Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #include <ctype.h>
     50 #include <string.h>
     51 #include <iomanip>
     52 #include <limits>
     53 #include <set>
     54 
     55 #include "gtest/internal/gtest-string.h"
     56 #include "gtest/internal/gtest-filepath.h"
     57 #include "gtest/internal/gtest-type-util.h"
     58 
     59 // Due to C++ preprocessor weirdness, we need double indirection to
     60 // concatenate two tokens when one of them is __LINE__.  Writing
     61 //
     62 //   foo ## __LINE__
     63 //
     64 // will result in the token foo__LINE__, instead of foo followed by
     65 // the current line number.  For more details, see
     66 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     67 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     68 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     69 
     70 // Google Test defines the testing::Message class to allow construction of
     71 // test messages via the << operator.  The idea is that anything
     72 // streamable to std::ostream can be streamed to a testing::Message.
     73 // This allows a user to use his own types in Google Test assertions by
     74 // overloading the << operator.
     75 //
     76 // util/gtl/stl_logging-inl.h overloads << for STL containers.  These
     77 // overloads cannot be defined in the std namespace, as that will be
     78 // undefined behavior.  Therefore, they are defined in the global
     79 // namespace instead.
     80 //
     81 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
     82 // overloads are visible in either the std namespace or the global
     83 // namespace, but not other namespaces, including the testing
     84 // namespace which Google Test's Message class is in.
     85 //
     86 // To allow STL containers (and other types that has a << operator
     87 // defined in the global namespace) to be used in Google Test assertions,
     88 // testing::Message must access the custom << operator from the global
     89 // namespace.  Hence this helper function.
     90 //
     91 // Note: Jeffrey Yasskin suggested an alternative fix by "using
     92 // ::operator<<;" in the definition of Message's operator<<.  That fix
     93 // doesn't require a helper function, but unfortunately doesn't
     94 // compile with MSVC.
     95 template <typename T>
     96 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
     97   *os << val;
     98 }
     99 
    100 class ProtocolMessage;
    101 namespace proto2 { class Message; }
    102 
    103 namespace testing {
    104 
    105 // Forward declarations.
    106 
    107 class AssertionResult;                 // Result of an assertion.
    108 class Message;                         // Represents a failure message.
    109 class Test;                            // Represents a test.
    110 class TestInfo;                        // Information about a test.
    111 class TestPartResult;                  // Result of a test part.
    112 class UnitTest;                        // A collection of test cases.
    113 
    114 template <typename T>
    115 ::std::string PrintToString(const T& value);
    116 
    117 namespace internal {
    118 
    119 struct TraceInfo;                      // Information about a trace point.
    120 class ScopedTrace;                     // Implements scoped trace.
    121 class TestInfoImpl;                    // Opaque implementation of TestInfo
    122 class UnitTestImpl;                    // Opaque implementation of UnitTest
    123 
    124 // How many times InitGoogleTest() has been called.
    125 extern int g_init_gtest_count;
    126 
    127 // The text used in failure messages to indicate the start of the
    128 // stack trace.
    129 GTEST_API_ extern const char kStackTraceMarker[];
    130 
    131 // A secret type that Google Test users don't know about.  It has no
    132 // definition on purpose.  Therefore it's impossible to create a
    133 // Secret object, which is what we want.
    134 class Secret;
    135 
    136 // Two overloaded helpers for checking at compile time whether an
    137 // expression is a null pointer literal (i.e. NULL or any 0-valued
    138 // compile-time integral constant).  Their return values have
    139 // different sizes, so we can use sizeof() to test which version is
    140 // picked by the compiler.  These helpers have no implementations, as
    141 // we only need their signatures.
    142 //
    143 // Given IsNullLiteralHelper(x), the compiler will pick the first
    144 // version if x can be implicitly converted to Secret*, and pick the
    145 // second version otherwise.  Since Secret is a secret and incomplete
    146 // type, the only expression a user can write that has type Secret* is
    147 // a null pointer literal.  Therefore, we know that x is a null
    148 // pointer literal if and only if the first version is picked by the
    149 // compiler.
    150 char IsNullLiteralHelper(Secret* p);
    151 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    152 
    153 // A compile-time bool constant that is true if and only if x is a
    154 // null pointer literal (i.e. NULL or any 0-valued compile-time
    155 // integral constant).
    156 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    157 // We lose support for NULL detection where the compiler doesn't like
    158 // passing non-POD classes through ellipsis (...).
    159 # define GTEST_IS_NULL_LITERAL_(x) false
    160 #else
    161 # define GTEST_IS_NULL_LITERAL_(x) \
    162     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    163 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    164 
    165 // Appends the user-supplied message to the Google-Test-generated message.
    166 GTEST_API_ String AppendUserMessage(const String& gtest_msg,
    167                                     const Message& user_msg);
    168 
    169 // A helper class for creating scoped traces in user programs.
    170 class GTEST_API_ ScopedTrace {
    171  public:
    172   // The c'tor pushes the given source file location and message onto
    173   // a trace stack maintained by Google Test.
    174   ScopedTrace(const char* file, int line, const Message& message);
    175 
    176   // The d'tor pops the info pushed by the c'tor.
    177   //
    178   // Note that the d'tor is not virtual in order to be efficient.
    179   // Don't inherit from ScopedTrace!
    180   ~ScopedTrace();
    181 
    182  private:
    183   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    184 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    185                             // c'tor and d'tor.  Therefore it doesn't
    186                             // need to be used otherwise.
    187 
    188 // Converts a streamable value to a String.  A NULL pointer is
    189 // converted to "(null)".  When the input value is a ::string,
    190 // ::std::string, ::wstring, or ::std::wstring object, each NUL
    191 // character in it is replaced with "\\0".
    192 // Declared here but defined in gtest.h, so that it has access
    193 // to the definition of the Message class, required by the ARM
    194 // compiler.
    195 template <typename T>
    196 String StreamableToString(const T& streamable);
    197 
    198 // When this operand is a const char* or char*, if the other operand
    199 // is a ::std::string or ::string, we print this operand as a C string
    200 // rather than a pointer (we do the same for wide strings); otherwise
    201 // we print it as a pointer to be safe.
    202 
    203 // This internal macro is used to avoid duplicated code.
    204 // Making the first operand const reference works around a bug in the
    205 // Symbian compiler which is unable to select the correct specialization of
    206 // FormatForComparisonFailureMessage.
    207 #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
    208 inline String FormatForComparisonFailureMessage(\
    209     operand2_type::value_type* const& str, const operand2_type& /*operand2*/) {\
    210   return operand1_printer(str);\
    211 }\
    212 inline String FormatForComparisonFailureMessage(\
    213     const operand2_type::value_type* const& str, \
    214     const operand2_type& /*operand2*/) {\
    215   return operand1_printer(str);\
    216 }
    217 
    218 GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
    219 #if GTEST_HAS_STD_WSTRING
    220 GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
    221 #endif  // GTEST_HAS_STD_WSTRING
    222 
    223 #if GTEST_HAS_GLOBAL_STRING
    224 GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
    225 #endif  // GTEST_HAS_GLOBAL_STRING
    226 #if GTEST_HAS_GLOBAL_WSTRING
    227 GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
    228 #endif  // GTEST_HAS_GLOBAL_WSTRING
    229 
    230 #undef GTEST_FORMAT_IMPL_
    231 
    232 // The next four overloads handle the case where the operand being
    233 // printed is a char/wchar_t pointer and the other operand is not a
    234 // string/wstring object.  In such cases, we just print the operand as
    235 // a pointer to be safe.
    236 //
    237 // Making the first operand const reference works around a bug in the
    238 // Symbian compiler which is unable to select the correct specialization of
    239 // FormatForComparisonFailureMessage.
    240 #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
    241   template <typename T>                                             \
    242   String FormatForComparisonFailureMessage(CharType* const& p, const T&) { \
    243     return PrintToString(static_cast<const void*>(p));              \
    244   }
    245 
    246 GTEST_FORMAT_CHAR_PTR_IMPL_(char)
    247 GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
    248 GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
    249 GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
    250 
    251 #undef GTEST_FORMAT_CHAR_PTR_IMPL_
    252 
    253 // Constructs and returns the message for an equality assertion
    254 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    255 //
    256 // The first four parameters are the expressions used in the assertion
    257 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    258 // where foo is 5 and bar is 6, we have:
    259 //
    260 //   expected_expression: "foo"
    261 //   actual_expression:   "bar"
    262 //   expected_value:      "5"
    263 //   actual_value:        "6"
    264 //
    265 // The ignoring_case parameter is true iff the assertion is a
    266 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    267 // be inserted into the message.
    268 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    269                                      const char* actual_expression,
    270                                      const String& expected_value,
    271                                      const String& actual_value,
    272                                      bool ignoring_case);
    273 
    274 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    275 GTEST_API_ String GetBoolAssertionFailureMessage(
    276     const AssertionResult& assertion_result,
    277     const char* expression_text,
    278     const char* actual_predicate_value,
    279     const char* expected_predicate_value);
    280 
    281 // This template class represents an IEEE floating-point number
    282 // (either single-precision or double-precision, depending on the
    283 // template parameters).
    284 //
    285 // The purpose of this class is to do more sophisticated number
    286 // comparison.  (Due to round-off error, etc, it's very unlikely that
    287 // two floating-points will be equal exactly.  Hence a naive
    288 // comparison by the == operation often doesn't work.)
    289 //
    290 // Format of IEEE floating-point:
    291 //
    292 //   The most-significant bit being the leftmost, an IEEE
    293 //   floating-point looks like
    294 //
    295 //     sign_bit exponent_bits fraction_bits
    296 //
    297 //   Here, sign_bit is a single bit that designates the sign of the
    298 //   number.
    299 //
    300 //   For float, there are 8 exponent bits and 23 fraction bits.
    301 //
    302 //   For double, there are 11 exponent bits and 52 fraction bits.
    303 //
    304 //   More details can be found at
    305 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    306 //
    307 // Template parameter:
    308 //
    309 //   RawType: the raw floating-point type (either float or double)
    310 template <typename RawType>
    311 class FloatingPoint {
    312  public:
    313   // Defines the unsigned integer type that has the same size as the
    314   // floating point number.
    315   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    316 
    317   // Constants.
    318 
    319   // # of bits in a number.
    320   static const size_t kBitCount = 8*sizeof(RawType);
    321 
    322   // # of fraction bits in a number.
    323   static const size_t kFractionBitCount =
    324     std::numeric_limits<RawType>::digits - 1;
    325 
    326   // # of exponent bits in a number.
    327   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    328 
    329   // The mask for the sign bit.
    330   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    331 
    332   // The mask for the fraction bits.
    333   static const Bits kFractionBitMask =
    334     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    335 
    336   // The mask for the exponent bits.
    337   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    338 
    339   // How many ULP's (Units in the Last Place) we want to tolerate when
    340   // comparing two numbers.  The larger the value, the more error we
    341   // allow.  A 0 value means that two numbers must be exactly the same
    342   // to be considered equal.
    343   //
    344   // The maximum error of a single floating-point operation is 0.5
    345   // units in the last place.  On Intel CPU's, all floating-point
    346   // calculations are done with 80-bit precision, while double has 64
    347   // bits.  Therefore, 4 should be enough for ordinary use.
    348   //
    349   // See the following article for more details on ULP:
    350   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
    351   static const size_t kMaxUlps = 4;
    352 
    353   // Constructs a FloatingPoint from a raw floating-point number.
    354   //
    355   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    356   // around may change its bits, although the new value is guaranteed
    357   // to be also a NAN.  Therefore, don't expect this constructor to
    358   // preserve the bits in x when x is a NAN.
    359   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    360 
    361   // Static methods
    362 
    363   // Reinterprets a bit pattern as a floating-point number.
    364   //
    365   // This function is needed to test the AlmostEquals() method.
    366   static RawType ReinterpretBits(const Bits bits) {
    367     FloatingPoint fp(0);
    368     fp.u_.bits_ = bits;
    369     return fp.u_.value_;
    370   }
    371 
    372   // Returns the floating-point number that represent positive infinity.
    373   static RawType Infinity() {
    374     return ReinterpretBits(kExponentBitMask);
    375   }
    376 
    377   // Non-static methods
    378 
    379   // Returns the bits that represents this number.
    380   const Bits &bits() const { return u_.bits_; }
    381 
    382   // Returns the exponent bits of this number.
    383   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    384 
    385   // Returns the fraction bits of this number.
    386   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    387 
    388   // Returns the sign bit of this number.
    389   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    390 
    391   // Returns true iff this is NAN (not a number).
    392   bool is_nan() const {
    393     // It's a NAN if the exponent bits are all ones and the fraction
    394     // bits are not entirely zeros.
    395     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    396   }
    397 
    398   // Returns true iff this number is at most kMaxUlps ULP's away from
    399   // rhs.  In particular, this function:
    400   //
    401   //   - returns false if either number is (or both are) NAN.
    402   //   - treats really large numbers as almost equal to infinity.
    403   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    404   bool AlmostEquals(const FloatingPoint& rhs) const {
    405     // The IEEE standard says that any comparison operation involving
    406     // a NAN must return false.
    407     if (is_nan() || rhs.is_nan()) return false;
    408 
    409     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    410         <= kMaxUlps;
    411   }
    412 
    413  private:
    414   // The data type used to store the actual floating-point number.
    415   union FloatingPointUnion {
    416     RawType value_;  // The raw floating-point number.
    417     Bits bits_;      // The bits that represent the number.
    418   };
    419 
    420   // Converts an integer from the sign-and-magnitude representation to
    421   // the biased representation.  More precisely, let N be 2 to the
    422   // power of (kBitCount - 1), an integer x is represented by the
    423   // unsigned number x + N.
    424   //
    425   // For instance,
    426   //
    427   //   -N + 1 (the most negative number representable using
    428   //          sign-and-magnitude) is represented by 1;
    429   //   0      is represented by N; and
    430   //   N - 1  (the biggest number representable using
    431   //          sign-and-magnitude) is represented by 2N - 1.
    432   //
    433   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    434   // for more details on signed number representations.
    435   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    436     if (kSignBitMask & sam) {
    437       // sam represents a negative number.
    438       return ~sam + 1;
    439     } else {
    440       // sam represents a positive number.
    441       return kSignBitMask | sam;
    442     }
    443   }
    444 
    445   // Given two numbers in the sign-and-magnitude representation,
    446   // returns the distance between them as an unsigned number.
    447   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    448                                                      const Bits &sam2) {
    449     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    450     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    451     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    452   }
    453 
    454   FloatingPointUnion u_;
    455 };
    456 
    457 // Typedefs the instances of the FloatingPoint template class that we
    458 // care to use.
    459 typedef FloatingPoint<float> Float;
    460 typedef FloatingPoint<double> Double;
    461 
    462 // In order to catch the mistake of putting tests that use different
    463 // test fixture classes in the same test case, we need to assign
    464 // unique IDs to fixture classes and compare them.  The TypeId type is
    465 // used to hold such IDs.  The user should treat TypeId as an opaque
    466 // type: the only operation allowed on TypeId values is to compare
    467 // them for equality using the == operator.
    468 typedef const void* TypeId;
    469 
    470 template <typename T>
    471 class TypeIdHelper {
    472  public:
    473   // dummy_ must not have a const type.  Otherwise an overly eager
    474   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    475   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    476   static bool dummy_;
    477 };
    478 
    479 template <typename T>
    480 bool TypeIdHelper<T>::dummy_ = false;
    481 
    482 // GetTypeId<T>() returns the ID of type T.  Different values will be
    483 // returned for different types.  Calling the function twice with the
    484 // same type argument is guaranteed to return the same ID.
    485 template <typename T>
    486 TypeId GetTypeId() {
    487   // The compiler is required to allocate a different
    488   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    489   // the template.  Therefore, the address of dummy_ is guaranteed to
    490   // be unique.
    491   return &(TypeIdHelper<T>::dummy_);
    492 }
    493 
    494 // Returns the type ID of ::testing::Test.  Always call this instead
    495 // of GetTypeId< ::testing::Test>() to get the type ID of
    496 // ::testing::Test, as the latter may give the wrong result due to a
    497 // suspected linker bug when compiling Google Test as a Mac OS X
    498 // framework.
    499 GTEST_API_ TypeId GetTestTypeId();
    500 
    501 // Defines the abstract factory interface that creates instances
    502 // of a Test object.
    503 class TestFactoryBase {
    504  public:
    505   virtual ~TestFactoryBase() {}
    506 
    507   // Creates a test instance to run. The instance is both created and destroyed
    508   // within TestInfoImpl::Run()
    509   virtual Test* CreateTest() = 0;
    510 
    511  protected:
    512   TestFactoryBase() {}
    513 
    514  private:
    515   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    516 };
    517 
    518 // This class provides implementation of TeastFactoryBase interface.
    519 // It is used in TEST and TEST_F macros.
    520 template <class TestClass>
    521 class TestFactoryImpl : public TestFactoryBase {
    522  public:
    523   virtual Test* CreateTest() { return new TestClass; }
    524 };
    525 
    526 #if GTEST_OS_WINDOWS
    527 
    528 // Predicate-formatters for implementing the HRESULT checking macros
    529 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    530 // We pass a long instead of HRESULT to avoid causing an
    531 // include dependency for the HRESULT type.
    532 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    533                                             long hr);  // NOLINT
    534 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    535                                             long hr);  // NOLINT
    536 
    537 #endif  // GTEST_OS_WINDOWS
    538 
    539 // Types of SetUpTestCase() and TearDownTestCase() functions.
    540 typedef void (*SetUpTestCaseFunc)();
    541 typedef void (*TearDownTestCaseFunc)();
    542 
    543 // Creates a new TestInfo object and registers it with Google Test;
    544 // returns the created object.
    545 //
    546 // Arguments:
    547 //
    548 //   test_case_name:   name of the test case
    549 //   name:             name of the test
    550 //   type_param        the name of the test's type parameter, or NULL if
    551 //                     this is not  a typed or a type-parameterized test.
    552 //   value_param       text representation of the test's value parameter,
    553 //                     or NULL if this is not a type-parameterized test.
    554 //   fixture_class_id: ID of the test fixture class
    555 //   set_up_tc:        pointer to the function that sets up the test case
    556 //   tear_down_tc:     pointer to the function that tears down the test case
    557 //   factory:          pointer to the factory that creates a test object.
    558 //                     The newly created TestInfo instance will assume
    559 //                     ownership of the factory object.
    560 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    561     const char* test_case_name, const char* name,
    562     const char* type_param,
    563     const char* value_param,
    564     TypeId fixture_class_id,
    565     SetUpTestCaseFunc set_up_tc,
    566     TearDownTestCaseFunc tear_down_tc,
    567     TestFactoryBase* factory);
    568 
    569 // If *pstr starts with the given prefix, modifies *pstr to be right
    570 // past the prefix and returns true; otherwise leaves *pstr unchanged
    571 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    572 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    573 
    574 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    575 
    576 // State of the definition of a type-parameterized test case.
    577 class GTEST_API_ TypedTestCasePState {
    578  public:
    579   TypedTestCasePState() : registered_(false) {}
    580 
    581   // Adds the given test name to defined_test_names_ and return true
    582   // if the test case hasn't been registered; otherwise aborts the
    583   // program.
    584   bool AddTestName(const char* file, int line, const char* case_name,
    585                    const char* test_name) {
    586     if (registered_) {
    587       fprintf(stderr, "%s Test %s must be defined before "
    588               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    589               FormatFileLocation(file, line).c_str(), test_name, case_name);
    590       fflush(stderr);
    591       posix::Abort();
    592     }
    593     defined_test_names_.insert(test_name);
    594     return true;
    595   }
    596 
    597   // Verifies that registered_tests match the test names in
    598   // defined_test_names_; returns registered_tests if successful, or
    599   // aborts the program otherwise.
    600   const char* VerifyRegisteredTestNames(
    601       const char* file, int line, const char* registered_tests);
    602 
    603  private:
    604   bool registered_;
    605   ::std::set<const char*> defined_test_names_;
    606 };
    607 
    608 // Skips to the first non-space char after the first comma in 'str';
    609 // returns NULL if no comma is found in 'str'.
    610 inline const char* SkipComma(const char* str) {
    611   const char* comma = strchr(str, ',');
    612   if (comma == NULL) {
    613     return NULL;
    614   }
    615   while (IsSpace(*(++comma))) {}
    616   return comma;
    617 }
    618 
    619 // Returns the prefix of 'str' before the first comma in it; returns
    620 // the entire string if it contains no comma.
    621 inline String GetPrefixUntilComma(const char* str) {
    622   const char* comma = strchr(str, ',');
    623   return comma == NULL ? String(str) : String(str, comma - str);
    624 }
    625 
    626 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    627 // registers a list of type-parameterized tests with Google Test.  The
    628 // return value is insignificant - we just need to return something
    629 // such that we can call this function in a namespace scope.
    630 //
    631 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    632 // template parameter.  It's defined in gtest-type-util.h.
    633 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    634 class TypeParameterizedTest {
    635  public:
    636   // 'index' is the index of the test in the type list 'Types'
    637   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    638   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    639   // length of Types.
    640   static bool Register(const char* prefix, const char* case_name,
    641                        const char* test_names, int index) {
    642     typedef typename Types::Head Type;
    643     typedef Fixture<Type> FixtureClass;
    644     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    645 
    646     // First, registers the first type-parameterized test in the type
    647     // list.
    648     MakeAndRegisterTestInfo(
    649         String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
    650                        case_name, index).c_str(),
    651         GetPrefixUntilComma(test_names).c_str(),
    652         GetTypeName<Type>().c_str(),
    653         NULL,  // No value parameter.
    654         GetTypeId<FixtureClass>(),
    655         TestClass::SetUpTestCase,
    656         TestClass::TearDownTestCase,
    657         new TestFactoryImpl<TestClass>);
    658 
    659     // Next, recurses (at compile time) with the tail of the type list.
    660     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    661         ::Register(prefix, case_name, test_names, index + 1);
    662   }
    663 };
    664 
    665 // The base case for the compile time recursion.
    666 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    667 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    668  public:
    669   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    670                        const char* /*test_names*/, int /*index*/) {
    671     return true;
    672   }
    673 };
    674 
    675 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    676 // registers *all combinations* of 'Tests' and 'Types' with Google
    677 // Test.  The return value is insignificant - we just need to return
    678 // something such that we can call this function in a namespace scope.
    679 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    680 class TypeParameterizedTestCase {
    681  public:
    682   static bool Register(const char* prefix, const char* case_name,
    683                        const char* test_names) {
    684     typedef typename Tests::Head Head;
    685 
    686     // First, register the first test in 'Test' for each type in 'Types'.
    687     TypeParameterizedTest<Fixture, Head, Types>::Register(
    688         prefix, case_name, test_names, 0);
    689 
    690     // Next, recurses (at compile time) with the tail of the test list.
    691     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    692         ::Register(prefix, case_name, SkipComma(test_names));
    693   }
    694 };
    695 
    696 // The base case for the compile time recursion.
    697 template <GTEST_TEMPLATE_ Fixture, typename Types>
    698 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    699  public:
    700   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    701                        const char* /*test_names*/) {
    702     return true;
    703   }
    704 };
    705 
    706 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    707 
    708 // Returns the current OS stack trace as a String.
    709 //
    710 // The maximum number of stack frames to be included is specified by
    711 // the gtest_stack_trace_depth flag.  The skip_count parameter
    712 // specifies the number of top frames to be skipped, which doesn't
    713 // count against the number of frames to be included.
    714 //
    715 // For example, if Foo() calls Bar(), which in turn calls
    716 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    717 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    718 GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
    719                                                   int skip_count);
    720 
    721 // Helpers for suppressing warnings on unreachable code or constant
    722 // condition.
    723 
    724 // Always returns true.
    725 GTEST_API_ bool AlwaysTrue();
    726 
    727 // Always returns false.
    728 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    729 
    730 // Helper for suppressing false warning from Clang on a const char*
    731 // variable declared in a conditional expression always being NULL in
    732 // the else branch.
    733 struct GTEST_API_ ConstCharPtr {
    734   ConstCharPtr(const char* str) : value(str) {}
    735   operator bool() const { return true; }
    736   const char* value;
    737 };
    738 
    739 // A simple Linear Congruential Generator for generating random
    740 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    741 // doesn't use global state (and therefore can't interfere with user
    742 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    743 // but it's good enough for our purposes.
    744 class GTEST_API_ Random {
    745  public:
    746   static const UInt32 kMaxRange = 1u << 31;
    747 
    748   explicit Random(UInt32 seed) : state_(seed) {}
    749 
    750   void Reseed(UInt32 seed) { state_ = seed; }
    751 
    752   // Generates a random number from [0, range).  Crashes if 'range' is
    753   // 0 or greater than kMaxRange.
    754   UInt32 Generate(UInt32 range);
    755 
    756  private:
    757   UInt32 state_;
    758   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    759 };
    760 
    761 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    762 // compiler error iff T1 and T2 are different types.
    763 template <typename T1, typename T2>
    764 struct CompileAssertTypesEqual;
    765 
    766 template <typename T>
    767 struct CompileAssertTypesEqual<T, T> {
    768 };
    769 
    770 // Removes the reference from a type if it is a reference type,
    771 // otherwise leaves it unchanged.  This is the same as
    772 // tr1::remove_reference, which is not widely available yet.
    773 template <typename T>
    774 struct RemoveReference { typedef T type; };  // NOLINT
    775 template <typename T>
    776 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    777 
    778 // A handy wrapper around RemoveReference that works when the argument
    779 // T depends on template parameters.
    780 #define GTEST_REMOVE_REFERENCE_(T) \
    781     typename ::testing::internal::RemoveReference<T>::type
    782 
    783 // Removes const from a type if it is a const type, otherwise leaves
    784 // it unchanged.  This is the same as tr1::remove_const, which is not
    785 // widely available yet.
    786 template <typename T>
    787 struct RemoveConst { typedef T type; };  // NOLINT
    788 template <typename T>
    789 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    790 
    791 // MSVC 8.0 and Sun C++ have a bug which causes the above definition
    792 // to fail to remove the const in 'const int[3]'.  The following
    793 // specialization works around the bug.  However, it causes trouble
    794 // with GCC and thus needs to be conditionally compiled.
    795 #if defined(_MSC_VER) || defined(__SUNPRO_CC)
    796 template <typename T, size_t N>
    797 struct RemoveConst<T[N]> {
    798   typedef typename RemoveConst<T>::type type[N];
    799 };
    800 #endif
    801 
    802 // A handy wrapper around RemoveConst that works when the argument
    803 // T depends on template parameters.
    804 #define GTEST_REMOVE_CONST_(T) \
    805     typename ::testing::internal::RemoveConst<T>::type
    806 
    807 // Turns const U&, U&, const U, and U all into U.
    808 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    809     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    810 
    811 // Adds reference to a type if it is not a reference type,
    812 // otherwise leaves it unchanged.  This is the same as
    813 // tr1::add_reference, which is not widely available yet.
    814 template <typename T>
    815 struct AddReference { typedef T& type; };  // NOLINT
    816 template <typename T>
    817 struct AddReference<T&> { typedef T& type; };  // NOLINT
    818 
    819 // A handy wrapper around AddReference that works when the argument T
    820 // depends on template parameters.
    821 #define GTEST_ADD_REFERENCE_(T) \
    822     typename ::testing::internal::AddReference<T>::type
    823 
    824 // Adds a reference to const on top of T as necessary.  For example,
    825 // it transforms
    826 //
    827 //   char         ==> const char&
    828 //   const char   ==> const char&
    829 //   char&        ==> const char&
    830 //   const char&  ==> const char&
    831 //
    832 // The argument T must depend on some template parameters.
    833 #define GTEST_REFERENCE_TO_CONST_(T) \
    834     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    835 
    836 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    837 // constant that's true iff type From can be implicitly converted to
    838 // type To.
    839 template <typename From, typename To>
    840 class ImplicitlyConvertible {
    841  private:
    842   // We need the following helper functions only for their types.
    843   // They have no implementations.
    844 
    845   // MakeFrom() is an expression whose type is From.  We cannot simply
    846   // use From(), as the type From may not have a public default
    847   // constructor.
    848   static From MakeFrom();
    849 
    850   // These two functions are overloaded.  Given an expression
    851   // Helper(x), the compiler will pick the first version if x can be
    852   // implicitly converted to type To; otherwise it will pick the
    853   // second version.
    854   //
    855   // The first version returns a value of size 1, and the second
    856   // version returns a value of size 2.  Therefore, by checking the
    857   // size of Helper(x), which can be done at compile time, we can tell
    858   // which version of Helper() is used, and hence whether x can be
    859   // implicitly converted to type To.
    860   static char Helper(To);
    861   static char (&Helper(...))[2];  // NOLINT
    862 
    863   // We have to put the 'public' section after the 'private' section,
    864   // or MSVC refuses to compile the code.
    865  public:
    866   // MSVC warns about implicitly converting from double to int for
    867   // possible loss of data, so we need to temporarily disable the
    868   // warning.
    869 #ifdef _MSC_VER
    870 # pragma warning(push)          // Saves the current warning state.
    871 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
    872 
    873   static const bool value =
    874       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    875 # pragma warning(pop)           // Restores the warning state.
    876 #elif defined(__BORLANDC__)
    877   // C++Builder cannot use member overload resolution during template
    878   // instantiation.  The simplest workaround is to use its C++0x type traits
    879   // functions (C++Builder 2009 and above only).
    880   static const bool value = __is_convertible(From, To);
    881 #else
    882   static const bool value =
    883       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    884 #endif  // _MSV_VER
    885 };
    886 template <typename From, typename To>
    887 const bool ImplicitlyConvertible<From, To>::value;
    888 
    889 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    890 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    891 // of those.
    892 template <typename T>
    893 struct IsAProtocolMessage
    894     : public bool_constant<
    895   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    896   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    897 };
    898 
    899 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    900 // STL-style container class, the first overload of IsContainerTest
    901 // will be viable (since both C::iterator* and C::const_iterator* are
    902 // valid types and NULL can be implicitly converted to them).  It will
    903 // be picked over the second overload as 'int' is a perfect match for
    904 // the type of argument 0.  If C::iterator or C::const_iterator is not
    905 // a valid type, the first overload is not viable, and the second
    906 // overload will be picked.  Therefore, we can determine whether C is
    907 // a container class by checking the type of IsContainerTest<C>(0).
    908 // The value of the expression is insignificant.
    909 //
    910 // Note that we look for both C::iterator and C::const_iterator.  The
    911 // reason is that C++ injects the name of a class as a member of the
    912 // class itself (e.g. you can refer to class iterator as either
    913 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    914 // only, for example, we would mistakenly think that a class named
    915 // iterator is an STL container.
    916 //
    917 // Also note that the simpler approach of overloading
    918 // IsContainerTest(typename C::const_iterator*) and
    919 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    920 typedef int IsContainer;
    921 template <class C>
    922 IsContainer IsContainerTest(int /* dummy */,
    923                             typename C::iterator* /* it */ = NULL,
    924                             typename C::const_iterator* /* const_it */ = NULL) {
    925   return 0;
    926 }
    927 
    928 typedef char IsNotContainer;
    929 template <class C>
    930 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    931 
    932 // EnableIf<condition>::type is void when 'Cond' is true, and
    933 // undefined when 'Cond' is false.  To use SFINAE to make a function
    934 // overload only apply when a particular expression is true, add
    935 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    936 template<bool> struct EnableIf;
    937 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    938 
    939 // Utilities for native arrays.
    940 
    941 // ArrayEq() compares two k-dimensional native arrays using the
    942 // elements' operator==, where k can be any integer >= 0.  When k is
    943 // 0, ArrayEq() degenerates into comparing a single pair of values.
    944 
    945 template <typename T, typename U>
    946 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    947 
    948 // This generic version is used when k is 0.
    949 template <typename T, typename U>
    950 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    951 
    952 // This overload is used when k >= 1.
    953 template <typename T, typename U, size_t N>
    954 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    955   return internal::ArrayEq(lhs, N, rhs);
    956 }
    957 
    958 // This helper reduces code bloat.  If we instead put its logic inside
    959 // the previous ArrayEq() function, arrays with different sizes would
    960 // lead to different copies of the template code.
    961 template <typename T, typename U>
    962 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    963   for (size_t i = 0; i != size; i++) {
    964     if (!internal::ArrayEq(lhs[i], rhs[i]))
    965       return false;
    966   }
    967   return true;
    968 }
    969 
    970 // Finds the first element in the iterator range [begin, end) that
    971 // equals elem.  Element may be a native array type itself.
    972 template <typename Iter, typename Element>
    973 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
    974   for (Iter it = begin; it != end; ++it) {
    975     if (internal::ArrayEq(*it, elem))
    976       return it;
    977   }
    978   return end;
    979 }
    980 
    981 // CopyArray() copies a k-dimensional native array using the elements'
    982 // operator=, where k can be any integer >= 0.  When k is 0,
    983 // CopyArray() degenerates into copying a single value.
    984 
    985 template <typename T, typename U>
    986 void CopyArray(const T* from, size_t size, U* to);
    987 
    988 // This generic version is used when k is 0.
    989 template <typename T, typename U>
    990 inline void CopyArray(const T& from, U* to) { *to = from; }
    991 
    992 // This overload is used when k >= 1.
    993 template <typename T, typename U, size_t N>
    994 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
    995   internal::CopyArray(from, N, *to);
    996 }
    997 
    998 // This helper reduces code bloat.  If we instead put its logic inside
    999 // the previous CopyArray() function, arrays with different sizes
   1000 // would lead to different copies of the template code.
   1001 template <typename T, typename U>
   1002 void CopyArray(const T* from, size_t size, U* to) {
   1003   for (size_t i = 0; i != size; i++) {
   1004     internal::CopyArray(from[i], to + i);
   1005   }
   1006 }
   1007 
   1008 // The relation between an NativeArray object (see below) and the
   1009 // native array it represents.
   1010 enum RelationToSource {
   1011   kReference,  // The NativeArray references the native array.
   1012   kCopy        // The NativeArray makes a copy of the native array and
   1013                // owns the copy.
   1014 };
   1015 
   1016 // Adapts a native array to a read-only STL-style container.  Instead
   1017 // of the complete STL container concept, this adaptor only implements
   1018 // members useful for Google Mock's container matchers.  New members
   1019 // should be added as needed.  To simplify the implementation, we only
   1020 // support Element being a raw type (i.e. having no top-level const or
   1021 // reference modifier).  It's the client's responsibility to satisfy
   1022 // this requirement.  Element can be an array type itself (hence
   1023 // multi-dimensional arrays are supported).
   1024 template <typename Element>
   1025 class NativeArray {
   1026  public:
   1027   // STL-style container typedefs.
   1028   typedef Element value_type;
   1029   typedef Element* iterator;
   1030   typedef const Element* const_iterator;
   1031 
   1032   // Constructs from a native array.
   1033   NativeArray(const Element* array, size_t count, RelationToSource relation) {
   1034     Init(array, count, relation);
   1035   }
   1036 
   1037   // Copy constructor.
   1038   NativeArray(const NativeArray& rhs) {
   1039     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
   1040   }
   1041 
   1042   ~NativeArray() {
   1043     // Ensures that the user doesn't instantiate NativeArray with a
   1044     // const or reference type.
   1045     static_cast<void>(StaticAssertTypeEqHelper<Element,
   1046         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
   1047     if (relation_to_source_ == kCopy)
   1048       delete[] array_;
   1049   }
   1050 
   1051   // STL-style container methods.
   1052   size_t size() const { return size_; }
   1053   const_iterator begin() const { return array_; }
   1054   const_iterator end() const { return array_ + size_; }
   1055   bool operator==(const NativeArray& rhs) const {
   1056     return size() == rhs.size() &&
   1057         ArrayEq(begin(), size(), rhs.begin());
   1058   }
   1059 
   1060  private:
   1061   // Initializes this object; makes a copy of the input array if
   1062   // 'relation' is kCopy.
   1063   void Init(const Element* array, size_t a_size, RelationToSource relation) {
   1064     if (relation == kReference) {
   1065       array_ = array;
   1066     } else {
   1067       Element* const copy = new Element[a_size];
   1068       CopyArray(array, a_size, copy);
   1069       array_ = copy;
   1070     }
   1071     size_ = a_size;
   1072     relation_to_source_ = relation;
   1073   }
   1074 
   1075   const Element* array_;
   1076   size_t size_;
   1077   RelationToSource relation_to_source_;
   1078 
   1079   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1080 };
   1081 
   1082 }  // namespace internal
   1083 }  // namespace testing
   1084 
   1085 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1086   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1087     = ::testing::Message()
   1088 
   1089 #define GTEST_MESSAGE_(message, result_type) \
   1090   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1091 
   1092 #define GTEST_FATAL_FAILURE_(message) \
   1093   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1094 
   1095 #define GTEST_NONFATAL_FAILURE_(message) \
   1096   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1097 
   1098 #define GTEST_SUCCESS_(message) \
   1099   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1100 
   1101 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1102 // statement if it returns or throws (or doesn't return or throw in some
   1103 // situations).
   1104 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1105   if (::testing::internal::AlwaysTrue()) { statement; }
   1106 
   1107 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1108   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1109   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1110     bool gtest_caught_expected = false; \
   1111     try { \
   1112       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1113     } \
   1114     catch (expected_exception const&) { \
   1115       gtest_caught_expected = true; \
   1116     } \
   1117     catch (...) { \
   1118       gtest_msg.value = \
   1119           "Expected: " #statement " throws an exception of type " \
   1120           #expected_exception ".\n  Actual: it throws a different type."; \
   1121       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1122     } \
   1123     if (!gtest_caught_expected) { \
   1124       gtest_msg.value = \
   1125           "Expected: " #statement " throws an exception of type " \
   1126           #expected_exception ".\n  Actual: it throws nothing."; \
   1127       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1128     } \
   1129   } else \
   1130     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1131       fail(gtest_msg.value)
   1132 
   1133 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1134   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1135   if (::testing::internal::AlwaysTrue()) { \
   1136     try { \
   1137       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1138     } \
   1139     catch (...) { \
   1140       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1141     } \
   1142   } else \
   1143     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1144       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1145            "  Actual: it throws.")
   1146 
   1147 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1148   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1149   if (::testing::internal::AlwaysTrue()) { \
   1150     bool gtest_caught_any = false; \
   1151     try { \
   1152       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1153     } \
   1154     catch (...) { \
   1155       gtest_caught_any = true; \
   1156     } \
   1157     if (!gtest_caught_any) { \
   1158       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1159     } \
   1160   } else \
   1161     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1162       fail("Expected: " #statement " throws an exception.\n" \
   1163            "  Actual: it doesn't.")
   1164 
   1165 
   1166 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1167 // either a boolean expression or an AssertionResult. text is a textual
   1168 // represenation of expression as it was passed into the EXPECT_TRUE.
   1169 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1170   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1171   if (const ::testing::AssertionResult gtest_ar_ = \
   1172       ::testing::AssertionResult(expression)) \
   1173     ; \
   1174   else \
   1175     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1176         gtest_ar_, text, #actual, #expected).c_str())
   1177 
   1178 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1179   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1180   if (::testing::internal::AlwaysTrue()) { \
   1181     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1182     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1183     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1184       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1185     } \
   1186   } else \
   1187     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1188       fail("Expected: " #statement " doesn't generate new fatal " \
   1189            "failures in the current thread.\n" \
   1190            "  Actual: it does.")
   1191 
   1192 // Expands to the name of the class that implements the given test.
   1193 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1194   test_case_name##_##test_name##_Test
   1195 
   1196 // Helper macro for defining tests.
   1197 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1198 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1199  public:\
   1200   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1201  private:\
   1202   virtual void TestBody();\
   1203   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1204   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1205       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1206 };\
   1207 \
   1208 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1209   ::test_info_ =\
   1210     ::testing::internal::MakeAndRegisterTestInfo(\
   1211         #test_case_name, #test_name, NULL, NULL, \
   1212         (parent_id), \
   1213         parent_class::SetUpTestCase, \
   1214         parent_class::TearDownTestCase, \
   1215         new ::testing::internal::TestFactoryImpl<\
   1216             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1217 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1218 
   1219 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1220