Home | History | Annotate | Download | only in io
      1 // Protocol Buffers - Google's data interchange format
      2 // Copyright 2008 Google Inc.  All rights reserved.
      3 // http://code.google.com/p/protobuf/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // Author: kenton (at) google.com (Kenton Varda)
     32 //  Based on original Protocol Buffers design by
     33 //  Sanjay Ghemawat, Jeff Dean, and others.
     34 //
     35 // This file contains the CodedInputStream and CodedOutputStream classes,
     36 // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
     37 // and allow you to read or write individual pieces of data in various
     38 // formats.  In particular, these implement the varint encoding for
     39 // integers, a simple variable-length encoding in which smaller numbers
     40 // take fewer bytes.
     41 //
     42 // Typically these classes will only be used internally by the protocol
     43 // buffer library in order to encode and decode protocol buffers.  Clients
     44 // of the library only need to know about this class if they wish to write
     45 // custom message parsing or serialization procedures.
     46 //
     47 // CodedOutputStream example:
     48 //   // Write some data to "myfile".  First we write a 4-byte "magic number"
     49 //   // to identify the file type, then write a length-delimited string.  The
     50 //   // string is composed of a varint giving the length followed by the raw
     51 //   // bytes.
     52 //   int fd = open("myfile", O_WRONLY);
     53 //   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
     54 //   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
     55 //
     56 //   int magic_number = 1234;
     57 //   char text[] = "Hello world!";
     58 //   coded_output->WriteLittleEndian32(magic_number);
     59 //   coded_output->WriteVarint32(strlen(text));
     60 //   coded_output->WriteRaw(text, strlen(text));
     61 //
     62 //   delete coded_output;
     63 //   delete raw_output;
     64 //   close(fd);
     65 //
     66 // CodedInputStream example:
     67 //   // Read a file created by the above code.
     68 //   int fd = open("myfile", O_RDONLY);
     69 //   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
     70 //   CodedInputStream coded_input = new CodedInputStream(raw_input);
     71 //
     72 //   coded_input->ReadLittleEndian32(&magic_number);
     73 //   if (magic_number != 1234) {
     74 //     cerr << "File not in expected format." << endl;
     75 //     return;
     76 //   }
     77 //
     78 //   uint32 size;
     79 //   coded_input->ReadVarint32(&size);
     80 //
     81 //   char* text = new char[size + 1];
     82 //   coded_input->ReadRaw(buffer, size);
     83 //   text[size] = '\0';
     84 //
     85 //   delete coded_input;
     86 //   delete raw_input;
     87 //   close(fd);
     88 //
     89 //   cout << "Text is: " << text << endl;
     90 //   delete [] text;
     91 //
     92 // For those who are interested, varint encoding is defined as follows:
     93 //
     94 // The encoding operates on unsigned integers of up to 64 bits in length.
     95 // Each byte of the encoded value has the format:
     96 // * bits 0-6: Seven bits of the number being encoded.
     97 // * bit 7: Zero if this is the last byte in the encoding (in which
     98 //   case all remaining bits of the number are zero) or 1 if
     99 //   more bytes follow.
    100 // The first byte contains the least-significant 7 bits of the number, the
    101 // second byte (if present) contains the next-least-significant 7 bits,
    102 // and so on.  So, the binary number 1011000101011 would be encoded in two
    103 // bytes as "10101011 00101100".
    104 //
    105 // In theory, varint could be used to encode integers of any length.
    106 // However, for practicality we set a limit at 64 bits.  The maximum encoded
    107 // length of a number is thus 10 bytes.
    108 
    109 #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
    110 #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
    111 
    112 #include <string>
    113 #ifndef _MSC_VER
    114 #include <sys/param.h>
    115 #endif  // !_MSC_VER
    116 #include <google/protobuf/stubs/common.h>
    117 #include <google/protobuf/stubs/common.h>          // for GOOGLE_PREDICT_TRUE macro
    118 
    119 namespace google {
    120 
    121 namespace protobuf {
    122 
    123 class DescriptorPool;
    124 class MessageFactory;
    125 
    126 namespace io {
    127 
    128 // Defined in this file.
    129 class CodedInputStream;
    130 class CodedOutputStream;
    131 
    132 // Defined in other files.
    133 class ZeroCopyInputStream;           // zero_copy_stream.h
    134 class ZeroCopyOutputStream;          // zero_copy_stream.h
    135 
    136 // Class which reads and decodes binary data which is composed of varint-
    137 // encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
    138 // Most users will not need to deal with CodedInputStream.
    139 //
    140 // Most methods of CodedInputStream that return a bool return false if an
    141 // underlying I/O error occurs or if the data is malformed.  Once such a
    142 // failure occurs, the CodedInputStream is broken and is no longer useful.
    143 class LIBPROTOBUF_EXPORT CodedInputStream {
    144  public:
    145   // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
    146   explicit CodedInputStream(ZeroCopyInputStream* input);
    147 
    148   // Create a CodedInputStream that reads from the given flat array.  This is
    149   // faster than using an ArrayInputStream.  PushLimit(size) is implied by
    150   // this constructor.
    151   explicit CodedInputStream(const uint8* buffer, int size);
    152 
    153   // Destroy the CodedInputStream and position the underlying
    154   // ZeroCopyInputStream at the first unread byte.  If an error occurred while
    155   // reading (causing a method to return false), then the exact position of
    156   // the input stream may be anywhere between the last value that was read
    157   // successfully and the stream's byte limit.
    158   ~CodedInputStream();
    159 
    160 
    161   // Skips a number of bytes.  Returns false if an underlying read error
    162   // occurs.
    163   bool Skip(int count);
    164 
    165   // Sets *data to point directly at the unread part of the CodedInputStream's
    166   // underlying buffer, and *size to the size of that buffer, but does not
    167   // advance the stream's current position.  This will always either produce
    168   // a non-empty buffer or return false.  If the caller consumes any of
    169   // this data, it should then call Skip() to skip over the consumed bytes.
    170   // This may be useful for implementing external fast parsing routines for
    171   // types of data not covered by the CodedInputStream interface.
    172   bool GetDirectBufferPointer(const void** data, int* size);
    173 
    174   // Like GetDirectBufferPointer, but this method is inlined, and does not
    175   // attempt to Refresh() if the buffer is currently empty.
    176   inline void GetDirectBufferPointerInline(const void** data,
    177                                            int* size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    178 
    179   // Read raw bytes, copying them into the given buffer.
    180   bool ReadRaw(void* buffer, int size);
    181 
    182   // Like ReadRaw, but reads into a string.
    183   //
    184   // Implementation Note:  ReadString() grows the string gradually as it
    185   // reads in the data, rather than allocating the entire requested size
    186   // upfront.  This prevents denial-of-service attacks in which a client
    187   // could claim that a string is going to be MAX_INT bytes long in order to
    188   // crash the server because it can't allocate this much space at once.
    189   bool ReadString(string* buffer, int size);
    190   // Like the above, with inlined optimizations. This should only be used
    191   // by the protobuf implementation.
    192   inline bool InternalReadStringInline(string* buffer,
    193                                        int size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    194 
    195 
    196   // Read a 32-bit little-endian integer.
    197   bool ReadLittleEndian32(uint32* value);
    198   // Read a 64-bit little-endian integer.
    199   bool ReadLittleEndian64(uint64* value);
    200 
    201   // These methods read from an externally provided buffer. The caller is
    202   // responsible for ensuring that the buffer has sufficient space.
    203   // Read a 32-bit little-endian integer.
    204   static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
    205                                                    uint32* value);
    206   // Read a 64-bit little-endian integer.
    207   static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
    208                                                    uint64* value);
    209 
    210   // Read an unsigned integer with Varint encoding, truncating to 32 bits.
    211   // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
    212   // it to uint32, but may be more efficient.
    213   bool ReadVarint32(uint32* value);
    214   // Read an unsigned integer with Varint encoding.
    215   bool ReadVarint64(uint64* value);
    216 
    217   // Read a tag.  This calls ReadVarint32() and returns the result, or returns
    218   // zero (which is not a valid tag) if ReadVarint32() fails.  Also, it updates
    219   // the last tag value, which can be checked with LastTagWas().
    220   // Always inline because this is only called in once place per parse loop
    221   // but it is called for every iteration of said loop, so it should be fast.
    222   // GCC doesn't want to inline this by default.
    223   uint32 ReadTag() GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    224 
    225   // Usually returns true if calling ReadVarint32() now would produce the given
    226   // value.  Will always return false if ReadVarint32() would not return the
    227   // given value.  If ExpectTag() returns true, it also advances past
    228   // the varint.  For best performance, use a compile-time constant as the
    229   // parameter.
    230   // Always inline because this collapses to a small number of instructions
    231   // when given a constant parameter, but GCC doesn't want to inline by default.
    232   bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    233 
    234   // Like above, except this reads from the specified buffer. The caller is
    235   // responsible for ensuring that the buffer is large enough to read a varint
    236   // of the expected size. For best performance, use a compile-time constant as
    237   // the expected tag parameter.
    238   //
    239   // Returns a pointer beyond the expected tag if it was found, or NULL if it
    240   // was not.
    241   static const uint8* ExpectTagFromArray(
    242       const uint8* buffer,
    243       uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    244 
    245   // Usually returns true if no more bytes can be read.  Always returns false
    246   // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
    247   // call to LastTagWas() will act as if ReadTag() had been called and returned
    248   // zero, and ConsumedEntireMessage() will return true.
    249   bool ExpectAtEnd();
    250 
    251   // If the last call to ReadTag() returned the given value, returns true.
    252   // Otherwise, returns false;
    253   //
    254   // This is needed because parsers for some types of embedded messages
    255   // (with field type TYPE_GROUP) don't actually know that they've reached the
    256   // end of a message until they see an ENDGROUP tag, which was actually part
    257   // of the enclosing message.  The enclosing message would like to check that
    258   // tag to make sure it had the right number, so it calls LastTagWas() on
    259   // return from the embedded parser to check.
    260   bool LastTagWas(uint32 expected);
    261 
    262   // When parsing message (but NOT a group), this method must be called
    263   // immediately after MergeFromCodedStream() returns (if it returns true)
    264   // to further verify that the message ended in a legitimate way.  For
    265   // example, this verifies that parsing did not end on an end-group tag.
    266   // It also checks for some cases where, due to optimizations,
    267   // MergeFromCodedStream() can incorrectly return true.
    268   bool ConsumedEntireMessage();
    269 
    270   // Limits ----------------------------------------------------------
    271   // Limits are used when parsing length-delimited embedded messages.
    272   // After the message's length is read, PushLimit() is used to prevent
    273   // the CodedInputStream from reading beyond that length.  Once the
    274   // embedded message has been parsed, PopLimit() is called to undo the
    275   // limit.
    276 
    277   // Opaque type used with PushLimit() and PopLimit().  Do not modify
    278   // values of this type yourself.  The only reason that this isn't a
    279   // struct with private internals is for efficiency.
    280   typedef int Limit;
    281 
    282   // Places a limit on the number of bytes that the stream may read,
    283   // starting from the current position.  Once the stream hits this limit,
    284   // it will act like the end of the input has been reached until PopLimit()
    285   // is called.
    286   //
    287   // As the names imply, the stream conceptually has a stack of limits.  The
    288   // shortest limit on the stack is always enforced, even if it is not the
    289   // top limit.
    290   //
    291   // The value returned by PushLimit() is opaque to the caller, and must
    292   // be passed unchanged to the corresponding call to PopLimit().
    293   Limit PushLimit(int byte_limit);
    294 
    295   // Pops the last limit pushed by PushLimit().  The input must be the value
    296   // returned by that call to PushLimit().
    297   void PopLimit(Limit limit);
    298 
    299   // Returns the number of bytes left until the nearest limit on the
    300   // stack is hit, or -1 if no limits are in place.
    301   int BytesUntilLimit();
    302 
    303   // Total Bytes Limit -----------------------------------------------
    304   // To prevent malicious users from sending excessively large messages
    305   // and causing integer overflows or memory exhaustion, CodedInputStream
    306   // imposes a hard limit on the total number of bytes it will read.
    307 
    308   // Sets the maximum number of bytes that this CodedInputStream will read
    309   // before refusing to continue.  To prevent integer overflows in the
    310   // protocol buffers implementation, as well as to prevent servers from
    311   // allocating enormous amounts of memory to hold parsed messages, the
    312   // maximum message length should be limited to the shortest length that
    313   // will not harm usability.  The theoretical shortest message that could
    314   // cause integer overflows is 512MB.  The default limit is 64MB.  Apps
    315   // should set shorter limits if possible.  If warning_threshold is not -1,
    316   // a warning will be printed to stderr after warning_threshold bytes are
    317   // read.  An error will always be printed to stderr if the limit is
    318   // reached.
    319   //
    320   // This is unrelated to PushLimit()/PopLimit().
    321   //
    322   // Hint:  If you are reading this because your program is printing a
    323   //   warning about dangerously large protocol messages, you may be
    324   //   confused about what to do next.  The best option is to change your
    325   //   design such that excessively large messages are not necessary.
    326   //   For example, try to design file formats to consist of many small
    327   //   messages rather than a single large one.  If this is infeasible,
    328   //   you will need to increase the limit.  Chances are, though, that
    329   //   your code never constructs a CodedInputStream on which the limit
    330   //   can be set.  You probably parse messages by calling things like
    331   //   Message::ParseFromString().  In this case, you will need to change
    332   //   your code to instead construct some sort of ZeroCopyInputStream
    333   //   (e.g. an ArrayInputStream), construct a CodedInputStream around
    334   //   that, then call Message::ParseFromCodedStream() instead.  Then
    335   //   you can adjust the limit.  Yes, it's more work, but you're doing
    336   //   something unusual.
    337   void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
    338 
    339   // Recursion Limit -------------------------------------------------
    340   // To prevent corrupt or malicious messages from causing stack overflows,
    341   // we must keep track of the depth of recursion when parsing embedded
    342   // messages and groups.  CodedInputStream keeps track of this because it
    343   // is the only object that is passed down the stack during parsing.
    344 
    345   // Sets the maximum recursion depth.  The default is 64.
    346   void SetRecursionLimit(int limit);
    347 
    348   // Increments the current recursion depth.  Returns true if the depth is
    349   // under the limit, false if it has gone over.
    350   bool IncrementRecursionDepth();
    351 
    352   // Decrements the recursion depth.
    353   void DecrementRecursionDepth();
    354 
    355   // Extension Registry ----------------------------------------------
    356   // ADVANCED USAGE:  99.9% of people can ignore this section.
    357   //
    358   // By default, when parsing extensions, the parser looks for extension
    359   // definitions in the pool which owns the outer message's Descriptor.
    360   // However, you may call SetExtensionRegistry() to provide an alternative
    361   // pool instead.  This makes it possible, for example, to parse a message
    362   // using a generated class, but represent some extensions using
    363   // DynamicMessage.
    364 
    365   // Set the pool used to look up extensions.  Most users do not need to call
    366   // this as the correct pool will be chosen automatically.
    367   //
    368   // WARNING:  It is very easy to misuse this.  Carefully read the requirements
    369   //   below.  Do not use this unless you are sure you need it.  Almost no one
    370   //   does.
    371   //
    372   // Let's say you are parsing a message into message object m, and you want
    373   // to take advantage of SetExtensionRegistry().  You must follow these
    374   // requirements:
    375   //
    376   // The given DescriptorPool must contain m->GetDescriptor().  It is not
    377   // sufficient for it to simply contain a descriptor that has the same name
    378   // and content -- it must be the *exact object*.  In other words:
    379   //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
    380   //          m->GetDescriptor());
    381   // There are two ways to satisfy this requirement:
    382   // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
    383   //    because this is the pool that would be used anyway if you didn't call
    384   //    SetExtensionRegistry() at all.
    385   // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
    386   //    "underlay".  Read the documentation for DescriptorPool for more
    387   //    information about underlays.
    388   //
    389   // You must also provide a MessageFactory.  This factory will be used to
    390   // construct Message objects representing extensions.  The factory's
    391   // GetPrototype() MUST return non-NULL for any Descriptor which can be found
    392   // through the provided pool.
    393   //
    394   // If the provided factory might return instances of protocol-compiler-
    395   // generated (i.e. compiled-in) types, or if the outer message object m is
    396   // a generated type, then the given factory MUST have this property:  If
    397   // GetPrototype() is given a Descriptor which resides in
    398   // DescriptorPool::generated_pool(), the factory MUST return the same
    399   // prototype which MessageFactory::generated_factory() would return.  That
    400   // is, given a descriptor for a generated type, the factory must return an
    401   // instance of the generated class (NOT DynamicMessage).  However, when
    402   // given a descriptor for a type that is NOT in generated_pool, the factory
    403   // is free to return any implementation.
    404   //
    405   // The reason for this requirement is that generated sub-objects may be
    406   // accessed via the standard (non-reflection) extension accessor methods,
    407   // and these methods will down-cast the object to the generated class type.
    408   // If the object is not actually of that type, the results would be undefined.
    409   // On the other hand, if an extension is not compiled in, then there is no
    410   // way the code could end up accessing it via the standard accessors -- the
    411   // only way to access the extension is via reflection.  When using reflection,
    412   // DynamicMessage and generated messages are indistinguishable, so it's fine
    413   // if these objects are represented using DynamicMessage.
    414   //
    415   // Using DynamicMessageFactory on which you have called
    416   // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
    417   // above requirement.
    418   //
    419   // If either pool or factory is NULL, both must be NULL.
    420   //
    421   // Note that this feature is ignored when parsing "lite" messages as they do
    422   // not have descriptors.
    423   void SetExtensionRegistry(DescriptorPool* pool, MessageFactory* factory);
    424 
    425   // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
    426   // has been provided.
    427   const DescriptorPool* GetExtensionPool();
    428 
    429   // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
    430   // factory has been provided.
    431   MessageFactory* GetExtensionFactory();
    432 
    433  private:
    434   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
    435 
    436   ZeroCopyInputStream* input_;
    437   const uint8* buffer_;
    438   const uint8* buffer_end_;     // pointer to the end of the buffer.
    439   int total_bytes_read_;  // total bytes read from input_, including
    440                           // the current buffer
    441 
    442   // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
    443   // so that we can BackUp() on destruction.
    444   int overflow_bytes_;
    445 
    446   // LastTagWas() stuff.
    447   uint32 last_tag_;         // result of last ReadTag().
    448 
    449   // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
    450   // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
    451   // reach the end of a message and attempt to read another tag.
    452   bool legitimate_message_end_;
    453 
    454   // See EnableAliasing().
    455   bool aliasing_enabled_;
    456 
    457   // Limits
    458   Limit current_limit_;   // if position = -1, no limit is applied
    459 
    460   // For simplicity, if the current buffer crosses a limit (either a normal
    461   // limit created by PushLimit() or the total bytes limit), buffer_size_
    462   // only tracks the number of bytes before that limit.  This field
    463   // contains the number of bytes after it.  Note that this implies that if
    464   // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
    465   // hit a limit.  However, if both are zero, it doesn't necessarily mean
    466   // we aren't at a limit -- the buffer may have ended exactly at the limit.
    467   int buffer_size_after_limit_;
    468 
    469   // Maximum number of bytes to read, period.  This is unrelated to
    470   // current_limit_.  Set using SetTotalBytesLimit().
    471   int total_bytes_limit_;
    472   int total_bytes_warning_threshold_;
    473 
    474   // Current recursion depth, controlled by IncrementRecursionDepth() and
    475   // DecrementRecursionDepth().
    476   int recursion_depth_;
    477   // Recursion depth limit, set by SetRecursionLimit().
    478   int recursion_limit_;
    479 
    480   // See SetExtensionRegistry().
    481   const DescriptorPool* extension_pool_;
    482   MessageFactory* extension_factory_;
    483 
    484   // Private member functions.
    485 
    486   // Advance the buffer by a given number of bytes.
    487   void Advance(int amount);
    488 
    489   // Back up input_ to the current buffer position.
    490   void BackUpInputToCurrentPosition();
    491 
    492   // Recomputes the value of buffer_size_after_limit_.  Must be called after
    493   // current_limit_ or total_bytes_limit_ changes.
    494   void RecomputeBufferLimits();
    495 
    496   // Writes an error message saying that we hit total_bytes_limit_.
    497   void PrintTotalBytesLimitError();
    498 
    499   // Called when the buffer runs out to request more data.  Implies an
    500   // Advance(BufferSize()).
    501   bool Refresh();
    502 
    503   // When parsing varints, we optimize for the common case of small values, and
    504   // then optimize for the case when the varint fits within the current buffer
    505   // piece. The Fallback method is used when we can't use the one-byte
    506   // optimization. The Slow method is yet another fallback when the buffer is
    507   // not large enough. Making the slow path out-of-line speeds up the common
    508   // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
    509   // message crosses multiple buffers.
    510   bool ReadVarint32Fallback(uint32* value);
    511   bool ReadVarint64Fallback(uint64* value);
    512   bool ReadVarint32Slow(uint32* value);
    513   bool ReadVarint64Slow(uint64* value);
    514   bool ReadLittleEndian32Fallback(uint32* value);
    515   bool ReadLittleEndian64Fallback(uint64* value);
    516   // Fallback/slow methods for reading tags. These do not update last_tag_,
    517   // but will set legitimate_message_end_ if we are at the end of the input
    518   // stream.
    519   uint32 ReadTagFallback();
    520   uint32 ReadTagSlow();
    521   bool ReadStringFallback(string* buffer, int size);
    522 
    523   // Return the size of the buffer.
    524   int BufferSize() const;
    525 
    526   static const int kDefaultTotalBytesLimit = 64 << 20;  // 64MB
    527 
    528   static const int kDefaultTotalBytesWarningThreshold = 32 << 20;  // 32MB
    529   static const int kDefaultRecursionLimit = 64;
    530 };
    531 
    532 // Class which encodes and writes binary data which is composed of varint-
    533 // encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
    534 // Most users will not need to deal with CodedOutputStream.
    535 //
    536 // Most methods of CodedOutputStream which return a bool return false if an
    537 // underlying I/O error occurs.  Once such a failure occurs, the
    538 // CodedOutputStream is broken and is no longer useful. The Write* methods do
    539 // not return the stream status, but will invalidate the stream if an error
    540 // occurs. The client can probe HadError() to determine the status.
    541 //
    542 // Note that every method of CodedOutputStream which writes some data has
    543 // a corresponding static "ToArray" version. These versions write directly
    544 // to the provided buffer, returning a pointer past the last written byte.
    545 // They require that the buffer has sufficient capacity for the encoded data.
    546 // This allows an optimization where we check if an output stream has enough
    547 // space for an entire message before we start writing and, if there is, we
    548 // call only the ToArray methods to avoid doing bound checks for each
    549 // individual value.
    550 // i.e., in the example above:
    551 //
    552 //   CodedOutputStream coded_output = new CodedOutputStream(raw_output);
    553 //   int magic_number = 1234;
    554 //   char text[] = "Hello world!";
    555 //
    556 //   int coded_size = sizeof(magic_number) +
    557 //                    CodedOutputStream::Varint32Size(strlen(text)) +
    558 //                    strlen(text);
    559 //
    560 //   uint8* buffer =
    561 //       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
    562 //   if (buffer != NULL) {
    563 //     // The output stream has enough space in the buffer: write directly to
    564 //     // the array.
    565 //     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
    566 //                                                            buffer);
    567 //     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
    568 //     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
    569 //   } else {
    570 //     // Make bound-checked writes, which will ask the underlying stream for
    571 //     // more space as needed.
    572 //     coded_output->WriteLittleEndian32(magic_number);
    573 //     coded_output->WriteVarint32(strlen(text));
    574 //     coded_output->WriteRaw(text, strlen(text));
    575 //   }
    576 //
    577 //   delete coded_output;
    578 class LIBPROTOBUF_EXPORT CodedOutputStream {
    579  public:
    580   // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
    581   explicit CodedOutputStream(ZeroCopyOutputStream* output);
    582 
    583   // Destroy the CodedOutputStream and position the underlying
    584   // ZeroCopyOutputStream immediately after the last byte written.
    585   ~CodedOutputStream();
    586 
    587   // Skips a number of bytes, leaving the bytes unmodified in the underlying
    588   // buffer.  Returns false if an underlying write error occurs.  This is
    589   // mainly useful with GetDirectBufferPointer().
    590   bool Skip(int count);
    591 
    592   // Sets *data to point directly at the unwritten part of the
    593   // CodedOutputStream's underlying buffer, and *size to the size of that
    594   // buffer, but does not advance the stream's current position.  This will
    595   // always either produce a non-empty buffer or return false.  If the caller
    596   // writes any data to this buffer, it should then call Skip() to skip over
    597   // the consumed bytes.  This may be useful for implementing external fast
    598   // serialization routines for types of data not covered by the
    599   // CodedOutputStream interface.
    600   bool GetDirectBufferPointer(void** data, int* size);
    601 
    602   // If there are at least "size" bytes available in the current buffer,
    603   // returns a pointer directly into the buffer and advances over these bytes.
    604   // The caller may then write directly into this buffer (e.g. using the
    605   // *ToArray static methods) rather than go through CodedOutputStream.  If
    606   // there are not enough bytes available, returns NULL.  The return pointer is
    607   // invalidated as soon as any other non-const method of CodedOutputStream
    608   // is called.
    609   inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
    610 
    611   // Write raw bytes, copying them from the given buffer.
    612   void WriteRaw(const void* buffer, int size);
    613   // Like WriteRaw()  but writing directly to the target array.
    614   // This is _not_ inlined, as the compiler often optimizes memcpy into inline
    615   // copy loops. Since this gets called by every field with string or bytes
    616   // type, inlining may lead to a significant amount of code bloat, with only a
    617   // minor performance gain.
    618   static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
    619 
    620   // Equivalent to WriteRaw(str.data(), str.size()).
    621   void WriteString(const string& str);
    622   // Like WriteString()  but writing directly to the target array.
    623   static uint8* WriteStringToArray(const string& str, uint8* target);
    624 
    625 
    626   // Write a 32-bit little-endian integer.
    627   void WriteLittleEndian32(uint32 value);
    628   // Like WriteLittleEndian32()  but writing directly to the target array.
    629   static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
    630   // Write a 64-bit little-endian integer.
    631   void WriteLittleEndian64(uint64 value);
    632   // Like WriteLittleEndian64()  but writing directly to the target array.
    633   static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
    634 
    635   // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
    636   // is equivalent to casting it to uint64 and writing it as a 64-bit value,
    637   // but may be more efficient.
    638   void WriteVarint32(uint32 value);
    639   // Like WriteVarint32()  but writing directly to the target array.
    640   static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
    641   // Write an unsigned integer with Varint encoding.
    642   void WriteVarint64(uint64 value);
    643   // Like WriteVarint64()  but writing directly to the target array.
    644   static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
    645 
    646   // Equivalent to WriteVarint32() except when the value is negative,
    647   // in which case it must be sign-extended to a full 10 bytes.
    648   void WriteVarint32SignExtended(int32 value);
    649   // Like WriteVarint32SignExtended()  but writing directly to the target array.
    650   static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
    651 
    652   // This is identical to WriteVarint32(), but optimized for writing tags.
    653   // In particular, if the input is a compile-time constant, this method
    654   // compiles down to a couple instructions.
    655   // Always inline because otherwise the aformentioned optimization can't work,
    656   // but GCC by default doesn't want to inline this.
    657   void WriteTag(uint32 value);
    658   // Like WriteTag()  but writing directly to the target array.
    659   static uint8* WriteTagToArray(
    660       uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    661 
    662   // Returns the number of bytes needed to encode the given value as a varint.
    663   static int VarintSize32(uint32 value);
    664   // Returns the number of bytes needed to encode the given value as a varint.
    665   static int VarintSize64(uint64 value);
    666 
    667   // If negative, 10 bytes.  Otheriwse, same as VarintSize32().
    668   static int VarintSize32SignExtended(int32 value);
    669 
    670   // Returns the total number of bytes written since this object was created.
    671   inline int ByteCount() const;
    672 
    673   // Returns true if there was an underlying I/O error since this object was
    674   // created.
    675   bool HadError() const { return had_error_; }
    676 
    677  private:
    678   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
    679 
    680   ZeroCopyOutputStream* output_;
    681   uint8* buffer_;
    682   int buffer_size_;
    683   int total_bytes_;  // Sum of sizes of all buffers seen so far.
    684   bool had_error_;   // Whether an error occurred during output.
    685 
    686   // Advance the buffer by a given number of bytes.
    687   void Advance(int amount);
    688 
    689   // Called when the buffer runs out to request more data.  Implies an
    690   // Advance(buffer_size_).
    691   bool Refresh();
    692 
    693   static uint8* WriteVarint32FallbackToArray(uint32 value, uint8* target);
    694 
    695   // Always-inlined versions of WriteVarint* functions so that code can be
    696   // reused, while still controlling size. For instance, WriteVarint32ToArray()
    697   // should not directly call this: since it is inlined itself, doing so
    698   // would greatly increase the size of generated code. Instead, it should call
    699   // WriteVarint32FallbackToArray.  Meanwhile, WriteVarint32() is already
    700   // out-of-line, so it should just invoke this directly to avoid any extra
    701   // function call overhead.
    702   static uint8* WriteVarint32FallbackToArrayInline(
    703       uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    704   static uint8* WriteVarint64ToArrayInline(
    705       uint64 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
    706 
    707   static int VarintSize32Fallback(uint32 value);
    708 };
    709 
    710 // inline methods ====================================================
    711 // The vast majority of varints are only one byte.  These inline
    712 // methods optimize for that case.
    713 
    714 inline bool CodedInputStream::ReadVarint32(uint32* value) {
    715   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    716     *value = *buffer_;
    717     Advance(1);
    718     return true;
    719   } else {
    720     return ReadVarint32Fallback(value);
    721   }
    722 }
    723 
    724 inline bool CodedInputStream::ReadVarint64(uint64* value) {
    725   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    726     *value = *buffer_;
    727     Advance(1);
    728     return true;
    729   } else {
    730     return ReadVarint64Fallback(value);
    731   }
    732 }
    733 
    734 // static
    735 inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
    736     const uint8* buffer,
    737     uint32* value) {
    738 #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) && \
    739     defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN
    740   memcpy(value, buffer, sizeof(*value));
    741   return buffer + sizeof(*value);
    742 #else
    743   *value = (static_cast<uint32>(buffer[0])      ) |
    744            (static_cast<uint32>(buffer[1]) <<  8) |
    745            (static_cast<uint32>(buffer[2]) << 16) |
    746            (static_cast<uint32>(buffer[3]) << 24);
    747   return buffer + sizeof(*value);
    748 #endif
    749 }
    750 // static
    751 inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
    752     const uint8* buffer,
    753     uint64* value) {
    754 #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) && \
    755     defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN
    756   memcpy(value, buffer, sizeof(*value));
    757   return buffer + sizeof(*value);
    758 #else
    759   uint32 part0 = (static_cast<uint32>(buffer[0])      ) |
    760                  (static_cast<uint32>(buffer[1]) <<  8) |
    761                  (static_cast<uint32>(buffer[2]) << 16) |
    762                  (static_cast<uint32>(buffer[3]) << 24);
    763   uint32 part1 = (static_cast<uint32>(buffer[4])      ) |
    764                  (static_cast<uint32>(buffer[5]) <<  8) |
    765                  (static_cast<uint32>(buffer[6]) << 16) |
    766                  (static_cast<uint32>(buffer[7]) << 24);
    767   *value = static_cast<uint64>(part0) |
    768           (static_cast<uint64>(part1) << 32);
    769   return buffer + sizeof(*value);
    770 #endif
    771 }
    772 
    773 inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
    774 #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) && \
    775     defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN
    776   if (GOOGLE_PREDICT_TRUE(BufferSize() >= sizeof(*value))) {
    777     memcpy(value, buffer_, sizeof(*value));
    778     Advance(sizeof(*value));
    779     return true;
    780   } else {
    781     return ReadLittleEndian32Fallback(value);
    782   }
    783 #else
    784   return ReadLittleEndian32Fallback(value);
    785 #endif
    786 }
    787 
    788 inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
    789 #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) && \
    790     defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN
    791   if (GOOGLE_PREDICT_TRUE(BufferSize() >= sizeof(*value))) {
    792     memcpy(value, buffer_, sizeof(*value));
    793     Advance(sizeof(*value));
    794     return true;
    795   } else {
    796     return ReadLittleEndian64Fallback(value);
    797   }
    798 #else
    799   return ReadLittleEndian64Fallback(value);
    800 #endif
    801 }
    802 
    803 inline uint32 CodedInputStream::ReadTag() {
    804   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] < 0x80) {
    805     last_tag_ = buffer_[0];
    806     Advance(1);
    807     return last_tag_;
    808   } else {
    809     last_tag_ = ReadTagFallback();
    810     return last_tag_;
    811   }
    812 }
    813 
    814 inline bool CodedInputStream::LastTagWas(uint32 expected) {
    815   return last_tag_ == expected;
    816 }
    817 
    818 inline bool CodedInputStream::ConsumedEntireMessage() {
    819   return legitimate_message_end_;
    820 }
    821 
    822 inline bool CodedInputStream::ExpectTag(uint32 expected) {
    823   if (expected < (1 << 7)) {
    824     if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
    825       Advance(1);
    826       return true;
    827     } else {
    828       return false;
    829     }
    830   } else if (expected < (1 << 14)) {
    831     if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
    832         buffer_[0] == static_cast<uint8>(expected | 0x80) &&
    833         buffer_[1] == static_cast<uint8>(expected >> 7)) {
    834       Advance(2);
    835       return true;
    836     } else {
    837       return false;
    838     }
    839   } else {
    840     // Don't bother optimizing for larger values.
    841     return false;
    842   }
    843 }
    844 
    845 inline const uint8* CodedInputStream::ExpectTagFromArray(
    846     const uint8* buffer, uint32 expected) {
    847   if (expected < (1 << 7)) {
    848     if (buffer[0] == expected) {
    849       return buffer + 1;
    850     }
    851   } else if (expected < (1 << 14)) {
    852     if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
    853         buffer[1] == static_cast<uint8>(expected >> 7)) {
    854       return buffer + 2;
    855     }
    856   }
    857   return NULL;
    858 }
    859 
    860 inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
    861                                                            int* size) {
    862   *data = buffer_;
    863   *size = buffer_end_ - buffer_;
    864 }
    865 
    866 inline bool CodedInputStream::ExpectAtEnd() {
    867   // If we are at a limit we know no more bytes can be read.  Otherwise, it's
    868   // hard to say without calling Refresh(), and we'd rather not do that.
    869 
    870   if (buffer_ == buffer_end_ && buffer_size_after_limit_ != 0) {
    871     last_tag_ = 0;                   // Pretend we called ReadTag()...
    872     legitimate_message_end_ = true;  // ... and it hit EOF.
    873     return true;
    874   } else {
    875     return false;
    876   }
    877 }
    878 
    879 inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
    880   if (buffer_size_ < size) {
    881     return NULL;
    882   } else {
    883     uint8* result = buffer_;
    884     Advance(size);
    885     return result;
    886   }
    887 }
    888 
    889 inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
    890                                                         uint8* target) {
    891   if (value < 0x80) {
    892     *target = value;
    893     return target + 1;
    894   } else {
    895     return WriteVarint32FallbackToArray(value, target);
    896   }
    897 }
    898 
    899 inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
    900   if (value < 0) {
    901     WriteVarint64(static_cast<uint64>(value));
    902   } else {
    903     WriteVarint32(static_cast<uint32>(value));
    904   }
    905 }
    906 
    907 inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
    908     int32 value, uint8* target) {
    909   if (value < 0) {
    910     return WriteVarint64ToArray(static_cast<uint64>(value), target);
    911   } else {
    912     return WriteVarint32ToArray(static_cast<uint32>(value), target);
    913   }
    914 }
    915 
    916 inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
    917                                                             uint8* target) {
    918 #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) && \
    919     defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN
    920   memcpy(target, &value, sizeof(value));
    921 #else
    922   target[0] = static_cast<uint8>(value);
    923   target[1] = static_cast<uint8>(value >>  8);
    924   target[2] = static_cast<uint8>(value >> 16);
    925   target[3] = static_cast<uint8>(value >> 24);
    926 #endif
    927   return target + sizeof(value);
    928 }
    929 
    930 inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
    931                                                             uint8* target) {
    932 #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) && \
    933     defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN
    934   memcpy(target, &value, sizeof(value));
    935 #else
    936   uint32 part0 = static_cast<uint32>(value);
    937   uint32 part1 = static_cast<uint32>(value >> 32);
    938 
    939   target[0] = static_cast<uint8>(part0);
    940   target[1] = static_cast<uint8>(part0 >>  8);
    941   target[2] = static_cast<uint8>(part0 >> 16);
    942   target[3] = static_cast<uint8>(part0 >> 24);
    943   target[4] = static_cast<uint8>(part1);
    944   target[5] = static_cast<uint8>(part1 >>  8);
    945   target[6] = static_cast<uint8>(part1 >> 16);
    946   target[7] = static_cast<uint8>(part1 >> 24);
    947 #endif
    948   return target + sizeof(value);
    949 }
    950 
    951 inline void CodedOutputStream::WriteTag(uint32 value) {
    952   WriteVarint32(value);
    953 }
    954 
    955 inline uint8* CodedOutputStream::WriteTagToArray(
    956     uint32 value, uint8* target) {
    957   if (value < (1 << 7)) {
    958     target[0] = value;
    959     return target + 1;
    960   } else if (value < (1 << 14)) {
    961     target[0] = static_cast<uint8>(value | 0x80);
    962     target[1] = static_cast<uint8>(value >> 7);
    963     return target + 2;
    964   } else {
    965     return WriteVarint32FallbackToArray(value, target);
    966   }
    967 }
    968 
    969 inline int CodedOutputStream::VarintSize32(uint32 value) {
    970   if (value < (1 << 7)) {
    971     return 1;
    972   } else  {
    973     return VarintSize32Fallback(value);
    974   }
    975 }
    976 
    977 inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
    978   if (value < 0) {
    979     return 10;     // TODO(kenton):  Make this a symbolic constant.
    980   } else {
    981     return VarintSize32(static_cast<uint32>(value));
    982   }
    983 }
    984 
    985 inline void CodedOutputStream::WriteString(const string& str) {
    986   WriteRaw(str.data(), str.size());
    987 }
    988 
    989 inline uint8* CodedOutputStream::WriteStringToArray(
    990     const string& str, uint8* target) {
    991   return WriteRawToArray(str.data(), str.size(), target);
    992 }
    993 
    994 inline int CodedOutputStream::ByteCount() const {
    995   return total_bytes_ - buffer_size_;
    996 }
    997 
    998 inline void CodedInputStream::Advance(int amount) {
    999   buffer_ += amount;
   1000 }
   1001 
   1002 inline void CodedOutputStream::Advance(int amount) {
   1003   buffer_ += amount;
   1004   buffer_size_ -= amount;
   1005 }
   1006 
   1007 inline void CodedInputStream::SetRecursionLimit(int limit) {
   1008   recursion_limit_ = limit;
   1009 }
   1010 
   1011 inline bool CodedInputStream::IncrementRecursionDepth() {
   1012   ++recursion_depth_;
   1013   return recursion_depth_ <= recursion_limit_;
   1014 }
   1015 
   1016 inline void CodedInputStream::DecrementRecursionDepth() {
   1017   if (recursion_depth_ > 0) --recursion_depth_;
   1018 }
   1019 
   1020 inline void CodedInputStream::SetExtensionRegistry(DescriptorPool* pool,
   1021                                                    MessageFactory* factory) {
   1022   extension_pool_ = pool;
   1023   extension_factory_ = factory;
   1024 }
   1025 
   1026 inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
   1027   return extension_pool_;
   1028 }
   1029 
   1030 inline MessageFactory* CodedInputStream::GetExtensionFactory() {
   1031   return extension_factory_;
   1032 }
   1033 
   1034 inline int CodedInputStream::BufferSize() const {
   1035   return buffer_end_ - buffer_;
   1036 }
   1037 
   1038 inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
   1039   : input_(input),
   1040     buffer_(NULL),
   1041     buffer_end_(NULL),
   1042     total_bytes_read_(0),
   1043     overflow_bytes_(0),
   1044     last_tag_(0),
   1045     legitimate_message_end_(false),
   1046     aliasing_enabled_(false),
   1047     current_limit_(INT_MAX),
   1048     buffer_size_after_limit_(0),
   1049     total_bytes_limit_(kDefaultTotalBytesLimit),
   1050     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
   1051     recursion_depth_(0),
   1052     recursion_limit_(kDefaultRecursionLimit),
   1053     extension_pool_(NULL),
   1054     extension_factory_(NULL) {
   1055   // Eagerly Refresh() so buffer space is immediately available.
   1056   Refresh();
   1057 }
   1058 
   1059 inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
   1060   : input_(NULL),
   1061     buffer_(buffer),
   1062     buffer_end_(buffer + size),
   1063     total_bytes_read_(size),
   1064     overflow_bytes_(0),
   1065     last_tag_(0),
   1066     legitimate_message_end_(false),
   1067     aliasing_enabled_(false),
   1068     current_limit_(size),
   1069     buffer_size_after_limit_(0),
   1070     total_bytes_limit_(kDefaultTotalBytesLimit),
   1071     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
   1072     recursion_depth_(0),
   1073     recursion_limit_(kDefaultRecursionLimit),
   1074     extension_pool_(NULL),
   1075     extension_factory_(NULL) {
   1076   // Note that setting current_limit_ == size is important to prevent some
   1077   // code paths from trying to access input_ and segfaulting.
   1078 }
   1079 
   1080 inline CodedInputStream::~CodedInputStream() {
   1081   if (input_ != NULL) {
   1082     BackUpInputToCurrentPosition();
   1083   }
   1084 }
   1085 
   1086 }  // namespace io
   1087 }  // namespace protobuf
   1088 
   1089 }  // namespace google
   1090 #endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
   1091