 DI->EmitGlobalVariable(GV, D); 1345 } 1346 } 1347 1348 llvm::GlobalValue::LinkageTypes 1349 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1350 llvm::GlobalVariable *GV) { 1351 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1352 if (Linkage == GVA_Internal) 1353 return llvm::Function::InternalLinkage; 1354 else if (D->hasAttr<DLLImportAttr>()) 1355 return llvm::Function::DLLImportLinkage; 1356 else if (D->hasAttr<DLLExportAttr>()) 1357 return llvm::Function::DLLExportLinkage; 1358 else if (D->hasAttr<WeakAttr>()) { 1359 if (GV->isConstant()) 1360 return llvm::GlobalVariable::WeakODRLinkage; 1361 else 1362 return llvm::GlobalVariable::WeakAnyLinkage; 1363 } else if (Linkage == GVA_TemplateInstantiation || 1364 Linkage == GVA_ExplicitTemplateInstantiation) 1365 return llvm::GlobalVariable::WeakODRLinkage; 1366 else if (!getLangOptions().CPlusPlus && 1367 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1368 D->getAttr<CommonAttr>()) && 1369 !D->hasExternalStorage() && !D->getInit() && 1370 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1371 !D->getAttr<WeakImportAttr>()) { 1372 // Thread local vars aren't considered common linkage. 1373 return llvm::GlobalVariable::CommonLinkage; 1374 } 1375 return llvm::GlobalVariable::ExternalLinkage; 1376 } 1377 1378 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1379 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1380 /// existing call uses of the old function in the module, this adjusts them to 1381 /// call the new function directly. 1382 /// 1383 /// This is not just a cleanup: the always_inline pass requires direct calls to 1384 /// functions to be able to inline them. If there is a bitcast in the way, it 1385 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1386 /// run at -O0. 1387 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1388 llvm::Function *NewFn) { 1389 // If we're redefining a global as a function, don't transform it. 1390 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1391 if (OldFn == 0) return; 1392 1393 llvm::Type *NewRetTy = NewFn->getReturnType(); 1394 llvm::SmallVector<llvm::Value*, 4> ArgList; 1395 1396 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1397 UI != E; ) { 1398 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1399 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1400 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1401 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1402 llvm::CallSite CS(CI); 1403 if (!CI || !CS.isCallee(I)) continue; 1404 1405 // If the return types don't match exactly, and if the call isn't dead, then 1406 // we can't transform this call. 1407 if (CI->getType() != NewRetTy && !CI->use_empty()) 1408 continue; 1409 1410 // If the function was passed too few arguments, don't transform. If extra 1411 // arguments were passed, we silently drop them. If any of the types 1412 // mismatch, we don't transform. 1413 unsigned ArgNo = 0; 1414 bool DontTransform = false; 1415 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1416 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1417 if (CS.arg_size() == ArgNo || 1418 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1419 DontTransform = true; 1420 break; 1421 } 1422 } 1423 if (DontTransform) 1424 continue; 1425 1426 // Okay, we can transform this. Create the new call instruction and copy 1427 // over the required information. 1428 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1429 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1430 ArgList.clear(); 1431 if (!NewCall->getType()->isVoidTy()) 1432 NewCall->takeName(CI); 1433 NewCall->setAttributes(CI->getAttributes()); 1434 NewCall->setCallingConv(CI->getCallingConv()); 1435 1436 // Finally, remove the old call, replacing any uses with the new one. 1437 if (!CI->use_empty()) 1438 CI->replaceAllUsesWith(NewCall); 1439 1440 // Copy debug location attached to CI. 1441 if (!CI->getDebugLoc().isUnknown()) 1442 NewCall->setDebugLoc(CI->getDebugLoc()); 1443 CI->eraseFromParent(); 1444 } 1445 } 1446 1447 1448 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1449 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1450 1451 // Compute the function info and LLVM type. 1452 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1453 bool variadic = false; 1454 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1455 variadic = fpt->isVariadic(); 1456 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1457 1458 // Get or create the prototype for the function. 1459 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1460 1461 // Strip off a bitcast if we got one back. 1462 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1463 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1464 Entry = CE->getOperand(0); 1465 } 1466 1467 1468 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1469 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1470 1471 // If the types mismatch then we have to rewrite the definition. 1472 assert(OldFn->isDeclaration() && 1473 "Shouldn't replace non-declaration"); 1474 1475 // F is the Function* for the one with the wrong type, we must make a new 1476 // Function* and update everything that used F (a declaration) with the new 1477 // Function* (which will be a definition). 1478 // 1479 // This happens if there is a prototype for a function 1480 // (e.g. "int f()") and then a definition of a different type 1481 // (e.g. "int f(int x)"). Move the old function aside so that it 1482 // doesn't interfere with GetAddrOfFunction. 1483 OldFn->setName(llvm::StringRef()); 1484 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1485 1486 // If this is an implementation of a function without a prototype, try to 1487 // replace any existing uses of the function (which may be calls) with uses 1488 // of the new function 1489 if (D->getType()->isFunctionNoProtoType()) { 1490 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1491 OldFn->removeDeadConstantUsers(); 1492 } 1493 1494 // Replace uses of F with the Function we will endow with a body. 1495 if (!Entry->use_empty()) { 1496 llvm::Constant *NewPtrForOldDecl = 1497 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1498 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1499 } 1500 1501 // Ok, delete the old function now, which is dead. 1502 OldFn->eraseFromParent(); 1503 1504 Entry = NewFn; 1505 } 1506 1507 // We need to set linkage and visibility on the function before 1508 // generating code for it because various parts of IR generation 1509 // want to propagate this information down (e.g. to local static 1510 // declarations). 1511 llvm::Function *Fn = cast<llvm::Function>(Entry); 1512 setFunctionLinkage(D, Fn); 1513 1514 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1515 setGlobalVisibility(Fn, D); 1516 1517 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1518 1519 SetFunctionDefinitionAttributes(D, Fn); 1520 SetLLVMFunctionAttributesForDefinition(D, Fn); 1521 1522 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1523 AddGlobalCtor(Fn, CA->getPriority()); 1524 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1525 AddGlobalDtor(Fn, DA->getPriority()); 1526 } 1527 1528 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1529 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1530 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1531 assert(AA && "Not an alias?"); 1532 1533 llvm::StringRef MangledName = getMangledName(GD); 1534 1535 // If there is a definition in the module, then it wins over the alias. 1536 // This is dubious, but allow it to be safe. Just ignore the alias. 1537 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1538 if (Entry && !Entry->isDeclaration()) 1539 return; 1540 1541 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1542 1543 // Create a reference to the named value. This ensures that it is emitted 1544 // if a deferred decl. 1545 llvm::Constant *Aliasee; 1546 if (isa<llvm::FunctionType>(DeclTy)) 1547 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1548 /*ForVTable=*/false); 1549 else 1550 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1551 llvm::PointerType::getUnqual(DeclTy), 0); 1552 1553 // Create the new alias itself, but don't set a name yet. 1554 llvm::GlobalValue *GA = 1555 new llvm::GlobalAlias(Aliasee->getType(), 1556 llvm::Function::ExternalLinkage, 1557 "", Aliasee, &getModule()); 1558 1559 if (Entry) { 1560 assert(Entry->isDeclaration()); 1561 1562 // If there is a declaration in the module, then we had an extern followed 1563 // by the alias, as in: 1564 // extern int test6(); 1565 // ... 1566 // int test6() __attribute__((alias("test7"))); 1567 // 1568 // Remove it and replace uses of it with the alias. 1569 GA->takeName(Entry); 1570 1571 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1572 Entry->getType())); 1573 Entry->eraseFromParent(); 1574 } else { 1575 GA->setName(MangledName); 1576 } 1577 1578 // Set attributes which are particular to an alias; this is a 1579 // specialization of the attributes which may be set on a global 1580 // variable/function. 1581 if (D->hasAttr<DLLExportAttr>()) { 1582 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1583 // The dllexport attribute is ignored for undefined symbols. 1584 if (FD->hasBody()) 1585 GA->setLinkage(llvm::Function::DLLExportLinkage); 1586 } else { 1587 GA->setLinkage(llvm::Function::DLLExportLinkage); 1588 } 1589 } else if (D->hasAttr<WeakAttr>() || 1590 D->hasAttr<WeakRefAttr>() || 1591 D->isWeakImported()) { 1592 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1593 } 1594 1595 SetCommonAttributes(D, GA); 1596 } 1597 1598 /// getBuiltinLibFunction - Given a builtin id for a function like 1599 /// "__builtin_fabsf", return a Function* for "fabsf". 1600 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1601 unsigned BuiltinID) { 1602 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1603 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1604 "isn't a lib fn"); 1605 1606 // Get the name, skip over the __builtin_ prefix (if necessary). 1607 llvm::StringRef Name; 1608 GlobalDecl D(FD); 1609 1610 // If the builtin has been declared explicitly with an assembler label, 1611 // use the mangled name. This differs from the plain label on platforms 1612 // that prefix labels. 1613 if (FD->hasAttr<AsmLabelAttr>()) 1614 Name = getMangledName(D); 1615 else if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1616 Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; 1617 else 1618 Name = Context.BuiltinInfo.GetName(BuiltinID); 1619 1620 1621 llvm::FunctionType *Ty = 1622 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1623 1624 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 1625 } 1626 1627 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1628 llvm::ArrayRef<llvm::Type*> Tys) { 1629 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1630 Tys); 1631 } 1632 1633 static llvm::StringMapEntry<llvm::Constant*> & 1634 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1635 const StringLiteral *Literal, 1636 bool TargetIsLSB, 1637 bool &IsUTF16, 1638 unsigned &StringLength) { 1639 llvm::StringRef String = Literal->getString(); 1640 unsigned NumBytes = String.size(); 1641 1642 // Check for simple case. 1643 if (!Literal->containsNonAsciiOrNull()) { 1644 StringLength = NumBytes; 1645 return Map.GetOrCreateValue(String); 1646 } 1647 1648 // Otherwise, convert the UTF8 literals into a byte string. 1649 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1650 const UTF8 *FromPtr = (UTF8 *)String.data(); 1651 UTF16 *ToPtr = &ToBuf[0]; 1652 1653 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1654 &ToPtr, ToPtr + NumBytes, 1655 strictConversion); 1656 1657 // ConvertUTF8toUTF16 returns the length in ToPtr. 1658 StringLength = ToPtr - &ToBuf[0]; 1659 1660 // Render the UTF-16 string into a byte array and convert to the target byte 1661 // order. 1662 // 1663 // FIXME: This isn't something we should need to do here. 1664 llvm::SmallString<128> AsBytes; 1665 AsBytes.reserve(StringLength * 2); 1666 for (unsigned i = 0; i != StringLength; ++i) { 1667 unsigned short Val = ToBuf[i]; 1668 if (TargetIsLSB) { 1669 AsBytes.push_back(Val & 0xFF); 1670 AsBytes.push_back(Val >> 8); 1671 } else { 1672 AsBytes.push_back(Val >> 8); 1673 AsBytes.push_back(Val & 0xFF); 1674 } 1675 } 1676 // Append one extra null character, the second is automatically added by our 1677 // caller. 1678 AsBytes.push_back(0); 1679 1680 IsUTF16 = true; 1681 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1682 } 1683 1684 static llvm::StringMapEntry<llvm::Constant*> & 1685 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1686 const StringLiteral *Literal, 1687 unsigned &StringLength) 1688 { 1689 llvm::StringRef String = Literal->getString(); 1690 StringLength = String.size(); 1691 return Map.GetOrCreateValue(String); 1692 } 1693 1694 llvm::Constant * 1695 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1696 unsigned StringLength = 0; 1697 bool isUTF16 = false; 1698 llvm::StringMapEntry<llvm::Constant*> &Entry = 1699 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1700 getTargetData().isLittleEndian(), 1701 isUTF16, StringLength); 1702 1703 if (llvm::Constant *C = Entry.getValue()) 1704 return C; 1705 1706 llvm::Constant *Zero = 1707 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1708 llvm::Constant *Zeros[] = { Zero, Zero }; 1709 1710 // If we don't already have it, get __CFConstantStringClassReference. 1711 if (!CFConstantStringClassRef) { 1712 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1713 Ty = llvm::ArrayType::get(Ty, 0); 1714 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1715 "__CFConstantStringClassReference"); 1716 // Decay array -> ptr 1717 CFConstantStringClassRef = 1718 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1719 } 1720 1721 QualType CFTy = getContext().getCFConstantStringType(); 1722 1723 llvm::StructType *STy = 1724 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1725 1726 std::vector<llvm::Constant*> Fields(4); 1727 1728 // Class pointer. 1729 Fields[0] = CFConstantStringClassRef; 1730 1731 // Flags. 1732 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1733 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1734 llvm::ConstantInt::get(Ty, 0x07C8); 1735 1736 // String pointer. 1737 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1738 1739 llvm::GlobalValue::LinkageTypes Linkage; 1740 bool isConstant; 1741 if (isUTF16) { 1742 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1743 Linkage = llvm::GlobalValue::InternalLinkage; 1744 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1745 // does make plain ascii ones writable. 1746 isConstant = true; 1747 } else { 1748 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1749 // when using private linkage. It is not clear if this is a bug in ld 1750 // or a reasonable new restriction. 1751 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1752 isConstant = !Features.WritableStrings; 1753 } 1754 1755 llvm::GlobalVariable *GV = 1756 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1757 ".str"); 1758 GV->setUnnamedAddr(true); 1759 if (isUTF16) { 1760 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1761 GV->setAlignment(Align.getQuantity()); 1762 } else { 1763 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1764 GV->setAlignment(Align.getQuantity()); 1765 } 1766 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1767 1768 // String length. 1769 Ty = getTypes().ConvertType(getContext().LongTy); 1770 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1771 1772 // The struct. 1773 C = llvm::ConstantStruct::get(STy, Fields); 1774 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1775 llvm::GlobalVariable::PrivateLinkage, C, 1776 "_unnamed_cfstring_"); 1777 if (const char *Sect = getContext().Target.getCFStringSection()) 1778 GV->setSection(Sect); 1779 Entry.setValue(GV); 1780 1781 return GV; 1782 } 1783 1784 llvm::Constant * 1785 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1786 unsigned StringLength = 0; 1787 llvm::StringMapEntry<llvm::Constant*> &Entry = 1788 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1789 1790 if (llvm::Constant *C = Entry.getValue()) 1791 return C; 1792 1793 llvm::Constant *Zero = 1794 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1795 llvm::Constant *Zeros[] = { Zero, Zero }; 1796 1797 // If we don't already have it, get _NSConstantStringClassReference. 1798 if (!ConstantStringClassRef) { 1799 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1800 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1801 llvm::Constant *GV; 1802 if (Features.ObjCNonFragileABI) { 1803 std::string str = 1804 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1805 : "OBJC_CLASS_$_" + StringClass; 1806 GV = getObjCRuntime().GetClassGlobal(str); 1807 // Make sure the result is of the correct type. 1808 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1809 ConstantStringClassRef = 1810 llvm::ConstantExpr::getBitCast(GV, PTy); 1811 } else { 1812 std::string str = 1813 StringClass.empty() ? "_NSConstantStringClassReference" 1814 : "_" + StringClass + "ClassReference"; 1815 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1816 GV = CreateRuntimeVariable(PTy, str); 1817 // Decay array -> ptr 1818 ConstantStringClassRef = 1819 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1820 } 1821 } 1822 1823 QualType NSTy = getContext().getNSConstantStringType(); 1824 1825 llvm::StructType *STy = 1826 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1827 1828 std::vector<llvm::Constant*> Fields(3); 1829 1830 // Class pointer. 1831 Fields[0] = ConstantStringClassRef; 1832 1833 // String pointer. 1834 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1835 1836 llvm::GlobalValue::LinkageTypes Linkage; 1837 bool isConstant; 1838 Linkage = llvm::GlobalValue::PrivateLinkage; 1839 isConstant = !Features.WritableStrings; 1840 1841 llvm::GlobalVariable *GV = 1842 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1843 ".str"); 1844 GV->setUnnamedAddr(true); 1845 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1846 GV->setAlignment(Align.getQuantity()); 1847 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1848 1849 // String length. 1850 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1851 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1852 1853 // The struct. 1854 C = llvm::ConstantStruct::get(STy, Fields); 1855 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1856 llvm::GlobalVariable::PrivateLinkage, C, 1857 "_unnamed_nsstring_"); 1858 // FIXME. Fix section. 1859 if (const char *Sect = 1860 Features.ObjCNonFragileABI 1861 ? getContext().Target.getNSStringNonFragileABISection() 1862 : getContext().Target.getNSStringSection()) 1863 GV->setSection(Sect); 1864 Entry.setValue(GV); 1865 1866 return GV; 1867 } 1868 1869 /// GetStringForStringLiteral - Return the appropriate bytes for a 1870 /// string literal, properly padded to match the literal type. 1871 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1872 const ASTContext &Context = getContext(); 1873 const ConstantArrayType *CAT = 1874 Context.getAsConstantArrayType(E->getType()); 1875 assert(CAT && "String isn't pointer or array!"); 1876 1877 // Resize the string to the right size. 1878 uint64_t RealLen = CAT->getSize().getZExtValue(); 1879 1880 if (E->isWide()) 1881 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1882 1883 std::string Str = E->getString().str(); 1884 Str.resize(RealLen, '\0'); 1885 1886 return Str; 1887 } 1888 1889 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1890 /// constant array for the given string literal. 1891 llvm::Constant * 1892 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1893 // FIXME: This can be more efficient. 1894 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1895 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1896 if (S->isWide()) { 1897 llvm::Type *DestTy = 1898 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1899 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1900 } 1901 return C; 1902 } 1903 1904 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1905 /// array for the given ObjCEncodeExpr node. 1906 llvm::Constant * 1907 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1908 std::string Str; 1909 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1910 1911 return GetAddrOfConstantCString(Str); 1912 } 1913 1914 1915 /// GenerateWritableString -- Creates storage for a string literal. 1916 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str, 1917 bool constant, 1918 CodeGenModule &CGM, 1919 const char *GlobalName) { 1920 // Create Constant for this string literal. Don't add a '\0'. 1921 llvm::Constant *C = 1922 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1923 1924 // Create a global variable for this string 1925 llvm::GlobalVariable *GV = 1926 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1927 llvm::GlobalValue::PrivateLinkage, 1928 C, GlobalName); 1929 GV->setAlignment(1); 1930 GV->setUnnamedAddr(true); 1931 return GV; 1932 } 1933 1934 /// GetAddrOfConstantString - Returns a pointer to a character array 1935 /// containing the literal. This contents are exactly that of the 1936 /// given string, i.e. it will not be null terminated automatically; 1937 /// see GetAddrOfConstantCString. Note that whether the result is 1938 /// actually a pointer to an LLVM constant depends on 1939 /// Feature.WriteableStrings. 1940 /// 1941 /// The result has pointer to array type. 1942 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str, 1943 const char *GlobalName) { 1944 bool IsConstant = !Features.WritableStrings; 1945 1946 // Get the default prefix if a name wasn't specified. 1947 if (!GlobalName) 1948 GlobalName = ".str"; 1949 1950 // Don't share any string literals if strings aren't constant. 1951 if (!IsConstant) 1952 return GenerateStringLiteral(Str, false, *this, GlobalName); 1953 1954 llvm::StringMapEntry<llvm::Constant *> &Entry = 1955 ConstantStringMap.GetOrCreateValue(Str); 1956 1957 if (Entry.getValue()) 1958 return Entry.getValue(); 1959 1960 // Create a global variable for this. 1961 llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName); 1962 Entry.setValue(C); 1963 return C; 1964 } 1965 1966 /// GetAddrOfConstantCString - Returns a pointer to a character 1967 /// array containing the literal and a terminating '\0' 1968 /// character. The result has pointer to array type. 1969 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 1970 const char *GlobalName){ 1971 llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1); 1972 return GetAddrOfConstantString(StrWithNull, GlobalName); 1973 } 1974 1975 /// EmitObjCPropertyImplementations - Emit information for synthesized 1976 /// properties for an implementation. 1977 void CodeGenModule::EmitObjCPropertyImplementations(const 1978 ObjCImplementationDecl *D) { 1979 for (ObjCImplementationDecl::propimpl_iterator 1980 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1981 ObjCPropertyImplDecl *PID = *i; 1982 1983 // Dynamic is just for type-checking. 1984 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1985 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1986 1987 // Determine which methods need to be implemented, some may have 1988 // been overridden. Note that ::isSynthesized is not the method 1989 // we want, that just indicates if the decl came from a 1990 // property. What we want to know is if the method is defined in 1991 // this implementation. 1992 if (!D->getInstanceMethod(PD->getGetterName())) 1993 CodeGenFunction(*this).GenerateObjCGetter( 1994 const_cast<ObjCImplementationDecl *>(D), PID); 1995 if (!PD->isReadOnly() && 1996 !D->getInstanceMethod(PD->getSetterName())) 1997 CodeGenFunction(*this).GenerateObjCSetter( 1998 const_cast<ObjCImplementationDecl *>(D), PID); 1999 } 2000 } 2001 } 2002 2003 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2004 ObjCInterfaceDecl *iface 2005 = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface()); 2006 for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2007 ivar; ivar = ivar->getNextIvar()) 2008 if (ivar->getType().isDestructedType()) 2009 return true; 2010 2011 return false; 2012 } 2013 2014 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2015 /// for an implementation. 2016 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2017 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2018 if (needsDestructMethod(D)) { 2019 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2020 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2021 ObjCMethodDecl *DTORMethod = 2022 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2023 cxxSelector, getContext().VoidTy, 0, D, true, 2024 false, true, false, ObjCMethodDecl::Required); 2025 D->addInstanceMethod(DTORMethod); 2026 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2027 D->setHasCXXStructors(true); 2028 } 2029 2030 // If the implementation doesn't have any ivar initializers, we don't need 2031 // a .cxx_construct. 2032 if (D->getNumIvarInitializers() == 0) 2033 return; 2034 2035 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2036 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2037 // The constructor returns 'self'. 2038 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2039 D->getLocation(), 2040 D->getLocation(), cxxSelector, 2041 getContext().getObjCIdType(), 0, 2042 D, true, false, true, false, 2043 ObjCMethodDecl::Required); 2044 D->addInstanceMethod(CTORMethod); 2045 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2046 D->setHasCXXStructors(true); 2047 } 2048 2049 /// EmitNamespace - Emit all declarations in a namespace. 2050 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2051 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2052 I != E; ++I) 2053 EmitTopLevelDecl(*I); 2054 } 2055 2056 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2057 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2058 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2059 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2060 ErrorUnsupported(LSD, "linkage spec"); 2061 return; 2062 } 2063 2064 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2065 I != E; ++I) 2066 EmitTopLevelDecl(*I); 2067 } 2068 2069 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2070 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2071 // If an error has occurred, stop code generation, but continue 2072 // parsing and semantic analysis (to ensure all warnings and errors 2073 // are emitted). 2074 if (Diags.hasErrorOccurred()) 2075 return; 2076 2077 // Ignore dependent declarations. 2078 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2079 return; 2080 2081 switch (D->getKind()) { 2082 case Decl::CXXConversion: 2083 case Decl::CXXMethod: 2084 case Decl::Function: 2085 // Skip function templates 2086 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2087 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2088 return; 2089 2090 EmitGlobal(cast<FunctionDecl>(D)); 2091 break; 2092 2093 case Decl::Var: 2094 EmitGlobal(cast<VarDecl>(D)); 2095 break; 2096 2097 // Indirect fields from global anonymous structs and unions can be 2098 // ignored; only the actual variable requires IR gen support. 2099 case Decl::IndirectField: 2100 break; 2101 2102 // C++ Decls 2103 case Decl::Namespace: 2104 EmitNamespace(cast<NamespaceDecl>(D)); 2105 break; 2106 // No code generation needed. 2107 case Decl::UsingShadow: 2108 case Decl::Using: 2109 case Decl::UsingDirective: 2110 case Decl::ClassTemplate: 2111 case Decl::FunctionTemplate: 2112 case Decl::TypeAliasTemplate: 2113 case Decl::NamespaceAlias: 2114 case Decl::Block: 2115 break; 2116 case Decl::CXXConstructor: 2117 // Skip function templates 2118 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2119 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2120 return; 2121 2122 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2123 break; 2124 case Decl::CXXDestructor: 2125 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2126 return; 2127 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2128 break; 2129 2130 case Decl::StaticAssert: 2131 // Nothing to do. 2132 break; 2133 2134 // Objective-C Decls 2135 2136 // Forward declarations, no (immediate) code generation. 2137 case Decl::ObjCClass: 2138 case Decl::ObjCForwardProtocol: 2139 case Decl::ObjCInterface: 2140 break; 2141 2142 case Decl::ObjCCategory: { 2143 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2144 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2145 Context.ResetObjCLayout(CD->getClassInterface()); 2146 break; 2147 } 2148 2149 case Decl::ObjCProtocol: 2150 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2151 break; 2152 2153 case Decl::ObjCCategoryImpl: 2154 // Categories have properties but don't support synthesize so we 2155 // can ignore them here. 2156 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2157 break; 2158 2159 case Decl::ObjCImplementation: { 2160 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2161 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2162 Context.ResetObjCLayout(OMD->getClassInterface()); 2163 EmitObjCPropertyImplementations(OMD); 2164 EmitObjCIvarInitializations(OMD); 2165 Runtime->GenerateClass(OMD); 2166 break; 2167 } 2168 case Decl::ObjCMethod: { 2169 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2170 // If this is not a prototype, emit the body. 2171 if (OMD->getBody()) 2172 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2173 break; 2174 } 2175 case Decl::ObjCCompatibleAlias: 2176 // compatibility-alias is a directive and has no code gen. 2177 break; 2178 2179 case Decl::LinkageSpec: 2180 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2181 break; 2182 2183 case Decl::FileScopeAsm: { 2184 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2185 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2186 2187 const std::string &S = getModule().getModuleInlineAsm(); 2188 if (S.empty()) 2189 getModule().setModuleInlineAsm(AsmString); 2190 else 2191 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2192 break; 2193 } 2194 2195 default: 2196 // Make sure we handled everything we should, every other kind is a 2197 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2198 // function. Need to recode Decl::Kind to do that easily. 2199 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2200 } 2201 } 2202 2203 /// Turns the given pointer into a constant. 2204 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2205 const void *Ptr) { 2206 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2207 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2208 return llvm::ConstantInt::get(i64, PtrInt); 2209 } 2210 2211 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2212 llvm::NamedMDNode *&GlobalMetadata, 2213 GlobalDecl D, 2214 llvm::GlobalValue *Addr) { 2215 if (!GlobalMetadata) 2216 GlobalMetadata = 2217 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2218 2219 // TODO: should we report variant information for ctors/dtors? 2220 llvm::Value *Ops[] = { 2221 Addr, 2222 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2223 }; 2224 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2225 } 2226 2227 /// Emits metadata nodes associating all the global values in the 2228 /// current module with the Decls they came from. This is useful for 2229 /// projects using IR gen as a subroutine. 2230 /// 2231 /// Since there's currently no way to associate an MDNode directly 2232 /// with an llvm::GlobalValue, we create a global named metadata 2233 /// with the name 'clang.global.decl.ptrs'. 2234 void CodeGenModule::EmitDeclMetadata() { 2235 llvm::NamedMDNode *GlobalMetadata = 0; 2236 2237 // StaticLocalDeclMap 2238 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2239 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2240 I != E; ++I) { 2241 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2242 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2243 } 2244 } 2245 2246 /// Emits metadata nodes for all the local variables in the current 2247 /// function. 2248 void CodeGenFunction::EmitDeclMetadata() { 2249 if (LocalDeclMap.empty()) return; 2250 2251 llvm::LLVMContext &Context = getLLVMContext(); 2252 2253 // Find the unique metadata ID for this name. 2254 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2255 2256 llvm::NamedMDNode *GlobalMetadata = 0; 2257 2258 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2259 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2260 const Decl *D = I->first; 2261 llvm::Value *Addr = I->second; 2262 2263 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2264 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2265 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2266 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2267 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2268 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2269 } 2270 } 2271 } 2272 2273 void CodeGenModule::EmitCoverageFile() { 2274 if (!getCodeGenOpts().CoverageFile.empty()) { 2275 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2276 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2277 llvm::LLVMContext &Ctx = TheModule.getContext(); 2278 llvm::MDString *CoverageFile = 2279 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2280 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2281 llvm::MDNode *CU = CUNode->getOperand(i); 2282 llvm::Value *node[] = { CoverageFile, CU }; 2283 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2284 GCov->addOperand(N); 2285 } 2286 } 2287 } 2288 } 2289 2290 ///@name Custom Runtime Function Interfaces 2291 ///@{ 2292 // 2293 // FIXME: These can be eliminated once we can have clients just get the required 2294 // AST nodes from the builtin tables. 2295 2296 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2297 if (BlockObjectDispose) 2298 return BlockObjectDispose; 2299 2300 // If we saw an explicit decl, use that. 2301 if (BlockObjectDisposeDecl) { 2302 return BlockObjectDispose = GetAddrOfFunction( 2303 BlockObjectDisposeDecl, 2304 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2305 } 2306 2307 // Otherwise construct the function by hand. 2308 llvm::Type *args[] = { Int8PtrTy, Int32Ty }; 2309 llvm::FunctionType *fty 2310 = llvm::FunctionType::get(VoidTy, args, false); 2311 return BlockObjectDispose = 2312 CreateRuntimeFunction(fty, "_Block_object_dispose"); 2313 } 2314 2315 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2316 if (BlockObjectAssign) 2317 return BlockObjectAssign; 2318 2319 // If we saw an explicit decl, use that. 2320 if (BlockObjectAssignDecl) { 2321 return BlockObjectAssign = GetAddrOfFunction( 2322 BlockObjectAssignDecl, 2323 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2324 } 2325 2326 // Otherwise construct the function by hand. 2327 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; 2328 llvm::FunctionType *fty 2329 = llvm::FunctionType::get(VoidTy, args, false); 2330 return BlockObjectAssign = 2331 CreateRuntimeFunction(fty, "_Block_object_assign"); 2332 } 2333 2334 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2335 if (NSConcreteGlobalBlock) 2336 return NSConcreteGlobalBlock; 2337 2338 // If we saw an explicit decl, use that. 2339 if (NSConcreteGlobalBlockDecl) { 2340 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2341 NSConcreteGlobalBlockDecl, 2342 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2343 } 2344 2345 // Otherwise construct the variable by hand. 2346 return NSConcreteGlobalBlock = 2347 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2348 } 2349 2350 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2351 if (NSConcreteStackBlock) 2352 return NSConcreteStackBlock; 2353 2354 // If we saw an explicit decl, use that. 2355 if (NSConcreteStackBlockDecl) { 2356 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2357 NSConcreteStackBlockDecl, 2358 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2359 } 2360 2361 // Otherwise construct the variable by hand. 2362 return NSConcreteStackBlock = 2363 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2364 } 2365 2366 ///@} 2367