Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the generic AliasAnalysis interface, which is used as the
     11 // common interface used by all clients of alias analysis information, and
     12 // implemented by all alias analysis implementations.  Mod/Ref information is
     13 // also captured by this interface.
     14 //
     15 // Implementations of this interface must implement the various virtual methods,
     16 // which automatically provides functionality for the entire suite of client
     17 // APIs.
     18 //
     19 // This API identifies memory regions with the Location class. The pointer
     20 // component specifies the base memory address of the region. The Size specifies
     21 // the maximum size (in address units) of the memory region, or UnknownSize if
     22 // the size is not known. The TBAA tag identifies the "type" of the memory
     23 // reference; see the TypeBasedAliasAnalysis class for details.
     24 //
     25 // Some non-obvious details include:
     26 //  - Pointers that point to two completely different objects in memory never
     27 //    alias, regardless of the value of the Size component.
     28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
     29 //    is two pointers to constant memory. Even if they are equal, constant
     30 //    memory is never stored to, so there will never be any dependencies.
     31 //    In this and other situations, the pointers may be both NoAlias and
     32 //    MustAlias at the same time. The current API can only return one result,
     33 //    though this is rarely a problem in practice.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
     38 #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
     39 
     40 #include "llvm/Support/CallSite.h"
     41 #include "llvm/ADT/DenseMap.h"
     42 
     43 namespace llvm {
     44 
     45 class LoadInst;
     46 class StoreInst;
     47 class VAArgInst;
     48 class TargetData;
     49 class Pass;
     50 class AnalysisUsage;
     51 class MemTransferInst;
     52 class MemIntrinsic;
     53 
     54 class AliasAnalysis {
     55 protected:
     56   const TargetData *TD;
     57 
     58 private:
     59   AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
     60 
     61 protected:
     62   /// InitializeAliasAnalysis - Subclasses must call this method to initialize
     63   /// the AliasAnalysis interface before any other methods are called.  This is
     64   /// typically called by the run* methods of these subclasses.  This may be
     65   /// called multiple times.
     66   ///
     67   void InitializeAliasAnalysis(Pass *P);
     68 
     69   /// getAnalysisUsage - All alias analysis implementations should invoke this
     70   /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
     71   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     72 
     73 public:
     74   static char ID; // Class identification, replacement for typeinfo
     75   AliasAnalysis() : TD(0), AA(0) {}
     76   virtual ~AliasAnalysis();  // We want to be subclassed
     77 
     78   /// UnknownSize - This is a special value which can be used with the
     79   /// size arguments in alias queries to indicate that the caller does not
     80   /// know the sizes of the potential memory references.
     81   static uint64_t const UnknownSize = ~UINT64_C(0);
     82 
     83   /// getTargetData - Return a pointer to the current TargetData object, or
     84   /// null if no TargetData object is available.
     85   ///
     86   const TargetData *getTargetData() const { return TD; }
     87 
     88   /// getTypeStoreSize - Return the TargetData store size for the given type,
     89   /// if known, or a conservative value otherwise.
     90   ///
     91   uint64_t getTypeStoreSize(Type *Ty);
     92 
     93   //===--------------------------------------------------------------------===//
     94   /// Alias Queries...
     95   ///
     96 
     97   /// Location - A description of a memory location.
     98   struct Location {
     99     /// Ptr - The address of the start of the location.
    100     const Value *Ptr;
    101     /// Size - The maximum size of the location, in address-units, or
    102     /// UnknownSize if the size is not known.  Note that an unknown size does
    103     /// not mean the pointer aliases the entire virtual address space, because
    104     /// there are restrictions on stepping out of one object and into another.
    105     /// See http://llvm.org/docs/LangRef.html#pointeraliasing
    106     uint64_t Size;
    107     /// TBAATag - The metadata node which describes the TBAA type of
    108     /// the location, or null if there is no known unique tag.
    109     const MDNode *TBAATag;
    110 
    111     explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
    112                       const MDNode *N = 0)
    113       : Ptr(P), Size(S), TBAATag(N) {}
    114 
    115     Location getWithNewPtr(const Value *NewPtr) const {
    116       Location Copy(*this);
    117       Copy.Ptr = NewPtr;
    118       return Copy;
    119     }
    120 
    121     Location getWithNewSize(uint64_t NewSize) const {
    122       Location Copy(*this);
    123       Copy.Size = NewSize;
    124       return Copy;
    125     }
    126 
    127     Location getWithoutTBAATag() const {
    128       Location Copy(*this);
    129       Copy.TBAATag = 0;
    130       return Copy;
    131     }
    132   };
    133 
    134   /// getLocation - Fill in Loc with information about the memory reference by
    135   /// the given instruction.
    136   Location getLocation(const LoadInst *LI);
    137   Location getLocation(const StoreInst *SI);
    138   Location getLocation(const VAArgInst *VI);
    139   static Location getLocationForSource(const MemTransferInst *MTI);
    140   static Location getLocationForDest(const MemIntrinsic *MI);
    141 
    142   /// Alias analysis result - Either we know for sure that it does not alias, we
    143   /// know for sure it must alias, or we don't know anything: The two pointers
    144   /// _might_ alias.  This enum is designed so you can do things like:
    145   ///     if (AA.alias(P1, P2)) { ... }
    146   /// to check to see if two pointers might alias.
    147   ///
    148   /// See docs/AliasAnalysis.html for more information on the specific meanings
    149   /// of these values.
    150   ///
    151   enum AliasResult {
    152     NoAlias = 0,        ///< No dependencies.
    153     MayAlias,           ///< Anything goes.
    154     PartialAlias,       ///< Pointers differ, but pointees overlap.
    155     MustAlias           ///< Pointers are equal.
    156   };
    157 
    158   /// alias - The main low level interface to the alias analysis implementation.
    159   /// Returns an AliasResult indicating whether the two pointers are aliased to
    160   /// each other.  This is the interface that must be implemented by specific
    161   /// alias analysis implementations.
    162   virtual AliasResult alias(const Location &LocA, const Location &LocB);
    163 
    164   /// alias - A convenience wrapper.
    165   AliasResult alias(const Value *V1, uint64_t V1Size,
    166                     const Value *V2, uint64_t V2Size) {
    167     return alias(Location(V1, V1Size), Location(V2, V2Size));
    168   }
    169 
    170   /// alias - A convenience wrapper.
    171   AliasResult alias(const Value *V1, const Value *V2) {
    172     return alias(V1, UnknownSize, V2, UnknownSize);
    173   }
    174 
    175   /// isNoAlias - A trivial helper function to check to see if the specified
    176   /// pointers are no-alias.
    177   bool isNoAlias(const Location &LocA, const Location &LocB) {
    178     return alias(LocA, LocB) == NoAlias;
    179   }
    180 
    181   /// isNoAlias - A convenience wrapper.
    182   bool isNoAlias(const Value *V1, uint64_t V1Size,
    183                  const Value *V2, uint64_t V2Size) {
    184     return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
    185   }
    186 
    187   /// isMustAlias - A convenience wrapper.
    188   bool isMustAlias(const Location &LocA, const Location &LocB) {
    189     return alias(LocA, LocB) == MustAlias;
    190   }
    191 
    192   /// isMustAlias - A convenience wrapper.
    193   bool isMustAlias(const Value *V1, const Value *V2) {
    194     return alias(V1, 1, V2, 1) == MustAlias;
    195   }
    196 
    197   /// pointsToConstantMemory - If the specified memory location is
    198   /// known to be constant, return true. If OrLocal is true and the
    199   /// specified memory location is known to be "local" (derived from
    200   /// an alloca), return true. Otherwise return false.
    201   virtual bool pointsToConstantMemory(const Location &Loc,
    202                                       bool OrLocal = false);
    203 
    204   /// pointsToConstantMemory - A convenient wrapper.
    205   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
    206     return pointsToConstantMemory(Location(P), OrLocal);
    207   }
    208 
    209   //===--------------------------------------------------------------------===//
    210   /// Simple mod/ref information...
    211   ///
    212 
    213   /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
    214   /// bits which may be or'd together.
    215   ///
    216   enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
    217 
    218   /// These values define additional bits used to define the
    219   /// ModRefBehavior values.
    220   enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
    221 
    222   /// ModRefBehavior - Summary of how a function affects memory in the program.
    223   /// Loads from constant globals are not considered memory accesses for this
    224   /// interface.  Also, functions may freely modify stack space local to their
    225   /// invocation without having to report it through these interfaces.
    226   enum ModRefBehavior {
    227     /// DoesNotAccessMemory - This function does not perform any non-local loads
    228     /// or stores to memory.
    229     ///
    230     /// This property corresponds to the GCC 'const' attribute.
    231     /// This property corresponds to the LLVM IR 'readnone' attribute.
    232     /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
    233     DoesNotAccessMemory = Nowhere | NoModRef,
    234 
    235     /// OnlyReadsArgumentPointees - The only memory references in this function
    236     /// (if it has any) are non-volatile loads from objects pointed to by its
    237     /// pointer-typed arguments, with arbitrary offsets.
    238     ///
    239     /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
    240     OnlyReadsArgumentPointees = ArgumentPointees | Ref,
    241 
    242     /// OnlyAccessesArgumentPointees - The only memory references in this
    243     /// function (if it has any) are non-volatile loads and stores from objects
    244     /// pointed to by its pointer-typed arguments, with arbitrary offsets.
    245     ///
    246     /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
    247     OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
    248 
    249     /// OnlyReadsMemory - This function does not perform any non-local stores or
    250     /// volatile loads, but may read from any memory location.
    251     ///
    252     /// This property corresponds to the GCC 'pure' attribute.
    253     /// This property corresponds to the LLVM IR 'readonly' attribute.
    254     /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
    255     OnlyReadsMemory = Anywhere | Ref,
    256 
    257     /// UnknownModRefBehavior - This indicates that the function could not be
    258     /// classified into one of the behaviors above.
    259     UnknownModRefBehavior = Anywhere | ModRef
    260   };
    261 
    262   /// getModRefBehavior - Return the behavior when calling the given call site.
    263   virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
    264 
    265   /// getModRefBehavior - Return the behavior when calling the given function.
    266   /// For use when the call site is not known.
    267   virtual ModRefBehavior getModRefBehavior(const Function *F);
    268 
    269   /// doesNotAccessMemory - If the specified call is known to never read or
    270   /// write memory, return true.  If the call only reads from known-constant
    271   /// memory, it is also legal to return true.  Calls that unwind the stack
    272   /// are legal for this predicate.
    273   ///
    274   /// Many optimizations (such as CSE and LICM) can be performed on such calls
    275   /// without worrying about aliasing properties, and many calls have this
    276   /// property (e.g. calls to 'sin' and 'cos').
    277   ///
    278   /// This property corresponds to the GCC 'const' attribute.
    279   ///
    280   bool doesNotAccessMemory(ImmutableCallSite CS) {
    281     return getModRefBehavior(CS) == DoesNotAccessMemory;
    282   }
    283 
    284   /// doesNotAccessMemory - If the specified function is known to never read or
    285   /// write memory, return true.  For use when the call site is not known.
    286   ///
    287   bool doesNotAccessMemory(const Function *F) {
    288     return getModRefBehavior(F) == DoesNotAccessMemory;
    289   }
    290 
    291   /// onlyReadsMemory - If the specified call is known to only read from
    292   /// non-volatile memory (or not access memory at all), return true.  Calls
    293   /// that unwind the stack are legal for this predicate.
    294   ///
    295   /// This property allows many common optimizations to be performed in the
    296   /// absence of interfering store instructions, such as CSE of strlen calls.
    297   ///
    298   /// This property corresponds to the GCC 'pure' attribute.
    299   ///
    300   bool onlyReadsMemory(ImmutableCallSite CS) {
    301     return onlyReadsMemory(getModRefBehavior(CS));
    302   }
    303 
    304   /// onlyReadsMemory - If the specified function is known to only read from
    305   /// non-volatile memory (or not access memory at all), return true.  For use
    306   /// when the call site is not known.
    307   ///
    308   bool onlyReadsMemory(const Function *F) {
    309     return onlyReadsMemory(getModRefBehavior(F));
    310   }
    311 
    312   /// onlyReadsMemory - Return true if functions with the specified behavior are
    313   /// known to only read from non-volatile memory (or not access memory at all).
    314   ///
    315   static bool onlyReadsMemory(ModRefBehavior MRB) {
    316     return !(MRB & Mod);
    317   }
    318 
    319   /// onlyAccessesArgPointees - Return true if functions with the specified
    320   /// behavior are known to read and write at most from objects pointed to by
    321   /// their pointer-typed arguments (with arbitrary offsets).
    322   ///
    323   static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
    324     return !(MRB & Anywhere & ~ArgumentPointees);
    325   }
    326 
    327   /// doesAccessArgPointees - Return true if functions with the specified
    328   /// behavior are known to potentially read or write  from objects pointed
    329   /// to be their pointer-typed arguments (with arbitrary offsets).
    330   ///
    331   static bool doesAccessArgPointees(ModRefBehavior MRB) {
    332     return (MRB & ModRef) && (MRB & ArgumentPointees);
    333   }
    334 
    335   /// getModRefInfo - Return information about whether or not an instruction may
    336   /// read or write the specified memory location.  An instruction
    337   /// that doesn't read or write memory may be trivially LICM'd for example.
    338   ModRefResult getModRefInfo(const Instruction *I,
    339                              const Location &Loc) {
    340     switch (I->getOpcode()) {
    341     case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
    342     case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
    343     case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
    344     case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
    345     case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
    346     default:                  return NoModRef;
    347     }
    348   }
    349 
    350   /// getModRefInfo - A convenience wrapper.
    351   ModRefResult getModRefInfo(const Instruction *I,
    352                              const Value *P, uint64_t Size) {
    353     return getModRefInfo(I, Location(P, Size));
    354   }
    355 
    356   /// getModRefInfo (for call sites) - Return whether information about whether
    357   /// a particular call site modifies or reads the specified memory location.
    358   virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
    359                                      const Location &Loc);
    360 
    361   /// getModRefInfo (for call sites) - A convenience wrapper.
    362   ModRefResult getModRefInfo(ImmutableCallSite CS,
    363                              const Value *P, uint64_t Size) {
    364     return getModRefInfo(CS, Location(P, Size));
    365   }
    366 
    367   /// getModRefInfo (for calls) - Return whether information about whether
    368   /// a particular call modifies or reads the specified memory location.
    369   ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
    370     return getModRefInfo(ImmutableCallSite(C), Loc);
    371   }
    372 
    373   /// getModRefInfo (for calls) - A convenience wrapper.
    374   ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
    375     return getModRefInfo(C, Location(P, Size));
    376   }
    377 
    378   /// getModRefInfo (for invokes) - Return whether information about whether
    379   /// a particular invoke modifies or reads the specified memory location.
    380   ModRefResult getModRefInfo(const InvokeInst *I,
    381                              const Location &Loc) {
    382     return getModRefInfo(ImmutableCallSite(I), Loc);
    383   }
    384 
    385   /// getModRefInfo (for invokes) - A convenience wrapper.
    386   ModRefResult getModRefInfo(const InvokeInst *I,
    387                              const Value *P, uint64_t Size) {
    388     return getModRefInfo(I, Location(P, Size));
    389   }
    390 
    391   /// getModRefInfo (for loads) - Return whether information about whether
    392   /// a particular load modifies or reads the specified memory location.
    393   ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
    394 
    395   /// getModRefInfo (for loads) - A convenience wrapper.
    396   ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
    397     return getModRefInfo(L, Location(P, Size));
    398   }
    399 
    400   /// getModRefInfo (for stores) - Return whether information about whether
    401   /// a particular store modifies or reads the specified memory location.
    402   ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
    403 
    404   /// getModRefInfo (for stores) - A convenience wrapper.
    405   ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
    406     return getModRefInfo(S, Location(P, Size));
    407   }
    408 
    409   /// getModRefInfo (for va_args) - Return whether information about whether
    410   /// a particular va_arg modifies or reads the specified memory location.
    411   ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
    412 
    413   /// getModRefInfo (for va_args) - A convenience wrapper.
    414   ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
    415     return getModRefInfo(I, Location(P, Size));
    416   }
    417 
    418   /// getModRefInfo - Return information about whether two call sites may refer
    419   /// to the same set of memory locations.  See
    420   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
    421   /// for details.
    422   virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
    423                                      ImmutableCallSite CS2);
    424 
    425   //===--------------------------------------------------------------------===//
    426   /// Higher level methods for querying mod/ref information.
    427   ///
    428 
    429   /// canBasicBlockModify - Return true if it is possible for execution of the
    430   /// specified basic block to modify the value pointed to by Ptr.
    431   bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
    432 
    433   /// canBasicBlockModify - A convenience wrapper.
    434   bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
    435     return canBasicBlockModify(BB, Location(P, Size));
    436   }
    437 
    438   /// canInstructionRangeModify - Return true if it is possible for the
    439   /// execution of the specified instructions to modify the value pointed to by
    440   /// Ptr.  The instructions to consider are all of the instructions in the
    441   /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
    442   bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
    443                                  const Location &Loc);
    444 
    445   /// canInstructionRangeModify - A convenience wrapper.
    446   bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
    447                                  const Value *Ptr, uint64_t Size) {
    448     return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
    449   }
    450 
    451   //===--------------------------------------------------------------------===//
    452   /// Methods that clients should call when they transform the program to allow
    453   /// alias analyses to update their internal data structures.  Note that these
    454   /// methods may be called on any instruction, regardless of whether or not
    455   /// they have pointer-analysis implications.
    456   ///
    457 
    458   /// deleteValue - This method should be called whenever an LLVM Value is
    459   /// deleted from the program, for example when an instruction is found to be
    460   /// redundant and is eliminated.
    461   ///
    462   virtual void deleteValue(Value *V);
    463 
    464   /// copyValue - This method should be used whenever a preexisting value in the
    465   /// program is copied or cloned, introducing a new value.  Note that analysis
    466   /// implementations should tolerate clients that use this method to introduce
    467   /// the same value multiple times: if the analysis already knows about a
    468   /// value, it should ignore the request.
    469   ///
    470   virtual void copyValue(Value *From, Value *To);
    471 
    472   /// addEscapingUse - This method should be used whenever an escaping use is
    473   /// added to a pointer value.  Analysis implementations may either return
    474   /// conservative responses for that value in the future, or may recompute
    475   /// some or all internal state to continue providing precise responses.
    476   ///
    477   /// Escaping uses are considered by anything _except_ the following:
    478   ///  - GEPs or bitcasts of the pointer
    479   ///  - Loads through the pointer
    480   ///  - Stores through (but not of) the pointer
    481   virtual void addEscapingUse(Use &U);
    482 
    483   /// replaceWithNewValue - This method is the obvious combination of the two
    484   /// above, and it provided as a helper to simplify client code.
    485   ///
    486   void replaceWithNewValue(Value *Old, Value *New) {
    487     copyValue(Old, New);
    488     deleteValue(Old);
    489   }
    490 };
    491 
    492 // Specialize DenseMapInfo for Location.
    493 template<>
    494 struct DenseMapInfo<AliasAnalysis::Location> {
    495   static inline AliasAnalysis::Location getEmptyKey() {
    496     return
    497       AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
    498                               0, 0);
    499   }
    500   static inline AliasAnalysis::Location getTombstoneKey() {
    501     return
    502       AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
    503                               0, 0);
    504   }
    505   static unsigned getHashValue(const AliasAnalysis::Location &Val) {
    506     return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
    507            DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
    508            DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
    509   }
    510   static bool isEqual(const AliasAnalysis::Location &LHS,
    511                       const AliasAnalysis::Location &RHS) {
    512     return LHS.Ptr == RHS.Ptr &&
    513            LHS.Size == RHS.Size &&
    514            LHS.TBAATag == RHS.TBAATag;
    515   }
    516 };
    517 
    518 /// isNoAliasCall - Return true if this pointer is returned by a noalias
    519 /// function.
    520 bool isNoAliasCall(const Value *V);
    521 
    522 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
    523 /// identifiable object.  This returns true for:
    524 ///    Global Variables and Functions (but not Global Aliases)
    525 ///    Allocas and Mallocs
    526 ///    ByVal and NoAlias Arguments
    527 ///    NoAlias returns
    528 ///
    529 bool isIdentifiedObject(const Value *V);
    530 
    531 } // End llvm namespace
    532 
    533 #endif
    534