Home | History | Annotate | Download | only in src
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_HEAP_H_
     29 #define V8_HEAP_H_
     30 
     31 #include <math.h>
     32 
     33 #include "globals.h"
     34 #include "list.h"
     35 #include "mark-compact.h"
     36 #include "spaces.h"
     37 #include "splay-tree-inl.h"
     38 #include "v8-counters.h"
     39 
     40 namespace v8 {
     41 namespace internal {
     42 
     43 // TODO(isolates): remove HEAP here
     44 #define HEAP (_inline_get_heap_())
     45 class Heap;
     46 inline Heap* _inline_get_heap_();
     47 
     48 
     49 // Defines all the roots in Heap.
     50 #define STRONG_ROOT_LIST(V)                                      \
     51   /* Put the byte array map early.  We need it to be in place by the time   */ \
     52   /* the deserializer hits the next page, since it wants to put a byte      */ \
     53   /* array in the unused space at the end of the page.                      */ \
     54   V(Map, byte_array_map, ByteArrayMap)                                         \
     55   V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
     56   V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
     57   /* Cluster the most popular ones in a few cache lines here at the top.    */ \
     58   V(Object, undefined_value, UndefinedValue)                                   \
     59   V(Object, the_hole_value, TheHoleValue)                                      \
     60   V(Object, null_value, NullValue)                                             \
     61   V(Object, true_value, TrueValue)                                             \
     62   V(Object, false_value, FalseValue)                                           \
     63   V(Object, arguments_marker, ArgumentsMarker)                                 \
     64   V(Map, heap_number_map, HeapNumberMap)                                       \
     65   V(Map, global_context_map, GlobalContextMap)                                 \
     66   V(Map, fixed_array_map, FixedArrayMap)                                       \
     67   V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
     68   V(Object, no_interceptor_result_sentinel, NoInterceptorResultSentinel)       \
     69   V(Map, meta_map, MetaMap)                                                    \
     70   V(Map, hash_table_map, HashTableMap)                                         \
     71   V(Smi, stack_limit, StackLimit)                                              \
     72   V(FixedArray, number_string_cache, NumberStringCache)                        \
     73   V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
     74   V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
     75   V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
     76   V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
     77   V(Object, termination_exception, TerminationException)                       \
     78   V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
     79   V(ByteArray, empty_byte_array, EmptyByteArray)                               \
     80   V(String, empty_string, EmptyString)                                         \
     81   V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
     82   V(Map, string_map, StringMap)                                                \
     83   V(Map, ascii_string_map, AsciiStringMap)                                     \
     84   V(Map, symbol_map, SymbolMap)                                                \
     85   V(Map, cons_string_map, ConsStringMap)                                       \
     86   V(Map, cons_ascii_string_map, ConsAsciiStringMap)                            \
     87   V(Map, ascii_symbol_map, AsciiSymbolMap)                                     \
     88   V(Map, cons_symbol_map, ConsSymbolMap)                                       \
     89   V(Map, cons_ascii_symbol_map, ConsAsciiSymbolMap)                            \
     90   V(Map, external_symbol_map, ExternalSymbolMap)                               \
     91   V(Map, external_symbol_with_ascii_data_map, ExternalSymbolWithAsciiDataMap)  \
     92   V(Map, external_ascii_symbol_map, ExternalAsciiSymbolMap)                    \
     93   V(Map, external_string_map, ExternalStringMap)                               \
     94   V(Map, external_string_with_ascii_data_map, ExternalStringWithAsciiDataMap)  \
     95   V(Map, external_ascii_string_map, ExternalAsciiStringMap)                    \
     96   V(Map, undetectable_string_map, UndetectableStringMap)                       \
     97   V(Map, undetectable_ascii_string_map, UndetectableAsciiStringMap)            \
     98   V(Map, external_pixel_array_map, ExternalPixelArrayMap)                      \
     99   V(Map, external_byte_array_map, ExternalByteArrayMap)                        \
    100   V(Map, external_unsigned_byte_array_map, ExternalUnsignedByteArrayMap)       \
    101   V(Map, external_short_array_map, ExternalShortArrayMap)                      \
    102   V(Map, external_unsigned_short_array_map, ExternalUnsignedShortArrayMap)     \
    103   V(Map, external_int_array_map, ExternalIntArrayMap)                          \
    104   V(Map, external_unsigned_int_array_map, ExternalUnsignedIntArrayMap)         \
    105   V(Map, external_float_array_map, ExternalFloatArrayMap)                      \
    106   V(Map, context_map, ContextMap)                                              \
    107   V(Map, catch_context_map, CatchContextMap)                                   \
    108   V(Map, code_map, CodeMap)                                                    \
    109   V(Map, oddball_map, OddballMap)                                              \
    110   V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
    111   V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
    112   V(Map, message_object_map, JSMessageObjectMap)                               \
    113   V(Map, proxy_map, ProxyMap)                                                  \
    114   V(Object, nan_value, NanValue)                                               \
    115   V(Object, minus_zero_value, MinusZeroValue)                                  \
    116   V(Map, neander_map, NeanderMap)                                              \
    117   V(JSObject, message_listeners, MessageListeners)                             \
    118   V(Proxy, prototype_accessors, PrototypeAccessors)                            \
    119   V(NumberDictionary, code_stubs, CodeStubs)                                   \
    120   V(NumberDictionary, non_monomorphic_cache, NonMonomorphicCache)              \
    121   V(Code, js_entry_code, JsEntryCode)                                          \
    122   V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
    123   V(FixedArray, natives_source_cache, NativesSourceCache)                      \
    124   V(Object, last_script_id, LastScriptId)                                      \
    125   V(Script, empty_script, EmptyScript)                                         \
    126   V(Smi, real_stack_limit, RealStackLimit)                                     \
    127   V(StringDictionary, intrinsic_function_names, IntrinsicFunctionNames)        \
    128 
    129 #define ROOT_LIST(V)                                  \
    130   STRONG_ROOT_LIST(V)                                 \
    131   V(SymbolTable, symbol_table, SymbolTable)
    132 
    133 #define SYMBOL_LIST(V)                                                   \
    134   V(Array_symbol, "Array")                                               \
    135   V(Object_symbol, "Object")                                             \
    136   V(Proto_symbol, "__proto__")                                           \
    137   V(StringImpl_symbol, "StringImpl")                                     \
    138   V(arguments_symbol, "arguments")                                       \
    139   V(Arguments_symbol, "Arguments")                                       \
    140   V(arguments_shadow_symbol, ".arguments")                               \
    141   V(call_symbol, "call")                                                 \
    142   V(apply_symbol, "apply")                                               \
    143   V(caller_symbol, "caller")                                             \
    144   V(boolean_symbol, "boolean")                                           \
    145   V(Boolean_symbol, "Boolean")                                           \
    146   V(callee_symbol, "callee")                                             \
    147   V(constructor_symbol, "constructor")                                   \
    148   V(code_symbol, ".code")                                                \
    149   V(result_symbol, ".result")                                            \
    150   V(catch_var_symbol, ".catch-var")                                      \
    151   V(empty_symbol, "")                                                    \
    152   V(eval_symbol, "eval")                                                 \
    153   V(function_symbol, "function")                                         \
    154   V(length_symbol, "length")                                             \
    155   V(name_symbol, "name")                                                 \
    156   V(number_symbol, "number")                                             \
    157   V(Number_symbol, "Number")                                             \
    158   V(nan_symbol, "NaN")                                                   \
    159   V(RegExp_symbol, "RegExp")                                             \
    160   V(source_symbol, "source")                                             \
    161   V(global_symbol, "global")                                             \
    162   V(ignore_case_symbol, "ignoreCase")                                    \
    163   V(multiline_symbol, "multiline")                                       \
    164   V(input_symbol, "input")                                               \
    165   V(index_symbol, "index")                                               \
    166   V(last_index_symbol, "lastIndex")                                      \
    167   V(object_symbol, "object")                                             \
    168   V(prototype_symbol, "prototype")                                       \
    169   V(string_symbol, "string")                                             \
    170   V(String_symbol, "String")                                             \
    171   V(Date_symbol, "Date")                                                 \
    172   V(this_symbol, "this")                                                 \
    173   V(to_string_symbol, "toString")                                        \
    174   V(char_at_symbol, "CharAt")                                            \
    175   V(undefined_symbol, "undefined")                                       \
    176   V(value_of_symbol, "valueOf")                                          \
    177   V(InitializeVarGlobal_symbol, "InitializeVarGlobal")                   \
    178   V(InitializeConstGlobal_symbol, "InitializeConstGlobal")               \
    179   V(KeyedLoadSpecialized_symbol, "KeyedLoadSpecialized")                 \
    180   V(KeyedStoreSpecialized_symbol, "KeyedStoreSpecialized")               \
    181   V(stack_overflow_symbol, "kStackOverflowBoilerplate")                  \
    182   V(illegal_access_symbol, "illegal access")                             \
    183   V(out_of_memory_symbol, "out-of-memory")                               \
    184   V(illegal_execution_state_symbol, "illegal execution state")           \
    185   V(get_symbol, "get")                                                   \
    186   V(set_symbol, "set")                                                   \
    187   V(function_class_symbol, "Function")                                   \
    188   V(illegal_argument_symbol, "illegal argument")                         \
    189   V(MakeReferenceError_symbol, "MakeReferenceError")                     \
    190   V(MakeSyntaxError_symbol, "MakeSyntaxError")                           \
    191   V(MakeTypeError_symbol, "MakeTypeError")                               \
    192   V(invalid_lhs_in_assignment_symbol, "invalid_lhs_in_assignment")       \
    193   V(invalid_lhs_in_for_in_symbol, "invalid_lhs_in_for_in")               \
    194   V(invalid_lhs_in_postfix_op_symbol, "invalid_lhs_in_postfix_op")       \
    195   V(invalid_lhs_in_prefix_op_symbol, "invalid_lhs_in_prefix_op")         \
    196   V(illegal_return_symbol, "illegal_return")                             \
    197   V(illegal_break_symbol, "illegal_break")                               \
    198   V(illegal_continue_symbol, "illegal_continue")                         \
    199   V(unknown_label_symbol, "unknown_label")                               \
    200   V(redeclaration_symbol, "redeclaration")                               \
    201   V(failure_symbol, "<failure>")                                         \
    202   V(space_symbol, " ")                                                   \
    203   V(exec_symbol, "exec")                                                 \
    204   V(zero_symbol, "0")                                                    \
    205   V(global_eval_symbol, "GlobalEval")                                    \
    206   V(identity_hash_symbol, "v8::IdentityHash")                            \
    207   V(closure_symbol, "(closure)")                                         \
    208   V(use_strict, "use strict")                                            \
    209   V(KeyedLoadExternalByteArray_symbol, "KeyedLoadExternalByteArray")     \
    210   V(KeyedLoadExternalUnsignedByteArray_symbol,                           \
    211       "KeyedLoadExternalUnsignedByteArray")                              \
    212   V(KeyedLoadExternalShortArray_symbol,                                  \
    213       "KeyedLoadExternalShortArray")                                     \
    214   V(KeyedLoadExternalUnsignedShortArray_symbol,                          \
    215       "KeyedLoadExternalUnsignedShortArray")                             \
    216   V(KeyedLoadExternalIntArray_symbol, "KeyedLoadExternalIntArray")       \
    217   V(KeyedLoadExternalUnsignedIntArray_symbol,                            \
    218        "KeyedLoadExternalUnsignedIntArray")                              \
    219   V(KeyedLoadExternalFloatArray_symbol, "KeyedLoadExternalFloatArray")   \
    220   V(KeyedLoadExternalPixelArray_symbol, "KeyedLoadExternalPixelArray")   \
    221   V(KeyedStoreExternalByteArray_symbol, "KeyedStoreExternalByteArray")   \
    222   V(KeyedStoreExternalUnsignedByteArray_symbol,                          \
    223         "KeyedStoreExternalUnsignedByteArray")                           \
    224   V(KeyedStoreExternalShortArray_symbol, "KeyedStoreExternalShortArray") \
    225   V(KeyedStoreExternalUnsignedShortArray_symbol,                         \
    226         "KeyedStoreExternalUnsignedShortArray")                          \
    227   V(KeyedStoreExternalIntArray_symbol, "KeyedStoreExternalIntArray")     \
    228   V(KeyedStoreExternalUnsignedIntArray_symbol,                           \
    229         "KeyedStoreExternalUnsignedIntArray")                            \
    230   V(KeyedStoreExternalFloatArray_symbol, "KeyedStoreExternalFloatArray") \
    231   V(KeyedStoreExternalPixelArray_symbol, "KeyedStoreExternalPixelArray")
    232 
    233 // Forward declarations.
    234 class GCTracer;
    235 class HeapStats;
    236 class Isolate;
    237 class WeakObjectRetainer;
    238 
    239 
    240 typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
    241                                                       Object** pointer);
    242 
    243 typedef bool (*DirtyRegionCallback)(Heap* heap,
    244                                     Address start,
    245                                     Address end,
    246                                     ObjectSlotCallback copy_object_func);
    247 
    248 
    249 // The all static Heap captures the interface to the global object heap.
    250 // All JavaScript contexts by this process share the same object heap.
    251 
    252 #ifdef DEBUG
    253 class HeapDebugUtils;
    254 #endif
    255 
    256 
    257 // A queue of objects promoted during scavenge. Each object is accompanied
    258 // by it's size to avoid dereferencing a map pointer for scanning.
    259 class PromotionQueue {
    260  public:
    261   PromotionQueue() : front_(NULL), rear_(NULL) { }
    262 
    263   void Initialize(Address start_address) {
    264     front_ = rear_ = reinterpret_cast<intptr_t*>(start_address);
    265   }
    266 
    267   bool is_empty() { return front_ <= rear_; }
    268 
    269   inline void insert(HeapObject* target, int size);
    270 
    271   void remove(HeapObject** target, int* size) {
    272     *target = reinterpret_cast<HeapObject*>(*(--front_));
    273     *size = static_cast<int>(*(--front_));
    274     // Assert no underflow.
    275     ASSERT(front_ >= rear_);
    276   }
    277 
    278  private:
    279   // The front of the queue is higher in memory than the rear.
    280   intptr_t* front_;
    281   intptr_t* rear_;
    282 
    283   DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
    284 };
    285 
    286 
    287 // External strings table is a place where all external strings are
    288 // registered.  We need to keep track of such strings to properly
    289 // finalize them.
    290 class ExternalStringTable {
    291  public:
    292   // Registers an external string.
    293   inline void AddString(String* string);
    294 
    295   inline void Iterate(ObjectVisitor* v);
    296 
    297   // Restores internal invariant and gets rid of collected strings.
    298   // Must be called after each Iterate() that modified the strings.
    299   void CleanUp();
    300 
    301   // Destroys all allocated memory.
    302   void TearDown();
    303 
    304  private:
    305   ExternalStringTable() { }
    306 
    307   friend class Heap;
    308 
    309   inline void Verify();
    310 
    311   inline void AddOldString(String* string);
    312 
    313   // Notifies the table that only a prefix of the new list is valid.
    314   inline void ShrinkNewStrings(int position);
    315 
    316   // To speed up scavenge collections new space string are kept
    317   // separate from old space strings.
    318   List<Object*> new_space_strings_;
    319   List<Object*> old_space_strings_;
    320 
    321   Heap* heap_;
    322 
    323   DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
    324 };
    325 
    326 
    327 class Heap {
    328  public:
    329   // Configure heap size before setup. Return false if the heap has been
    330   // setup already.
    331   bool ConfigureHeap(int max_semispace_size,
    332                      int max_old_gen_size,
    333                      int max_executable_size);
    334   bool ConfigureHeapDefault();
    335 
    336   // Initializes the global object heap. If create_heap_objects is true,
    337   // also creates the basic non-mutable objects.
    338   // Returns whether it succeeded.
    339   bool Setup(bool create_heap_objects);
    340 
    341   // Destroys all memory allocated by the heap.
    342   void TearDown();
    343 
    344   // Set the stack limit in the roots_ array.  Some architectures generate
    345   // code that looks here, because it is faster than loading from the static
    346   // jslimit_/real_jslimit_ variable in the StackGuard.
    347   void SetStackLimits();
    348 
    349   // Returns whether Setup has been called.
    350   bool HasBeenSetup();
    351 
    352   // Returns the maximum amount of memory reserved for the heap.  For
    353   // the young generation, we reserve 4 times the amount needed for a
    354   // semi space.  The young generation consists of two semi spaces and
    355   // we reserve twice the amount needed for those in order to ensure
    356   // that new space can be aligned to its size.
    357   intptr_t MaxReserved() {
    358     return 4 * reserved_semispace_size_ + max_old_generation_size_;
    359   }
    360   int MaxSemiSpaceSize() { return max_semispace_size_; }
    361   int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
    362   int InitialSemiSpaceSize() { return initial_semispace_size_; }
    363   intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
    364   intptr_t MaxExecutableSize() { return max_executable_size_; }
    365 
    366   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
    367   // more spaces are needed until it reaches the limit.
    368   intptr_t Capacity();
    369 
    370   // Returns the amount of memory currently committed for the heap.
    371   intptr_t CommittedMemory();
    372 
    373   // Returns the amount of executable memory currently committed for the heap.
    374   intptr_t CommittedMemoryExecutable();
    375 
    376   // Returns the available bytes in space w/o growing.
    377   // Heap doesn't guarantee that it can allocate an object that requires
    378   // all available bytes. Check MaxHeapObjectSize() instead.
    379   intptr_t Available();
    380 
    381   // Returns the maximum object size in paged space.
    382   inline int MaxObjectSizeInPagedSpace();
    383 
    384   // Returns of size of all objects residing in the heap.
    385   intptr_t SizeOfObjects();
    386 
    387   // Return the starting address and a mask for the new space.  And-masking an
    388   // address with the mask will result in the start address of the new space
    389   // for all addresses in either semispace.
    390   Address NewSpaceStart() { return new_space_.start(); }
    391   uintptr_t NewSpaceMask() { return new_space_.mask(); }
    392   Address NewSpaceTop() { return new_space_.top(); }
    393 
    394   NewSpace* new_space() { return &new_space_; }
    395   OldSpace* old_pointer_space() { return old_pointer_space_; }
    396   OldSpace* old_data_space() { return old_data_space_; }
    397   OldSpace* code_space() { return code_space_; }
    398   MapSpace* map_space() { return map_space_; }
    399   CellSpace* cell_space() { return cell_space_; }
    400   LargeObjectSpace* lo_space() { return lo_space_; }
    401 
    402   bool always_allocate() { return always_allocate_scope_depth_ != 0; }
    403   Address always_allocate_scope_depth_address() {
    404     return reinterpret_cast<Address>(&always_allocate_scope_depth_);
    405   }
    406   bool linear_allocation() {
    407     return linear_allocation_scope_depth_ != 0;
    408   }
    409 
    410   Address* NewSpaceAllocationTopAddress() {
    411     return new_space_.allocation_top_address();
    412   }
    413   Address* NewSpaceAllocationLimitAddress() {
    414     return new_space_.allocation_limit_address();
    415   }
    416 
    417   // Uncommit unused semi space.
    418   bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
    419 
    420 #ifdef ENABLE_HEAP_PROTECTION
    421   // Protect/unprotect the heap by marking all spaces read-only/writable.
    422   void Protect();
    423   void Unprotect();
    424 #endif
    425 
    426   // Allocates and initializes a new JavaScript object based on a
    427   // constructor.
    428   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    429   // failed.
    430   // Please note this does not perform a garbage collection.
    431   MUST_USE_RESULT MaybeObject* AllocateJSObject(
    432       JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED);
    433 
    434   // Allocates and initializes a new global object based on a constructor.
    435   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    436   // failed.
    437   // Please note this does not perform a garbage collection.
    438   MUST_USE_RESULT MaybeObject* AllocateGlobalObject(JSFunction* constructor);
    439 
    440   // Returns a deep copy of the JavaScript object.
    441   // Properties and elements are copied too.
    442   // Returns failure if allocation failed.
    443   MUST_USE_RESULT MaybeObject* CopyJSObject(JSObject* source);
    444 
    445   // Allocates the function prototype.
    446   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    447   // failed.
    448   // Please note this does not perform a garbage collection.
    449   MUST_USE_RESULT MaybeObject* AllocateFunctionPrototype(JSFunction* function);
    450 
    451   // Reinitialize an JSGlobalProxy based on a constructor.  The object
    452   // must have the same size as objects allocated using the
    453   // constructor.  The object is reinitialized and behaves as an
    454   // object that has been freshly allocated using the constructor.
    455   MUST_USE_RESULT MaybeObject* ReinitializeJSGlobalProxy(
    456       JSFunction* constructor, JSGlobalProxy* global);
    457 
    458   // Allocates and initializes a new JavaScript object based on a map.
    459   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    460   // failed.
    461   // Please note this does not perform a garbage collection.
    462   MUST_USE_RESULT MaybeObject* AllocateJSObjectFromMap(
    463       Map* map, PretenureFlag pretenure = NOT_TENURED);
    464 
    465   // Allocates a heap object based on the map.
    466   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    467   // failed.
    468   // Please note this function does not perform a garbage collection.
    469   MUST_USE_RESULT MaybeObject* Allocate(Map* map, AllocationSpace space);
    470 
    471   // Allocates a JS Map in the heap.
    472   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    473   // failed.
    474   // Please note this function does not perform a garbage collection.
    475   MUST_USE_RESULT MaybeObject* AllocateMap(InstanceType instance_type,
    476                                            int instance_size);
    477 
    478   // Allocates a partial map for bootstrapping.
    479   MUST_USE_RESULT MaybeObject* AllocatePartialMap(InstanceType instance_type,
    480                                                   int instance_size);
    481 
    482   // Allocate a map for the specified function
    483   MUST_USE_RESULT MaybeObject* AllocateInitialMap(JSFunction* fun);
    484 
    485   // Allocates an empty code cache.
    486   MUST_USE_RESULT MaybeObject* AllocateCodeCache();
    487 
    488   // Clear the Instanceof cache (used when a prototype changes).
    489   inline void ClearInstanceofCache();
    490 
    491   // Allocates and fully initializes a String.  There are two String
    492   // encodings: ASCII and two byte. One should choose between the three string
    493   // allocation functions based on the encoding of the string buffer used to
    494   // initialized the string.
    495   //   - ...FromAscii initializes the string from a buffer that is ASCII
    496   //     encoded (it does not check that the buffer is ASCII encoded) and the
    497   //     result will be ASCII encoded.
    498   //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
    499   //     encoded.  If the characters are all single-byte characters, the
    500   //     result will be ASCII encoded, otherwise it will converted to two
    501   //     byte.
    502   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
    503   //     encoded.  If the characters are all single-byte characters, the
    504   //     result will be converted to ASCII, otherwise it will be left as
    505   //     two-byte.
    506   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    507   // failed.
    508   // Please note this does not perform a garbage collection.
    509   MUST_USE_RESULT MaybeObject* AllocateStringFromAscii(
    510       Vector<const char> str,
    511       PretenureFlag pretenure = NOT_TENURED);
    512   MUST_USE_RESULT inline MaybeObject* AllocateStringFromUtf8(
    513       Vector<const char> str,
    514       PretenureFlag pretenure = NOT_TENURED);
    515   MUST_USE_RESULT MaybeObject* AllocateStringFromUtf8Slow(
    516       Vector<const char> str,
    517       PretenureFlag pretenure = NOT_TENURED);
    518   MUST_USE_RESULT MaybeObject* AllocateStringFromTwoByte(
    519       Vector<const uc16> str,
    520       PretenureFlag pretenure = NOT_TENURED);
    521 
    522   // Allocates a symbol in old space based on the character stream.
    523   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    524   // failed.
    525   // Please note this function does not perform a garbage collection.
    526   MUST_USE_RESULT inline MaybeObject* AllocateSymbol(Vector<const char> str,
    527                                                      int chars,
    528                                                      uint32_t hash_field);
    529 
    530   MUST_USE_RESULT inline MaybeObject* AllocateAsciiSymbol(
    531         Vector<const char> str,
    532         uint32_t hash_field);
    533 
    534   MUST_USE_RESULT inline MaybeObject* AllocateTwoByteSymbol(
    535         Vector<const uc16> str,
    536         uint32_t hash_field);
    537 
    538   MUST_USE_RESULT MaybeObject* AllocateInternalSymbol(
    539       unibrow::CharacterStream* buffer, int chars, uint32_t hash_field);
    540 
    541   MUST_USE_RESULT MaybeObject* AllocateExternalSymbol(
    542       Vector<const char> str,
    543       int chars);
    544 
    545   // Allocates and partially initializes a String.  There are two String
    546   // encodings: ASCII and two byte.  These functions allocate a string of the
    547   // given length and set its map and length fields.  The characters of the
    548   // string are uninitialized.
    549   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    550   // failed.
    551   // Please note this does not perform a garbage collection.
    552   MUST_USE_RESULT MaybeObject* AllocateRawAsciiString(
    553       int length,
    554       PretenureFlag pretenure = NOT_TENURED);
    555   MUST_USE_RESULT MaybeObject* AllocateRawTwoByteString(
    556       int length,
    557       PretenureFlag pretenure = NOT_TENURED);
    558 
    559   // Computes a single character string where the character has code.
    560   // A cache is used for ascii codes.
    561   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    562   // failed. Please note this does not perform a garbage collection.
    563   MUST_USE_RESULT MaybeObject* LookupSingleCharacterStringFromCode(
    564       uint16_t code);
    565 
    566   // Allocate a byte array of the specified length
    567   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    568   // failed.
    569   // Please note this does not perform a garbage collection.
    570   MUST_USE_RESULT MaybeObject* AllocateByteArray(int length,
    571                                                  PretenureFlag pretenure);
    572 
    573   // Allocate a non-tenured byte array of the specified length
    574   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    575   // failed.
    576   // Please note this does not perform a garbage collection.
    577   MUST_USE_RESULT MaybeObject* AllocateByteArray(int length);
    578 
    579   // Allocates an external array of the specified length and type.
    580   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    581   // failed.
    582   // Please note this does not perform a garbage collection.
    583   MUST_USE_RESULT MaybeObject* AllocateExternalArray(
    584       int length,
    585       ExternalArrayType array_type,
    586       void* external_pointer,
    587       PretenureFlag pretenure);
    588 
    589   // Allocate a tenured JS global property cell.
    590   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    591   // failed.
    592   // Please note this does not perform a garbage collection.
    593   MUST_USE_RESULT MaybeObject* AllocateJSGlobalPropertyCell(Object* value);
    594 
    595   // Allocates a fixed array initialized with undefined values
    596   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    597   // failed.
    598   // Please note this does not perform a garbage collection.
    599   MUST_USE_RESULT MaybeObject* AllocateFixedArray(int length,
    600                                                   PretenureFlag pretenure);
    601   // Allocates a fixed array initialized with undefined values
    602   MUST_USE_RESULT MaybeObject* AllocateFixedArray(int length);
    603 
    604   // Allocates an uninitialized fixed array. It must be filled by the caller.
    605   //
    606   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    607   // failed.
    608   // Please note this does not perform a garbage collection.
    609   MUST_USE_RESULT MaybeObject* AllocateUninitializedFixedArray(int length);
    610 
    611   // Make a copy of src and return it. Returns
    612   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    613   MUST_USE_RESULT inline MaybeObject* CopyFixedArray(FixedArray* src);
    614 
    615   // Make a copy of src, set the map, and return the copy. Returns
    616   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    617   MUST_USE_RESULT MaybeObject* CopyFixedArrayWithMap(FixedArray* src, Map* map);
    618 
    619   // Allocates a fixed array initialized with the hole values.
    620   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    621   // failed.
    622   // Please note this does not perform a garbage collection.
    623   MUST_USE_RESULT MaybeObject* AllocateFixedArrayWithHoles(
    624       int length,
    625       PretenureFlag pretenure = NOT_TENURED);
    626 
    627   // AllocateHashTable is identical to AllocateFixedArray except
    628   // that the resulting object has hash_table_map as map.
    629   MUST_USE_RESULT MaybeObject* AllocateHashTable(
    630       int length, PretenureFlag pretenure = NOT_TENURED);
    631 
    632   // Allocate a global (but otherwise uninitialized) context.
    633   MUST_USE_RESULT MaybeObject* AllocateGlobalContext();
    634 
    635   // Allocate a function context.
    636   MUST_USE_RESULT MaybeObject* AllocateFunctionContext(int length,
    637                                                        JSFunction* closure);
    638 
    639   // Allocate a 'with' context.
    640   MUST_USE_RESULT MaybeObject* AllocateWithContext(Context* previous,
    641                                                    JSObject* extension,
    642                                                    bool is_catch_context);
    643 
    644   // Allocates a new utility object in the old generation.
    645   MUST_USE_RESULT MaybeObject* AllocateStruct(InstanceType type);
    646 
    647   // Allocates a function initialized with a shared part.
    648   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    649   // failed.
    650   // Please note this does not perform a garbage collection.
    651   MUST_USE_RESULT MaybeObject* AllocateFunction(
    652       Map* function_map,
    653       SharedFunctionInfo* shared,
    654       Object* prototype,
    655       PretenureFlag pretenure = TENURED);
    656 
    657   // Arguments object size.
    658   static const int kArgumentsObjectSize =
    659       JSObject::kHeaderSize + 2 * kPointerSize;
    660   // Strict mode arguments has no callee so it is smaller.
    661   static const int kArgumentsObjectSizeStrict =
    662       JSObject::kHeaderSize + 1 * kPointerSize;
    663   // Indicies for direct access into argument objects.
    664   static const int kArgumentsLengthIndex = 0;
    665   // callee is only valid in non-strict mode.
    666   static const int kArgumentsCalleeIndex = 1;
    667 
    668   // Allocates an arguments object - optionally with an elements array.
    669   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    670   // failed.
    671   // Please note this does not perform a garbage collection.
    672   MUST_USE_RESULT MaybeObject* AllocateArgumentsObject(
    673       Object* callee, int length);
    674 
    675   // Same as NewNumberFromDouble, but may return a preallocated/immutable
    676   // number object (e.g., minus_zero_value_, nan_value_)
    677   MUST_USE_RESULT MaybeObject* NumberFromDouble(
    678       double value, PretenureFlag pretenure = NOT_TENURED);
    679 
    680   // Allocated a HeapNumber from value.
    681   MUST_USE_RESULT MaybeObject* AllocateHeapNumber(
    682       double value,
    683       PretenureFlag pretenure);
    684   // pretenure = NOT_TENURED
    685   MUST_USE_RESULT MaybeObject* AllocateHeapNumber(double value);
    686 
    687   // Converts an int into either a Smi or a HeapNumber object.
    688   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    689   // failed.
    690   // Please note this does not perform a garbage collection.
    691   MUST_USE_RESULT inline MaybeObject* NumberFromInt32(int32_t value);
    692 
    693   // Converts an int into either a Smi or a HeapNumber object.
    694   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    695   // failed.
    696   // Please note this does not perform a garbage collection.
    697   MUST_USE_RESULT inline MaybeObject* NumberFromUint32(uint32_t value);
    698 
    699   // Allocates a new proxy object.
    700   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    701   // failed.
    702   // Please note this does not perform a garbage collection.
    703   MUST_USE_RESULT MaybeObject* AllocateProxy(
    704       Address proxy, PretenureFlag pretenure = NOT_TENURED);
    705 
    706   // Allocates a new SharedFunctionInfo object.
    707   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    708   // failed.
    709   // Please note this does not perform a garbage collection.
    710   MUST_USE_RESULT MaybeObject* AllocateSharedFunctionInfo(Object* name);
    711 
    712   // Allocates a new JSMessageObject object.
    713   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    714   // failed.
    715   // Please note that this does not perform a garbage collection.
    716   MUST_USE_RESULT MaybeObject* AllocateJSMessageObject(
    717       String* type,
    718       JSArray* arguments,
    719       int start_position,
    720       int end_position,
    721       Object* script,
    722       Object* stack_trace,
    723       Object* stack_frames);
    724 
    725   // Allocates a new cons string object.
    726   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    727   // failed.
    728   // Please note this does not perform a garbage collection.
    729   MUST_USE_RESULT MaybeObject* AllocateConsString(String* first,
    730                                                   String* second);
    731 
    732   // Allocates a new sub string object which is a substring of an underlying
    733   // string buffer stretching from the index start (inclusive) to the index
    734   // end (exclusive).
    735   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    736   // failed.
    737   // Please note this does not perform a garbage collection.
    738   MUST_USE_RESULT MaybeObject* AllocateSubString(
    739       String* buffer,
    740       int start,
    741       int end,
    742       PretenureFlag pretenure = NOT_TENURED);
    743 
    744   // Allocate a new external string object, which is backed by a string
    745   // resource that resides outside the V8 heap.
    746   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    747   // failed.
    748   // Please note this does not perform a garbage collection.
    749   MUST_USE_RESULT MaybeObject* AllocateExternalStringFromAscii(
    750       ExternalAsciiString::Resource* resource);
    751   MUST_USE_RESULT MaybeObject* AllocateExternalStringFromTwoByte(
    752       ExternalTwoByteString::Resource* resource);
    753 
    754   // Finalizes an external string by deleting the associated external
    755   // data and clearing the resource pointer.
    756   inline void FinalizeExternalString(String* string);
    757 
    758   // Allocates an uninitialized object.  The memory is non-executable if the
    759   // hardware and OS allow.
    760   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    761   // failed.
    762   // Please note this function does not perform a garbage collection.
    763   MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes,
    764                                                   AllocationSpace space,
    765                                                   AllocationSpace retry_space);
    766 
    767   // Initialize a filler object to keep the ability to iterate over the heap
    768   // when shortening objects.
    769   void CreateFillerObjectAt(Address addr, int size);
    770 
    771   // Makes a new native code object
    772   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    773   // failed. On success, the pointer to the Code object is stored in the
    774   // self_reference. This allows generated code to reference its own Code
    775   // object by containing this pointer.
    776   // Please note this function does not perform a garbage collection.
    777   MUST_USE_RESULT MaybeObject* CreateCode(const CodeDesc& desc,
    778                                           Code::Flags flags,
    779                                           Handle<Object> self_reference,
    780                                           bool immovable = false);
    781 
    782   MUST_USE_RESULT MaybeObject* CopyCode(Code* code);
    783 
    784   // Copy the code and scope info part of the code object, but insert
    785   // the provided data as the relocation information.
    786   MUST_USE_RESULT MaybeObject* CopyCode(Code* code, Vector<byte> reloc_info);
    787 
    788   // Finds the symbol for string in the symbol table.
    789   // If not found, a new symbol is added to the table and returned.
    790   // Returns Failure::RetryAfterGC(requested_bytes, space) if allocation
    791   // failed.
    792   // Please note this function does not perform a garbage collection.
    793   MUST_USE_RESULT MaybeObject* LookupSymbol(Vector<const char> str);
    794   MUST_USE_RESULT MaybeObject* LookupAsciiSymbol(Vector<const char> str);
    795   MUST_USE_RESULT MaybeObject* LookupTwoByteSymbol(
    796       Vector<const uc16> str);
    797   MUST_USE_RESULT MaybeObject* LookupAsciiSymbol(const char* str) {
    798     return LookupSymbol(CStrVector(str));
    799   }
    800   MUST_USE_RESULT MaybeObject* LookupSymbol(String* str);
    801   bool LookupSymbolIfExists(String* str, String** symbol);
    802   bool LookupTwoCharsSymbolIfExists(String* str, String** symbol);
    803 
    804   // Compute the matching symbol map for a string if possible.
    805   // NULL is returned if string is in new space or not flattened.
    806   Map* SymbolMapForString(String* str);
    807 
    808   // Tries to flatten a string before compare operation.
    809   //
    810   // Returns a failure in case it was decided that flattening was
    811   // necessary and failed.  Note, if flattening is not necessary the
    812   // string might stay non-flat even when not a failure is returned.
    813   //
    814   // Please note this function does not perform a garbage collection.
    815   MUST_USE_RESULT inline MaybeObject* PrepareForCompare(String* str);
    816 
    817   // Converts the given boolean condition to JavaScript boolean value.
    818   inline Object* ToBoolean(bool condition);
    819 
    820   // Code that should be run before and after each GC.  Includes some
    821   // reporting/verification activities when compiled with DEBUG set.
    822   void GarbageCollectionPrologue();
    823   void GarbageCollectionEpilogue();
    824 
    825   // Performs garbage collection operation.
    826   // Returns whether there is a chance that another major GC could
    827   // collect more garbage.
    828   bool CollectGarbage(AllocationSpace space, GarbageCollector collector);
    829 
    830   // Performs garbage collection operation.
    831   // Returns whether there is a chance that another major GC could
    832   // collect more garbage.
    833   inline bool CollectGarbage(AllocationSpace space);
    834 
    835   // Performs a full garbage collection. Force compaction if the
    836   // parameter is true.
    837   void CollectAllGarbage(bool force_compaction);
    838 
    839   // Last hope GC, should try to squeeze as much as possible.
    840   void CollectAllAvailableGarbage();
    841 
    842   // Notify the heap that a context has been disposed.
    843   int NotifyContextDisposed() { return ++contexts_disposed_; }
    844 
    845   // Utility to invoke the scavenger. This is needed in test code to
    846   // ensure correct callback for weak global handles.
    847   void PerformScavenge();
    848 
    849   PromotionQueue* promotion_queue() { return &promotion_queue_; }
    850 
    851 #ifdef DEBUG
    852   // Utility used with flag gc-greedy.
    853   void GarbageCollectionGreedyCheck();
    854 #endif
    855 
    856   void AddGCPrologueCallback(
    857       GCEpilogueCallback callback, GCType gc_type_filter);
    858   void RemoveGCPrologueCallback(GCEpilogueCallback callback);
    859 
    860   void AddGCEpilogueCallback(
    861       GCEpilogueCallback callback, GCType gc_type_filter);
    862   void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
    863 
    864   void SetGlobalGCPrologueCallback(GCCallback callback) {
    865     ASSERT((callback == NULL) ^ (global_gc_prologue_callback_ == NULL));
    866     global_gc_prologue_callback_ = callback;
    867   }
    868   void SetGlobalGCEpilogueCallback(GCCallback callback) {
    869     ASSERT((callback == NULL) ^ (global_gc_epilogue_callback_ == NULL));
    870     global_gc_epilogue_callback_ = callback;
    871   }
    872 
    873   // Heap root getters.  We have versions with and without type::cast() here.
    874   // You can't use type::cast during GC because the assert fails.
    875 #define ROOT_ACCESSOR(type, name, camel_name)                                  \
    876   type* name() {                                                               \
    877     return type::cast(roots_[k##camel_name##RootIndex]);                       \
    878   }                                                                            \
    879   type* raw_unchecked_##name() {                                               \
    880     return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]);          \
    881   }
    882   ROOT_LIST(ROOT_ACCESSOR)
    883 #undef ROOT_ACCESSOR
    884 
    885 // Utility type maps
    886 #define STRUCT_MAP_ACCESSOR(NAME, Name, name)                                  \
    887     Map* name##_map() {                                                        \
    888       return Map::cast(roots_[k##Name##MapRootIndex]);                         \
    889     }
    890   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
    891 #undef STRUCT_MAP_ACCESSOR
    892 
    893 #define SYMBOL_ACCESSOR(name, str) String* name() {                            \
    894     return String::cast(roots_[k##name##RootIndex]);                           \
    895   }
    896   SYMBOL_LIST(SYMBOL_ACCESSOR)
    897 #undef SYMBOL_ACCESSOR
    898 
    899   // The hidden_symbol is special because it is the empty string, but does
    900   // not match the empty string.
    901   String* hidden_symbol() { return hidden_symbol_; }
    902 
    903   void set_global_contexts_list(Object* object) {
    904     global_contexts_list_ = object;
    905   }
    906   Object* global_contexts_list() { return global_contexts_list_; }
    907 
    908   // Iterates over all roots in the heap.
    909   void IterateRoots(ObjectVisitor* v, VisitMode mode);
    910   // Iterates over all strong roots in the heap.
    911   void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
    912   // Iterates over all the other roots in the heap.
    913   void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
    914 
    915   enum ExpectedPageWatermarkState {
    916     WATERMARK_SHOULD_BE_VALID,
    917     WATERMARK_CAN_BE_INVALID
    918   };
    919 
    920   // For each dirty region on a page in use from an old space call
    921   // visit_dirty_region callback.
    922   // If either visit_dirty_region or callback can cause an allocation
    923   // in old space and changes in allocation watermark then
    924   // can_preallocate_during_iteration should be set to true.
    925   // All pages will be marked as having invalid watermark upon
    926   // iteration completion.
    927   void IterateDirtyRegions(
    928       PagedSpace* space,
    929       DirtyRegionCallback visit_dirty_region,
    930       ObjectSlotCallback callback,
    931       ExpectedPageWatermarkState expected_page_watermark_state);
    932 
    933   // Interpret marks as a bitvector of dirty marks for regions of size
    934   // Page::kRegionSize aligned by Page::kRegionAlignmentMask and covering
    935   // memory interval from start to top. For each dirty region call a
    936   // visit_dirty_region callback. Return updated bitvector of dirty marks.
    937   uint32_t IterateDirtyRegions(uint32_t marks,
    938                                Address start,
    939                                Address end,
    940                                DirtyRegionCallback visit_dirty_region,
    941                                ObjectSlotCallback callback);
    942 
    943   // Iterate pointers to from semispace of new space found in memory interval
    944   // from start to end.
    945   // Update dirty marks for page containing start address.
    946   void IterateAndMarkPointersToFromSpace(Address start,
    947                                          Address end,
    948                                          ObjectSlotCallback callback);
    949 
    950   // Iterate pointers to new space found in memory interval from start to end.
    951   // Return true if pointers to new space was found.
    952   static bool IteratePointersInDirtyRegion(Heap* heap,
    953                                            Address start,
    954                                            Address end,
    955                                            ObjectSlotCallback callback);
    956 
    957 
    958   // Iterate pointers to new space found in memory interval from start to end.
    959   // This interval is considered to belong to the map space.
    960   // Return true if pointers to new space was found.
    961   static bool IteratePointersInDirtyMapsRegion(Heap* heap,
    962                                                Address start,
    963                                                Address end,
    964                                                ObjectSlotCallback callback);
    965 
    966 
    967   // Returns whether the object resides in new space.
    968   inline bool InNewSpace(Object* object);
    969   inline bool InFromSpace(Object* object);
    970   inline bool InToSpace(Object* object);
    971 
    972   // Checks whether an address/object in the heap (including auxiliary
    973   // area and unused area).
    974   bool Contains(Address addr);
    975   bool Contains(HeapObject* value);
    976 
    977   // Checks whether an address/object in a space.
    978   // Currently used by tests, serialization and heap verification only.
    979   bool InSpace(Address addr, AllocationSpace space);
    980   bool InSpace(HeapObject* value, AllocationSpace space);
    981 
    982   // Finds out which space an object should get promoted to based on its type.
    983   inline OldSpace* TargetSpace(HeapObject* object);
    984   inline AllocationSpace TargetSpaceId(InstanceType type);
    985 
    986   // Sets the stub_cache_ (only used when expanding the dictionary).
    987   void public_set_code_stubs(NumberDictionary* value) {
    988     roots_[kCodeStubsRootIndex] = value;
    989   }
    990 
    991   // Support for computing object sizes for old objects during GCs. Returns
    992   // a function that is guaranteed to be safe for computing object sizes in
    993   // the current GC phase.
    994   HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
    995     return gc_safe_size_of_old_object_;
    996   }
    997 
    998   // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
    999   void public_set_non_monomorphic_cache(NumberDictionary* value) {
   1000     roots_[kNonMonomorphicCacheRootIndex] = value;
   1001   }
   1002 
   1003   void public_set_empty_script(Script* script) {
   1004     roots_[kEmptyScriptRootIndex] = script;
   1005   }
   1006 
   1007   // Update the next script id.
   1008   inline void SetLastScriptId(Object* last_script_id);
   1009 
   1010   // Generated code can embed this address to get access to the roots.
   1011   Object** roots_address() { return roots_; }
   1012 
   1013   // Get address of global contexts list for serialization support.
   1014   Object** global_contexts_list_address() {
   1015     return &global_contexts_list_;
   1016   }
   1017 
   1018 #ifdef DEBUG
   1019   void Print();
   1020   void PrintHandles();
   1021 
   1022   // Verify the heap is in its normal state before or after a GC.
   1023   void Verify();
   1024 
   1025   // Report heap statistics.
   1026   void ReportHeapStatistics(const char* title);
   1027   void ReportCodeStatistics(const char* title);
   1028 
   1029   // Fill in bogus values in from space
   1030   void ZapFromSpace();
   1031 #endif
   1032 
   1033 #if defined(ENABLE_LOGGING_AND_PROFILING)
   1034   // Print short heap statistics.
   1035   void PrintShortHeapStatistics();
   1036 #endif
   1037 
   1038   // Makes a new symbol object
   1039   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1040   // failed.
   1041   // Please note this function does not perform a garbage collection.
   1042   MUST_USE_RESULT MaybeObject* CreateSymbol(
   1043       const char* str, int length, int hash);
   1044   MUST_USE_RESULT MaybeObject* CreateSymbol(String* str);
   1045 
   1046   // Write barrier support for address[offset] = o.
   1047   inline void RecordWrite(Address address, int offset);
   1048 
   1049   // Write barrier support for address[start : start + len[ = o.
   1050   inline void RecordWrites(Address address, int start, int len);
   1051 
   1052   // Given an address occupied by a live code object, return that object.
   1053   Object* FindCodeObject(Address a);
   1054 
   1055   // Invoke Shrink on shrinkable spaces.
   1056   void Shrink();
   1057 
   1058   enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
   1059   inline HeapState gc_state() { return gc_state_; }
   1060 
   1061 #ifdef DEBUG
   1062   bool IsAllocationAllowed() { return allocation_allowed_; }
   1063   inline bool allow_allocation(bool enable);
   1064 
   1065   bool disallow_allocation_failure() {
   1066     return disallow_allocation_failure_;
   1067   }
   1068 
   1069   void TracePathToObject(Object* target);
   1070   void TracePathToGlobal();
   1071 #endif
   1072 
   1073   // Callback function passed to Heap::Iterate etc.  Copies an object if
   1074   // necessary, the object might be promoted to an old space.  The caller must
   1075   // ensure the precondition that the object is (a) a heap object and (b) in
   1076   // the heap's from space.
   1077   static inline void ScavengePointer(HeapObject** p);
   1078   static inline void ScavengeObject(HeapObject** p, HeapObject* object);
   1079 
   1080   // Commits from space if it is uncommitted.
   1081   void EnsureFromSpaceIsCommitted();
   1082 
   1083   // Support for partial snapshots.  After calling this we can allocate a
   1084   // certain number of bytes using only linear allocation (with a
   1085   // LinearAllocationScope and an AlwaysAllocateScope) without using freelists
   1086   // or causing a GC.  It returns true of space was reserved or false if a GC is
   1087   // needed.  For paged spaces the space requested must include the space wasted
   1088   // at the end of each page when allocating linearly.
   1089   void ReserveSpace(
   1090     int new_space_size,
   1091     int pointer_space_size,
   1092     int data_space_size,
   1093     int code_space_size,
   1094     int map_space_size,
   1095     int cell_space_size,
   1096     int large_object_size);
   1097 
   1098   //
   1099   // Support for the API.
   1100   //
   1101 
   1102   bool CreateApiObjects();
   1103 
   1104   // Attempt to find the number in a small cache.  If we finds it, return
   1105   // the string representation of the number.  Otherwise return undefined.
   1106   Object* GetNumberStringCache(Object* number);
   1107 
   1108   // Update the cache with a new number-string pair.
   1109   void SetNumberStringCache(Object* number, String* str);
   1110 
   1111   // Adjusts the amount of registered external memory.
   1112   // Returns the adjusted value.
   1113   inline int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes);
   1114 
   1115   // Allocate uninitialized fixed array.
   1116   MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int length);
   1117   MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int length,
   1118                                                      PretenureFlag pretenure);
   1119 
   1120   // True if we have reached the allocation limit in the old generation that
   1121   // should force the next GC (caused normally) to be a full one.
   1122   bool OldGenerationPromotionLimitReached() {
   1123     return (PromotedSpaceSize() + PromotedExternalMemorySize())
   1124            > old_gen_promotion_limit_;
   1125   }
   1126 
   1127   intptr_t OldGenerationSpaceAvailable() {
   1128     return old_gen_allocation_limit_ -
   1129            (PromotedSpaceSize() + PromotedExternalMemorySize());
   1130   }
   1131 
   1132   // True if we have reached the allocation limit in the old generation that
   1133   // should artificially cause a GC right now.
   1134   bool OldGenerationAllocationLimitReached() {
   1135     return OldGenerationSpaceAvailable() < 0;
   1136   }
   1137 
   1138   // Can be called when the embedding application is idle.
   1139   bool IdleNotification();
   1140 
   1141   // Declare all the root indices.
   1142   enum RootListIndex {
   1143 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
   1144     STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
   1145 #undef ROOT_INDEX_DECLARATION
   1146 
   1147 // Utility type maps
   1148 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
   1149   STRUCT_LIST(DECLARE_STRUCT_MAP)
   1150 #undef DECLARE_STRUCT_MAP
   1151 
   1152 #define SYMBOL_INDEX_DECLARATION(name, str) k##name##RootIndex,
   1153     SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
   1154 #undef SYMBOL_DECLARATION
   1155 
   1156     kSymbolTableRootIndex,
   1157     kStrongRootListLength = kSymbolTableRootIndex,
   1158     kRootListLength
   1159   };
   1160 
   1161   MUST_USE_RESULT MaybeObject* NumberToString(
   1162       Object* number, bool check_number_string_cache = true);
   1163 
   1164   Map* MapForExternalArrayType(ExternalArrayType array_type);
   1165   RootListIndex RootIndexForExternalArrayType(
   1166       ExternalArrayType array_type);
   1167 
   1168   void RecordStats(HeapStats* stats, bool take_snapshot = false);
   1169 
   1170   // Copy block of memory from src to dst. Size of block should be aligned
   1171   // by pointer size.
   1172   static inline void CopyBlock(Address dst, Address src, int byte_size);
   1173 
   1174   inline void CopyBlockToOldSpaceAndUpdateRegionMarks(Address dst,
   1175                                                       Address src,
   1176                                                       int byte_size);
   1177 
   1178   // Optimized version of memmove for blocks with pointer size aligned sizes and
   1179   // pointer size aligned addresses.
   1180   static inline void MoveBlock(Address dst, Address src, int byte_size);
   1181 
   1182   inline void MoveBlockToOldSpaceAndUpdateRegionMarks(Address dst,
   1183                                                       Address src,
   1184                                                       int byte_size);
   1185 
   1186   // Check new space expansion criteria and expand semispaces if it was hit.
   1187   void CheckNewSpaceExpansionCriteria();
   1188 
   1189   inline void IncrementYoungSurvivorsCounter(int survived) {
   1190     young_survivors_after_last_gc_ = survived;
   1191     survived_since_last_expansion_ += survived;
   1192   }
   1193 
   1194   void UpdateNewSpaceReferencesInExternalStringTable(
   1195       ExternalStringTableUpdaterCallback updater_func);
   1196 
   1197   void ProcessWeakReferences(WeakObjectRetainer* retainer);
   1198 
   1199   // Helper function that governs the promotion policy from new space to
   1200   // old.  If the object's old address lies below the new space's age
   1201   // mark or if we've already filled the bottom 1/16th of the to space,
   1202   // we try to promote this object.
   1203   inline bool ShouldBePromoted(Address old_address, int object_size);
   1204 
   1205   int MaxObjectSizeInNewSpace() { return kMaxObjectSizeInNewSpace; }
   1206 
   1207   void ClearJSFunctionResultCaches();
   1208 
   1209   void ClearNormalizedMapCaches();
   1210 
   1211   GCTracer* tracer() { return tracer_; }
   1212 
   1213   double total_regexp_code_generated() { return total_regexp_code_generated_; }
   1214   void IncreaseTotalRegexpCodeGenerated(int size) {
   1215     total_regexp_code_generated_ += size;
   1216   }
   1217 
   1218   // Returns maximum GC pause.
   1219   int get_max_gc_pause() { return max_gc_pause_; }
   1220 
   1221   // Returns maximum size of objects alive after GC.
   1222   intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
   1223 
   1224   // Returns minimal interval between two subsequent collections.
   1225   int get_min_in_mutator() { return min_in_mutator_; }
   1226 
   1227   MarkCompactCollector* mark_compact_collector() {
   1228     return &mark_compact_collector_;
   1229   }
   1230 
   1231   ExternalStringTable* external_string_table() {
   1232     return &external_string_table_;
   1233   }
   1234 
   1235   inline Isolate* isolate();
   1236   bool is_safe_to_read_maps() { return is_safe_to_read_maps_; }
   1237 
   1238   void CallGlobalGCPrologueCallback() {
   1239     if (global_gc_prologue_callback_ != NULL) global_gc_prologue_callback_();
   1240   }
   1241 
   1242   void CallGlobalGCEpilogueCallback() {
   1243     if (global_gc_epilogue_callback_ != NULL) global_gc_epilogue_callback_();
   1244   }
   1245 
   1246  private:
   1247   Heap();
   1248 
   1249   // This can be calculated directly from a pointer to the heap; however, it is
   1250   // more expedient to get at the isolate directly from within Heap methods.
   1251   Isolate* isolate_;
   1252 
   1253   int reserved_semispace_size_;
   1254   int max_semispace_size_;
   1255   int initial_semispace_size_;
   1256   intptr_t max_old_generation_size_;
   1257   intptr_t max_executable_size_;
   1258   intptr_t code_range_size_;
   1259 
   1260   // For keeping track of how much data has survived
   1261   // scavenge since last new space expansion.
   1262   int survived_since_last_expansion_;
   1263 
   1264   int always_allocate_scope_depth_;
   1265   int linear_allocation_scope_depth_;
   1266 
   1267   // For keeping track of context disposals.
   1268   int contexts_disposed_;
   1269 
   1270 #if defined(V8_TARGET_ARCH_X64)
   1271   static const int kMaxObjectSizeInNewSpace = 1024*KB;
   1272 #else
   1273   static const int kMaxObjectSizeInNewSpace = 512*KB;
   1274 #endif
   1275 
   1276   NewSpace new_space_;
   1277   OldSpace* old_pointer_space_;
   1278   OldSpace* old_data_space_;
   1279   OldSpace* code_space_;
   1280   MapSpace* map_space_;
   1281   CellSpace* cell_space_;
   1282   LargeObjectSpace* lo_space_;
   1283   HeapState gc_state_;
   1284 
   1285   // Returns the size of object residing in non new spaces.
   1286   intptr_t PromotedSpaceSize();
   1287 
   1288   // Returns the amount of external memory registered since last global gc.
   1289   int PromotedExternalMemorySize();
   1290 
   1291   int mc_count_;  // how many mark-compact collections happened
   1292   int ms_count_;  // how many mark-sweep collections happened
   1293   unsigned int gc_count_;  // how many gc happened
   1294 
   1295   // Total length of the strings we failed to flatten since the last GC.
   1296   int unflattened_strings_length_;
   1297 
   1298 #define ROOT_ACCESSOR(type, name, camel_name)                                  \
   1299   inline void set_##name(type* value) {                                 \
   1300     roots_[k##camel_name##RootIndex] = value;                                  \
   1301   }
   1302   ROOT_LIST(ROOT_ACCESSOR)
   1303 #undef ROOT_ACCESSOR
   1304 
   1305 #ifdef DEBUG
   1306   bool allocation_allowed_;
   1307 
   1308   // If the --gc-interval flag is set to a positive value, this
   1309   // variable holds the value indicating the number of allocations
   1310   // remain until the next failure and garbage collection.
   1311   int allocation_timeout_;
   1312 
   1313   // Do we expect to be able to handle allocation failure at this
   1314   // time?
   1315   bool disallow_allocation_failure_;
   1316 
   1317   HeapDebugUtils* debug_utils_;
   1318 #endif  // DEBUG
   1319 
   1320   // Limit that triggers a global GC on the next (normally caused) GC.  This
   1321   // is checked when we have already decided to do a GC to help determine
   1322   // which collector to invoke.
   1323   intptr_t old_gen_promotion_limit_;
   1324 
   1325   // Limit that triggers a global GC as soon as is reasonable.  This is
   1326   // checked before expanding a paged space in the old generation and on
   1327   // every allocation in large object space.
   1328   intptr_t old_gen_allocation_limit_;
   1329 
   1330   // Limit on the amount of externally allocated memory allowed
   1331   // between global GCs. If reached a global GC is forced.
   1332   intptr_t external_allocation_limit_;
   1333 
   1334   // The amount of external memory registered through the API kept alive
   1335   // by global handles
   1336   int amount_of_external_allocated_memory_;
   1337 
   1338   // Caches the amount of external memory registered at the last global gc.
   1339   int amount_of_external_allocated_memory_at_last_global_gc_;
   1340 
   1341   // Indicates that an allocation has failed in the old generation since the
   1342   // last GC.
   1343   int old_gen_exhausted_;
   1344 
   1345   Object* roots_[kRootListLength];
   1346 
   1347   Object* global_contexts_list_;
   1348 
   1349   struct StringTypeTable {
   1350     InstanceType type;
   1351     int size;
   1352     RootListIndex index;
   1353   };
   1354 
   1355   struct ConstantSymbolTable {
   1356     const char* contents;
   1357     RootListIndex index;
   1358   };
   1359 
   1360   struct StructTable {
   1361     InstanceType type;
   1362     int size;
   1363     RootListIndex index;
   1364   };
   1365 
   1366   static const StringTypeTable string_type_table[];
   1367   static const ConstantSymbolTable constant_symbol_table[];
   1368   static const StructTable struct_table[];
   1369 
   1370   // The special hidden symbol which is an empty string, but does not match
   1371   // any string when looked up in properties.
   1372   String* hidden_symbol_;
   1373 
   1374   // GC callback function, called before and after mark-compact GC.
   1375   // Allocations in the callback function are disallowed.
   1376   struct GCPrologueCallbackPair {
   1377     GCPrologueCallbackPair(GCPrologueCallback callback, GCType gc_type)
   1378         : callback(callback), gc_type(gc_type) {
   1379     }
   1380     bool operator==(const GCPrologueCallbackPair& pair) const {
   1381       return pair.callback == callback;
   1382     }
   1383     GCPrologueCallback callback;
   1384     GCType gc_type;
   1385   };
   1386   List<GCPrologueCallbackPair> gc_prologue_callbacks_;
   1387 
   1388   struct GCEpilogueCallbackPair {
   1389     GCEpilogueCallbackPair(GCEpilogueCallback callback, GCType gc_type)
   1390         : callback(callback), gc_type(gc_type) {
   1391     }
   1392     bool operator==(const GCEpilogueCallbackPair& pair) const {
   1393       return pair.callback == callback;
   1394     }
   1395     GCEpilogueCallback callback;
   1396     GCType gc_type;
   1397   };
   1398   List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
   1399 
   1400   GCCallback global_gc_prologue_callback_;
   1401   GCCallback global_gc_epilogue_callback_;
   1402 
   1403   // Support for computing object sizes during GC.
   1404   HeapObjectCallback gc_safe_size_of_old_object_;
   1405   static int GcSafeSizeOfOldObject(HeapObject* object);
   1406   static int GcSafeSizeOfOldObjectWithEncodedMap(HeapObject* object);
   1407 
   1408   // Update the GC state. Called from the mark-compact collector.
   1409   void MarkMapPointersAsEncoded(bool encoded) {
   1410     gc_safe_size_of_old_object_ = encoded
   1411         ? &GcSafeSizeOfOldObjectWithEncodedMap
   1412         : &GcSafeSizeOfOldObject;
   1413   }
   1414 
   1415   // Checks whether a global GC is necessary
   1416   GarbageCollector SelectGarbageCollector(AllocationSpace space);
   1417 
   1418   // Performs garbage collection
   1419   // Returns whether there is a chance another major GC could
   1420   // collect more garbage.
   1421   bool PerformGarbageCollection(GarbageCollector collector,
   1422                                 GCTracer* tracer);
   1423 
   1424   static const intptr_t kMinimumPromotionLimit = 2 * MB;
   1425   static const intptr_t kMinimumAllocationLimit = 8 * MB;
   1426 
   1427   inline void UpdateOldSpaceLimits();
   1428 
   1429   // Allocate an uninitialized object in map space.  The behavior is identical
   1430   // to Heap::AllocateRaw(size_in_bytes, MAP_SPACE), except that (a) it doesn't
   1431   // have to test the allocation space argument and (b) can reduce code size
   1432   // (since both AllocateRaw and AllocateRawMap are inlined).
   1433   MUST_USE_RESULT inline MaybeObject* AllocateRawMap();
   1434 
   1435   // Allocate an uninitialized object in the global property cell space.
   1436   MUST_USE_RESULT inline MaybeObject* AllocateRawCell();
   1437 
   1438   // Initializes a JSObject based on its map.
   1439   void InitializeJSObjectFromMap(JSObject* obj,
   1440                                  FixedArray* properties,
   1441                                  Map* map);
   1442 
   1443   bool CreateInitialMaps();
   1444   bool CreateInitialObjects();
   1445 
   1446   // These five Create*EntryStub functions are here and forced to not be inlined
   1447   // because of a gcc-4.4 bug that assigns wrong vtable entries.
   1448   NO_INLINE(void CreateJSEntryStub());
   1449   NO_INLINE(void CreateJSConstructEntryStub());
   1450 
   1451   void CreateFixedStubs();
   1452 
   1453   MaybeObject* CreateOddball(const char* to_string,
   1454                              Object* to_number,
   1455                              byte kind);
   1456 
   1457   // Allocate empty fixed array.
   1458   MUST_USE_RESULT MaybeObject* AllocateEmptyFixedArray();
   1459 
   1460   void SwitchScavengingVisitorsTableIfProfilingWasEnabled();
   1461 
   1462   // Performs a minor collection in new generation.
   1463   void Scavenge();
   1464 
   1465   static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
   1466       Heap* heap,
   1467       Object** pointer);
   1468 
   1469   Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
   1470 
   1471   // Performs a major collection in the whole heap.
   1472   void MarkCompact(GCTracer* tracer);
   1473 
   1474   // Code to be run before and after mark-compact.
   1475   void MarkCompactPrologue(bool is_compacting);
   1476 
   1477   // Completely clear the Instanceof cache (to stop it keeping objects alive
   1478   // around a GC).
   1479   inline void CompletelyClearInstanceofCache();
   1480 
   1481 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
   1482   // Record statistics before and after garbage collection.
   1483   void ReportStatisticsBeforeGC();
   1484   void ReportStatisticsAfterGC();
   1485 #endif
   1486 
   1487   // Slow part of scavenge object.
   1488   static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
   1489 
   1490   // Initializes a function with a shared part and prototype.
   1491   // Returns the function.
   1492   // Note: this code was factored out of AllocateFunction such that
   1493   // other parts of the VM could use it. Specifically, a function that creates
   1494   // instances of type JS_FUNCTION_TYPE benefit from the use of this function.
   1495   // Please note this does not perform a garbage collection.
   1496   MUST_USE_RESULT inline MaybeObject* InitializeFunction(
   1497       JSFunction* function,
   1498       SharedFunctionInfo* shared,
   1499       Object* prototype);
   1500 
   1501   // Total RegExp code ever generated
   1502   double total_regexp_code_generated_;
   1503 
   1504   GCTracer* tracer_;
   1505 
   1506 
   1507   // Initializes the number to string cache based on the max semispace size.
   1508   MUST_USE_RESULT MaybeObject* InitializeNumberStringCache();
   1509   // Flush the number to string cache.
   1510   void FlushNumberStringCache();
   1511 
   1512   void UpdateSurvivalRateTrend(int start_new_space_size);
   1513 
   1514   enum SurvivalRateTrend { INCREASING, STABLE, DECREASING, FLUCTUATING };
   1515 
   1516   static const int kYoungSurvivalRateThreshold = 90;
   1517   static const int kYoungSurvivalRateAllowedDeviation = 15;
   1518 
   1519   int young_survivors_after_last_gc_;
   1520   int high_survival_rate_period_length_;
   1521   double survival_rate_;
   1522   SurvivalRateTrend previous_survival_rate_trend_;
   1523   SurvivalRateTrend survival_rate_trend_;
   1524 
   1525   void set_survival_rate_trend(SurvivalRateTrend survival_rate_trend) {
   1526     ASSERT(survival_rate_trend != FLUCTUATING);
   1527     previous_survival_rate_trend_ = survival_rate_trend_;
   1528     survival_rate_trend_ = survival_rate_trend;
   1529   }
   1530 
   1531   SurvivalRateTrend survival_rate_trend() {
   1532     if (survival_rate_trend_ == STABLE) {
   1533       return STABLE;
   1534     } else if (previous_survival_rate_trend_ == STABLE) {
   1535       return survival_rate_trend_;
   1536     } else if (survival_rate_trend_ != previous_survival_rate_trend_) {
   1537       return FLUCTUATING;
   1538     } else {
   1539       return survival_rate_trend_;
   1540     }
   1541   }
   1542 
   1543   bool IsStableOrIncreasingSurvivalTrend() {
   1544     switch (survival_rate_trend()) {
   1545       case STABLE:
   1546       case INCREASING:
   1547         return true;
   1548       default:
   1549         return false;
   1550     }
   1551   }
   1552 
   1553   bool IsIncreasingSurvivalTrend() {
   1554     return survival_rate_trend() == INCREASING;
   1555   }
   1556 
   1557   bool IsHighSurvivalRate() {
   1558     return high_survival_rate_period_length_ > 0;
   1559   }
   1560 
   1561   static const int kInitialSymbolTableSize = 2048;
   1562   static const int kInitialEvalCacheSize = 64;
   1563 
   1564   // Maximum GC pause.
   1565   int max_gc_pause_;
   1566 
   1567   // Maximum size of objects alive after GC.
   1568   intptr_t max_alive_after_gc_;
   1569 
   1570   // Minimal interval between two subsequent collections.
   1571   int min_in_mutator_;
   1572 
   1573   // Size of objects alive after last GC.
   1574   intptr_t alive_after_last_gc_;
   1575 
   1576   double last_gc_end_timestamp_;
   1577 
   1578   MarkCompactCollector mark_compact_collector_;
   1579 
   1580   // This field contains the meaning of the WATERMARK_INVALIDATED flag.
   1581   // Instead of clearing this flag from all pages we just flip
   1582   // its meaning at the beginning of a scavenge.
   1583   intptr_t page_watermark_invalidated_mark_;
   1584 
   1585   int number_idle_notifications_;
   1586   unsigned int last_idle_notification_gc_count_;
   1587   bool last_idle_notification_gc_count_init_;
   1588 
   1589   // Shared state read by the scavenge collector and set by ScavengeObject.
   1590   PromotionQueue promotion_queue_;
   1591 
   1592   // Flag is set when the heap has been configured.  The heap can be repeatedly
   1593   // configured through the API until it is setup.
   1594   bool configured_;
   1595 
   1596   ExternalStringTable external_string_table_;
   1597 
   1598   bool is_safe_to_read_maps_;
   1599 
   1600   friend class Factory;
   1601   friend class GCTracer;
   1602   friend class DisallowAllocationFailure;
   1603   friend class AlwaysAllocateScope;
   1604   friend class LinearAllocationScope;
   1605   friend class Page;
   1606   friend class Isolate;
   1607   friend class MarkCompactCollector;
   1608   friend class MapCompact;
   1609 
   1610   DISALLOW_COPY_AND_ASSIGN(Heap);
   1611 };
   1612 
   1613 
   1614 class HeapStats {
   1615  public:
   1616   static const int kStartMarker = 0xDECADE00;
   1617   static const int kEndMarker = 0xDECADE01;
   1618 
   1619   int* start_marker;                    //  0
   1620   int* new_space_size;                  //  1
   1621   int* new_space_capacity;              //  2
   1622   intptr_t* old_pointer_space_size;          //  3
   1623   intptr_t* old_pointer_space_capacity;      //  4
   1624   intptr_t* old_data_space_size;             //  5
   1625   intptr_t* old_data_space_capacity;         //  6
   1626   intptr_t* code_space_size;                 //  7
   1627   intptr_t* code_space_capacity;             //  8
   1628   intptr_t* map_space_size;                  //  9
   1629   intptr_t* map_space_capacity;              // 10
   1630   intptr_t* cell_space_size;                 // 11
   1631   intptr_t* cell_space_capacity;             // 12
   1632   intptr_t* lo_space_size;                   // 13
   1633   int* global_handle_count;             // 14
   1634   int* weak_global_handle_count;        // 15
   1635   int* pending_global_handle_count;     // 16
   1636   int* near_death_global_handle_count;  // 17
   1637   int* destroyed_global_handle_count;   // 18
   1638   intptr_t* memory_allocator_size;           // 19
   1639   intptr_t* memory_allocator_capacity;       // 20
   1640   int* objects_per_type;                // 21
   1641   int* size_per_type;                   // 22
   1642   int* os_error;                        // 23
   1643   int* end_marker;                      // 24
   1644 };
   1645 
   1646 
   1647 class AlwaysAllocateScope {
   1648  public:
   1649   AlwaysAllocateScope() {
   1650     // We shouldn't hit any nested scopes, because that requires
   1651     // non-handle code to call handle code. The code still works but
   1652     // performance will degrade, so we want to catch this situation
   1653     // in debug mode.
   1654     ASSERT(HEAP->always_allocate_scope_depth_ == 0);
   1655     HEAP->always_allocate_scope_depth_++;
   1656   }
   1657 
   1658   ~AlwaysAllocateScope() {
   1659     HEAP->always_allocate_scope_depth_--;
   1660     ASSERT(HEAP->always_allocate_scope_depth_ == 0);
   1661   }
   1662 };
   1663 
   1664 
   1665 class LinearAllocationScope {
   1666  public:
   1667   LinearAllocationScope() {
   1668     HEAP->linear_allocation_scope_depth_++;
   1669   }
   1670 
   1671   ~LinearAllocationScope() {
   1672     HEAP->linear_allocation_scope_depth_--;
   1673     ASSERT(HEAP->linear_allocation_scope_depth_ >= 0);
   1674   }
   1675 };
   1676 
   1677 
   1678 #ifdef DEBUG
   1679 // Visitor class to verify interior pointers in spaces that do not contain
   1680 // or care about intergenerational references. All heap object pointers have to
   1681 // point into the heap to a location that has a map pointer at its first word.
   1682 // Caveat: Heap::Contains is an approximation because it can return true for
   1683 // objects in a heap space but above the allocation pointer.
   1684 class VerifyPointersVisitor: public ObjectVisitor {
   1685  public:
   1686   void VisitPointers(Object** start, Object** end) {
   1687     for (Object** current = start; current < end; current++) {
   1688       if ((*current)->IsHeapObject()) {
   1689         HeapObject* object = HeapObject::cast(*current);
   1690         ASSERT(HEAP->Contains(object));
   1691         ASSERT(object->map()->IsMap());
   1692       }
   1693     }
   1694   }
   1695 };
   1696 
   1697 
   1698 // Visitor class to verify interior pointers in spaces that use region marks
   1699 // to keep track of intergenerational references.
   1700 // As VerifyPointersVisitor but also checks that dirty marks are set
   1701 // for regions covering intergenerational references.
   1702 class VerifyPointersAndDirtyRegionsVisitor: public ObjectVisitor {
   1703  public:
   1704   void VisitPointers(Object** start, Object** end) {
   1705     for (Object** current = start; current < end; current++) {
   1706       if ((*current)->IsHeapObject()) {
   1707         HeapObject* object = HeapObject::cast(*current);
   1708         ASSERT(HEAP->Contains(object));
   1709         ASSERT(object->map()->IsMap());
   1710         if (HEAP->InNewSpace(object)) {
   1711           ASSERT(HEAP->InToSpace(object));
   1712           Address addr = reinterpret_cast<Address>(current);
   1713           ASSERT(Page::FromAddress(addr)->IsRegionDirty(addr));
   1714         }
   1715       }
   1716     }
   1717   }
   1718 };
   1719 #endif
   1720 
   1721 
   1722 // Space iterator for iterating over all spaces of the heap.
   1723 // Returns each space in turn, and null when it is done.
   1724 class AllSpaces BASE_EMBEDDED {
   1725  public:
   1726   Space* next();
   1727   AllSpaces() { counter_ = FIRST_SPACE; }
   1728  private:
   1729   int counter_;
   1730 };
   1731 
   1732 
   1733 // Space iterator for iterating over all old spaces of the heap: Old pointer
   1734 // space, old data space and code space.
   1735 // Returns each space in turn, and null when it is done.
   1736 class OldSpaces BASE_EMBEDDED {
   1737  public:
   1738   OldSpace* next();
   1739   OldSpaces() { counter_ = OLD_POINTER_SPACE; }
   1740  private:
   1741   int counter_;
   1742 };
   1743 
   1744 
   1745 // Space iterator for iterating over all the paged spaces of the heap:
   1746 // Map space, old pointer space, old data space, code space and cell space.
   1747 // Returns each space in turn, and null when it is done.
   1748 class PagedSpaces BASE_EMBEDDED {
   1749  public:
   1750   PagedSpace* next();
   1751   PagedSpaces() { counter_ = OLD_POINTER_SPACE; }
   1752  private:
   1753   int counter_;
   1754 };
   1755 
   1756 
   1757 // Space iterator for iterating over all spaces of the heap.
   1758 // For each space an object iterator is provided. The deallocation of the
   1759 // returned object iterators is handled by the space iterator.
   1760 class SpaceIterator : public Malloced {
   1761  public:
   1762   SpaceIterator();
   1763   explicit SpaceIterator(HeapObjectCallback size_func);
   1764   virtual ~SpaceIterator();
   1765 
   1766   bool has_next();
   1767   ObjectIterator* next();
   1768 
   1769  private:
   1770   ObjectIterator* CreateIterator();
   1771 
   1772   int current_space_;  // from enum AllocationSpace.
   1773   ObjectIterator* iterator_;  // object iterator for the current space.
   1774   HeapObjectCallback size_func_;
   1775 };
   1776 
   1777 
   1778 // A HeapIterator provides iteration over the whole heap. It
   1779 // aggregates the specific iterators for the different spaces as
   1780 // these can only iterate over one space only.
   1781 //
   1782 // HeapIterator can skip free list nodes (that is, de-allocated heap
   1783 // objects that still remain in the heap). As implementation of free
   1784 // nodes filtering uses GC marks, it can't be used during MS/MC GC
   1785 // phases. Also, it is forbidden to interrupt iteration in this mode,
   1786 // as this will leave heap objects marked (and thus, unusable).
   1787 class HeapObjectsFilter;
   1788 
   1789 class HeapIterator BASE_EMBEDDED {
   1790  public:
   1791   enum HeapObjectsFiltering {
   1792     kNoFiltering,
   1793     kFilterFreeListNodes,
   1794     kFilterUnreachable
   1795   };
   1796 
   1797   HeapIterator();
   1798   explicit HeapIterator(HeapObjectsFiltering filtering);
   1799   ~HeapIterator();
   1800 
   1801   HeapObject* next();
   1802   void reset();
   1803 
   1804  private:
   1805   // Perform the initialization.
   1806   void Init();
   1807   // Perform all necessary shutdown (destruction) work.
   1808   void Shutdown();
   1809   HeapObject* NextObject();
   1810 
   1811   HeapObjectsFiltering filtering_;
   1812   HeapObjectsFilter* filter_;
   1813   // Space iterator for iterating all the spaces.
   1814   SpaceIterator* space_iterator_;
   1815   // Object iterator for the space currently being iterated.
   1816   ObjectIterator* object_iterator_;
   1817 };
   1818 
   1819 
   1820 // Cache for mapping (map, property name) into field offset.
   1821 // Cleared at startup and prior to mark sweep collection.
   1822 class KeyedLookupCache {
   1823  public:
   1824   // Lookup field offset for (map, name). If absent, -1 is returned.
   1825   int Lookup(Map* map, String* name);
   1826 
   1827   // Update an element in the cache.
   1828   void Update(Map* map, String* name, int field_offset);
   1829 
   1830   // Clear the cache.
   1831   void Clear();
   1832 
   1833   static const int kLength = 64;
   1834   static const int kCapacityMask = kLength - 1;
   1835   static const int kMapHashShift = 2;
   1836   static const int kNotFound = -1;
   1837 
   1838  private:
   1839   KeyedLookupCache() {
   1840     for (int i = 0; i < kLength; ++i) {
   1841       keys_[i].map = NULL;
   1842       keys_[i].name = NULL;
   1843       field_offsets_[i] = kNotFound;
   1844     }
   1845   }
   1846 
   1847   static inline int Hash(Map* map, String* name);
   1848 
   1849   // Get the address of the keys and field_offsets arrays.  Used in
   1850   // generated code to perform cache lookups.
   1851   Address keys_address() {
   1852     return reinterpret_cast<Address>(&keys_);
   1853   }
   1854 
   1855   Address field_offsets_address() {
   1856     return reinterpret_cast<Address>(&field_offsets_);
   1857   }
   1858 
   1859   struct Key {
   1860     Map* map;
   1861     String* name;
   1862   };
   1863 
   1864   Key keys_[kLength];
   1865   int field_offsets_[kLength];
   1866 
   1867   friend class ExternalReference;
   1868   friend class Isolate;
   1869   DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
   1870 };
   1871 
   1872 
   1873 // Cache for mapping (array, property name) into descriptor index.
   1874 // The cache contains both positive and negative results.
   1875 // Descriptor index equals kNotFound means the property is absent.
   1876 // Cleared at startup and prior to any gc.
   1877 class DescriptorLookupCache {
   1878  public:
   1879   // Lookup descriptor index for (map, name).
   1880   // If absent, kAbsent is returned.
   1881   int Lookup(DescriptorArray* array, String* name) {
   1882     if (!StringShape(name).IsSymbol()) return kAbsent;
   1883     int index = Hash(array, name);
   1884     Key& key = keys_[index];
   1885     if ((key.array == array) && (key.name == name)) return results_[index];
   1886     return kAbsent;
   1887   }
   1888 
   1889   // Update an element in the cache.
   1890   void Update(DescriptorArray* array, String* name, int result) {
   1891     ASSERT(result != kAbsent);
   1892     if (StringShape(name).IsSymbol()) {
   1893       int index = Hash(array, name);
   1894       Key& key = keys_[index];
   1895       key.array = array;
   1896       key.name = name;
   1897       results_[index] = result;
   1898     }
   1899   }
   1900 
   1901   // Clear the cache.
   1902   void Clear();
   1903 
   1904   static const int kAbsent = -2;
   1905  private:
   1906   DescriptorLookupCache() {
   1907     for (int i = 0; i < kLength; ++i) {
   1908       keys_[i].array = NULL;
   1909       keys_[i].name = NULL;
   1910       results_[i] = kAbsent;
   1911     }
   1912   }
   1913 
   1914   static int Hash(DescriptorArray* array, String* name) {
   1915     // Uses only lower 32 bits if pointers are larger.
   1916     uint32_t array_hash =
   1917         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(array)) >> 2;
   1918     uint32_t name_hash =
   1919         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >> 2;
   1920     return (array_hash ^ name_hash) % kLength;
   1921   }
   1922 
   1923   static const int kLength = 64;
   1924   struct Key {
   1925     DescriptorArray* array;
   1926     String* name;
   1927   };
   1928 
   1929   Key keys_[kLength];
   1930   int results_[kLength];
   1931 
   1932   friend class Isolate;
   1933   DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
   1934 };
   1935 
   1936 
   1937 // A helper class to document/test C++ scopes where we do not
   1938 // expect a GC. Usage:
   1939 //
   1940 // /* Allocation not allowed: we cannot handle a GC in this scope. */
   1941 // { AssertNoAllocation nogc;
   1942 //   ...
   1943 // }
   1944 
   1945 #ifdef DEBUG
   1946 
   1947 class DisallowAllocationFailure {
   1948  public:
   1949   DisallowAllocationFailure() {
   1950     old_state_ = HEAP->disallow_allocation_failure_;
   1951     HEAP->disallow_allocation_failure_ = true;
   1952   }
   1953   ~DisallowAllocationFailure() {
   1954     HEAP->disallow_allocation_failure_ = old_state_;
   1955   }
   1956  private:
   1957   bool old_state_;
   1958 };
   1959 
   1960 class AssertNoAllocation {
   1961  public:
   1962   AssertNoAllocation() {
   1963     old_state_ = HEAP->allow_allocation(false);
   1964   }
   1965 
   1966   ~AssertNoAllocation() {
   1967     HEAP->allow_allocation(old_state_);
   1968   }
   1969 
   1970  private:
   1971   bool old_state_;
   1972 };
   1973 
   1974 class DisableAssertNoAllocation {
   1975  public:
   1976   DisableAssertNoAllocation() {
   1977     old_state_ = HEAP->allow_allocation(true);
   1978   }
   1979 
   1980   ~DisableAssertNoAllocation() {
   1981     HEAP->allow_allocation(old_state_);
   1982   }
   1983 
   1984  private:
   1985   bool old_state_;
   1986 };
   1987 
   1988 #else  // ndef DEBUG
   1989 
   1990 class AssertNoAllocation {
   1991  public:
   1992   AssertNoAllocation() { }
   1993   ~AssertNoAllocation() { }
   1994 };
   1995 
   1996 class DisableAssertNoAllocation {
   1997  public:
   1998   DisableAssertNoAllocation() { }
   1999   ~DisableAssertNoAllocation() { }
   2000 };
   2001 
   2002 #endif
   2003 
   2004 // GCTracer collects and prints ONE line after each garbage collector
   2005 // invocation IFF --trace_gc is used.
   2006 
   2007 class GCTracer BASE_EMBEDDED {
   2008  public:
   2009   class Scope BASE_EMBEDDED {
   2010    public:
   2011     enum ScopeId {
   2012       EXTERNAL,
   2013       MC_MARK,
   2014       MC_SWEEP,
   2015       MC_SWEEP_NEWSPACE,
   2016       MC_COMPACT,
   2017       MC_FLUSH_CODE,
   2018       kNumberOfScopes
   2019     };
   2020 
   2021     Scope(GCTracer* tracer, ScopeId scope)
   2022         : tracer_(tracer),
   2023         scope_(scope) {
   2024       start_time_ = OS::TimeCurrentMillis();
   2025     }
   2026 
   2027     ~Scope() {
   2028       ASSERT(scope_ < kNumberOfScopes);  // scope_ is unsigned.
   2029       tracer_->scopes_[scope_] += OS::TimeCurrentMillis() - start_time_;
   2030     }
   2031 
   2032    private:
   2033     GCTracer* tracer_;
   2034     ScopeId scope_;
   2035     double start_time_;
   2036   };
   2037 
   2038   explicit GCTracer(Heap* heap);
   2039   ~GCTracer();
   2040 
   2041   // Sets the collector.
   2042   void set_collector(GarbageCollector collector) { collector_ = collector; }
   2043 
   2044   // Sets the GC count.
   2045   void set_gc_count(unsigned int count) { gc_count_ = count; }
   2046 
   2047   // Sets the full GC count.
   2048   void set_full_gc_count(int count) { full_gc_count_ = count; }
   2049 
   2050   // Sets the flag that this is a compacting full GC.
   2051   void set_is_compacting() { is_compacting_ = true; }
   2052   bool is_compacting() const { return is_compacting_; }
   2053 
   2054   // Increment and decrement the count of marked objects.
   2055   void increment_marked_count() { ++marked_count_; }
   2056   void decrement_marked_count() { --marked_count_; }
   2057 
   2058   int marked_count() { return marked_count_; }
   2059 
   2060   void increment_promoted_objects_size(int object_size) {
   2061     promoted_objects_size_ += object_size;
   2062   }
   2063 
   2064  private:
   2065   // Returns a string matching the collector.
   2066   const char* CollectorString();
   2067 
   2068   // Returns size of object in heap (in MB).
   2069   double SizeOfHeapObjects() {
   2070     return (static_cast<double>(HEAP->SizeOfObjects())) / MB;
   2071   }
   2072 
   2073   double start_time_;  // Timestamp set in the constructor.
   2074   intptr_t start_size_;  // Size of objects in heap set in constructor.
   2075   GarbageCollector collector_;  // Type of collector.
   2076 
   2077   // A count (including this one, eg, the first collection is 1) of the
   2078   // number of garbage collections.
   2079   unsigned int gc_count_;
   2080 
   2081   // A count (including this one) of the number of full garbage collections.
   2082   int full_gc_count_;
   2083 
   2084   // True if the current GC is a compacting full collection, false
   2085   // otherwise.
   2086   bool is_compacting_;
   2087 
   2088   // True if the *previous* full GC cwas a compacting collection (will be
   2089   // false if there has not been a previous full GC).
   2090   bool previous_has_compacted_;
   2091 
   2092   // On a full GC, a count of the number of marked objects.  Incremented
   2093   // when an object is marked and decremented when an object's mark bit is
   2094   // cleared.  Will be zero on a scavenge collection.
   2095   int marked_count_;
   2096 
   2097   // The count from the end of the previous full GC.  Will be zero if there
   2098   // was no previous full GC.
   2099   int previous_marked_count_;
   2100 
   2101   // Amounts of time spent in different scopes during GC.
   2102   double scopes_[Scope::kNumberOfScopes];
   2103 
   2104   // Total amount of space either wasted or contained in one of free lists
   2105   // before the current GC.
   2106   intptr_t in_free_list_or_wasted_before_gc_;
   2107 
   2108   // Difference between space used in the heap at the beginning of the current
   2109   // collection and the end of the previous collection.
   2110   intptr_t allocated_since_last_gc_;
   2111 
   2112   // Amount of time spent in mutator that is time elapsed between end of the
   2113   // previous collection and the beginning of the current one.
   2114   double spent_in_mutator_;
   2115 
   2116   // Size of objects promoted during the current collection.
   2117   intptr_t promoted_objects_size_;
   2118 
   2119   Heap* heap_;
   2120 };
   2121 
   2122 
   2123 class TranscendentalCache {
   2124  public:
   2125   enum Type {ACOS, ASIN, ATAN, COS, EXP, LOG, SIN, TAN, kNumberOfCaches};
   2126   static const int kTranscendentalTypeBits = 3;
   2127   STATIC_ASSERT((1 << kTranscendentalTypeBits) >= kNumberOfCaches);
   2128 
   2129   // Returns a heap number with f(input), where f is a math function specified
   2130   // by the 'type' argument.
   2131   MUST_USE_RESULT inline MaybeObject* Get(Type type, double input);
   2132 
   2133   // The cache contains raw Object pointers.  This method disposes of
   2134   // them before a garbage collection.
   2135   void Clear();
   2136 
   2137  private:
   2138   class SubCache {
   2139     static const int kCacheSize = 512;
   2140 
   2141     explicit SubCache(Type t);
   2142 
   2143     MUST_USE_RESULT inline MaybeObject* Get(double input);
   2144 
   2145     inline double Calculate(double input);
   2146 
   2147     struct Element {
   2148       uint32_t in[2];
   2149       Object* output;
   2150     };
   2151 
   2152     union Converter {
   2153       double dbl;
   2154       uint32_t integers[2];
   2155     };
   2156 
   2157     inline static int Hash(const Converter& c) {
   2158       uint32_t hash = (c.integers[0] ^ c.integers[1]);
   2159       hash ^= static_cast<int32_t>(hash) >> 16;
   2160       hash ^= static_cast<int32_t>(hash) >> 8;
   2161       return (hash & (kCacheSize - 1));
   2162     }
   2163 
   2164     Element elements_[kCacheSize];
   2165     Type type_;
   2166     Isolate* isolate_;
   2167 
   2168     // Allow access to the caches_ array as an ExternalReference.
   2169     friend class ExternalReference;
   2170     // Inline implementation of the cache.
   2171     friend class TranscendentalCacheStub;
   2172     // For evaluating value.
   2173     friend class TranscendentalCache;
   2174 
   2175     DISALLOW_COPY_AND_ASSIGN(SubCache);
   2176   };
   2177 
   2178   TranscendentalCache() {
   2179     for (int i = 0; i < kNumberOfCaches; ++i) caches_[i] = NULL;
   2180   }
   2181 
   2182   // Used to create an external reference.
   2183   inline Address cache_array_address();
   2184 
   2185   // Instantiation
   2186   friend class Isolate;
   2187   // Inline implementation of the caching.
   2188   friend class TranscendentalCacheStub;
   2189   // Allow access to the caches_ array as an ExternalReference.
   2190   friend class ExternalReference;
   2191 
   2192   SubCache* caches_[kNumberOfCaches];
   2193   DISALLOW_COPY_AND_ASSIGN(TranscendentalCache);
   2194 };
   2195 
   2196 
   2197 // Abstract base class for checking whether a weak object should be retained.
   2198 class WeakObjectRetainer {
   2199  public:
   2200   virtual ~WeakObjectRetainer() {}
   2201 
   2202   // Return whether this object should be retained. If NULL is returned the
   2203   // object has no references. Otherwise the address of the retained object
   2204   // should be returned as in some GC situations the object has been moved.
   2205   virtual Object* RetainAs(Object* object) = 0;
   2206 };
   2207 
   2208 
   2209 #if defined(DEBUG) || defined(LIVE_OBJECT_LIST)
   2210 // Helper class for tracing paths to a search target Object from all roots.
   2211 // The TracePathFrom() method can be used to trace paths from a specific
   2212 // object to the search target object.
   2213 class PathTracer : public ObjectVisitor {
   2214  public:
   2215   enum WhatToFind {
   2216     FIND_ALL,   // Will find all matches.
   2217     FIND_FIRST  // Will stop the search after first match.
   2218   };
   2219 
   2220   // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
   2221   // after the first match.  If FIND_ALL is specified, then tracing will be
   2222   // done for all matches.
   2223   PathTracer(Object* search_target,
   2224              WhatToFind what_to_find,
   2225              VisitMode visit_mode)
   2226       : search_target_(search_target),
   2227         found_target_(false),
   2228         found_target_in_trace_(false),
   2229         what_to_find_(what_to_find),
   2230         visit_mode_(visit_mode),
   2231         object_stack_(20),
   2232         no_alloc() {}
   2233 
   2234   virtual void VisitPointers(Object** start, Object** end);
   2235 
   2236   void Reset();
   2237   void TracePathFrom(Object** root);
   2238 
   2239   bool found() const { return found_target_; }
   2240 
   2241   static Object* const kAnyGlobalObject;
   2242 
   2243  protected:
   2244   class MarkVisitor;
   2245   class UnmarkVisitor;
   2246 
   2247   void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
   2248   void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
   2249   virtual void ProcessResults();
   2250 
   2251   // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
   2252   static const int kMarkTag = 2;
   2253 
   2254   Object* search_target_;
   2255   bool found_target_;
   2256   bool found_target_in_trace_;
   2257   WhatToFind what_to_find_;
   2258   VisitMode visit_mode_;
   2259   List<Object*> object_stack_;
   2260 
   2261   AssertNoAllocation no_alloc;  // i.e. no gc allowed.
   2262 
   2263   DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
   2264 };
   2265 #endif  // DEBUG || LIVE_OBJECT_LIST
   2266 
   2267 
   2268 } }  // namespace v8::internal
   2269 
   2270 #undef HEAP
   2271 
   2272 #endif  // V8_HEAP_H_
   2273