Home | History | Annotate | Download | only in Linker
      1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LLVM module linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Linker.h"
     15 #include "llvm/Constants.h"
     16 #include "llvm/DerivedTypes.h"
     17 #include "llvm/Module.h"
     18 #include "llvm/Support/raw_ostream.h"
     19 #include "llvm/Support/Path.h"
     20 #include "llvm/Transforms/Utils/ValueMapper.h"
     21 using namespace llvm;
     22 
     23 //===----------------------------------------------------------------------===//
     24 // TypeMap implementation.
     25 //===----------------------------------------------------------------------===//
     26 
     27 namespace {
     28 class TypeMapTy : public ValueMapTypeRemapper {
     29   /// MappedTypes - This is a mapping from a source type to a destination type
     30   /// to use.
     31   DenseMap<Type*, Type*> MappedTypes;
     32 
     33   /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
     34   /// we speculatively add types to MappedTypes, but keep track of them here in
     35   /// case we need to roll back.
     36   SmallVector<Type*, 16> SpeculativeTypes;
     37 
     38   /// DefinitionsToResolve - This is a list of non-opaque structs in the source
     39   /// module that are mapped to an opaque struct in the destination module.
     40   SmallVector<StructType*, 16> DefinitionsToResolve;
     41 public:
     42 
     43   /// addTypeMapping - Indicate that the specified type in the destination
     44   /// module is conceptually equivalent to the specified type in the source
     45   /// module.
     46   void addTypeMapping(Type *DstTy, Type *SrcTy);
     47 
     48   /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
     49   /// module from a type definition in the source module.
     50   void linkDefinedTypeBodies();
     51 
     52   /// get - Return the mapped type to use for the specified input type from the
     53   /// source module.
     54   Type *get(Type *SrcTy);
     55 
     56   FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
     57 
     58 private:
     59   Type *getImpl(Type *T);
     60   /// remapType - Implement the ValueMapTypeRemapper interface.
     61   Type *remapType(Type *SrcTy) {
     62     return get(SrcTy);
     63   }
     64 
     65   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
     66 };
     67 }
     68 
     69 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
     70   Type *&Entry = MappedTypes[SrcTy];
     71   if (Entry) return;
     72 
     73   if (DstTy == SrcTy) {
     74     Entry = DstTy;
     75     return;
     76   }
     77 
     78   // Check to see if these types are recursively isomorphic and establish a
     79   // mapping between them if so.
     80   if (!areTypesIsomorphic(DstTy, SrcTy)) {
     81     // Oops, they aren't isomorphic.  Just discard this request by rolling out
     82     // any speculative mappings we've established.
     83     for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
     84       MappedTypes.erase(SpeculativeTypes[i]);
     85   }
     86   SpeculativeTypes.clear();
     87 }
     88 
     89 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
     90 /// if they are isomorphic, false if they are not.
     91 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
     92   // Two types with differing kinds are clearly not isomorphic.
     93   if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
     94 
     95   // If we have an entry in the MappedTypes table, then we have our answer.
     96   Type *&Entry = MappedTypes[SrcTy];
     97   if (Entry)
     98     return Entry == DstTy;
     99 
    100   // Two identical types are clearly isomorphic.  Remember this
    101   // non-speculatively.
    102   if (DstTy == SrcTy) {
    103     Entry = DstTy;
    104     return true;
    105   }
    106 
    107   // Okay, we have two types with identical kinds that we haven't seen before.
    108 
    109   // If this is an opaque struct type, special case it.
    110   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    111     // Mapping an opaque type to any struct, just keep the dest struct.
    112     if (SSTy->isOpaque()) {
    113       Entry = DstTy;
    114       SpeculativeTypes.push_back(SrcTy);
    115       return true;
    116     }
    117 
    118     // Mapping a non-opaque source type to an opaque dest.  Keep the dest, but
    119     // fill it in later.  This doesn't need to be speculative.
    120     if (cast<StructType>(DstTy)->isOpaque()) {
    121       Entry = DstTy;
    122       DefinitionsToResolve.push_back(SSTy);
    123       return true;
    124     }
    125   }
    126 
    127   // If the number of subtypes disagree between the two types, then we fail.
    128   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    129     return false;
    130 
    131   // Fail if any of the extra properties (e.g. array size) of the type disagree.
    132   if (isa<IntegerType>(DstTy))
    133     return false;  // bitwidth disagrees.
    134   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    135     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
    136       return false;
    137   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    138     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
    139       return false;
    140   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    141     StructType *SSTy = cast<StructType>(SrcTy);
    142     if (DSTy->isAnonymous() != SSTy->isAnonymous() ||
    143         DSTy->isPacked() != SSTy->isPacked())
    144       return false;
    145   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    146     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    147       return false;
    148   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    149     if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    150       return false;
    151   }
    152 
    153   // Otherwise, we speculate that these two types will line up and recursively
    154   // check the subelements.
    155   Entry = DstTy;
    156   SpeculativeTypes.push_back(SrcTy);
    157 
    158   for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
    159     if (!areTypesIsomorphic(DstTy->getContainedType(i),
    160                             SrcTy->getContainedType(i)))
    161       return false;
    162 
    163   // If everything seems to have lined up, then everything is great.
    164   return true;
    165 }
    166 
    167 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
    168 /// module from a type definition in the source module.
    169 void TypeMapTy::linkDefinedTypeBodies() {
    170   SmallVector<Type*, 16> Elements;
    171   SmallString<16> TmpName;
    172 
    173   // Note that processing entries in this loop (calling 'get') can add new
    174   // entries to the DefinitionsToResolve vector.
    175   while (!DefinitionsToResolve.empty()) {
    176     StructType *SrcSTy = DefinitionsToResolve.pop_back_val();
    177     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    178 
    179     // TypeMap is a many-to-one mapping, if there were multiple types that
    180     // provide a body for DstSTy then previous iterations of this loop may have
    181     // already handled it.  Just ignore this case.
    182     if (!DstSTy->isOpaque()) continue;
    183     assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
    184 
    185     // Map the body of the source type over to a new body for the dest type.
    186     Elements.resize(SrcSTy->getNumElements());
    187     for (unsigned i = 0, e = Elements.size(); i != e; ++i)
    188       Elements[i] = getImpl(SrcSTy->getElementType(i));
    189 
    190     DstSTy->setBody(Elements, SrcSTy->isPacked());
    191 
    192     // If DstSTy has no name or has a longer name than STy, then viciously steal
    193     // STy's name.
    194     if (!SrcSTy->hasName()) continue;
    195     StringRef SrcName = SrcSTy->getName();
    196 
    197     if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
    198       TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
    199       SrcSTy->setName("");
    200       DstSTy->setName(TmpName.str());
    201       TmpName.clear();
    202     }
    203   }
    204 }
    205 
    206 
    207 /// get - Return the mapped type to use for the specified input type from the
    208 /// source module.
    209 Type *TypeMapTy::get(Type *Ty) {
    210   Type *Result = getImpl(Ty);
    211 
    212   // If this caused a reference to any struct type, resolve it before returning.
    213   if (!DefinitionsToResolve.empty())
    214     linkDefinedTypeBodies();
    215   return Result;
    216 }
    217 
    218 /// getImpl - This is the recursive version of get().
    219 Type *TypeMapTy::getImpl(Type *Ty) {
    220   // If we already have an entry for this type, return it.
    221   Type **Entry = &MappedTypes[Ty];
    222   if (*Entry) return *Entry;
    223 
    224   // If this is not a named struct type, then just map all of the elements and
    225   // then rebuild the type from inside out.
    226   if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isAnonymous()) {
    227     // If there are no element types to map, then the type is itself.  This is
    228     // true for the anonymous {} struct, things like 'float', integers, etc.
    229     if (Ty->getNumContainedTypes() == 0)
    230       return *Entry = Ty;
    231 
    232     // Remap all of the elements, keeping track of whether any of them change.
    233     bool AnyChange = false;
    234     SmallVector<Type*, 4> ElementTypes;
    235     ElementTypes.resize(Ty->getNumContainedTypes());
    236     for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
    237       ElementTypes[i] = getImpl(Ty->getContainedType(i));
    238       AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
    239     }
    240 
    241     // If we found our type while recursively processing stuff, just use it.
    242     Entry = &MappedTypes[Ty];
    243     if (*Entry) return *Entry;
    244 
    245     // If all of the element types mapped directly over, then the type is usable
    246     // as-is.
    247     if (!AnyChange)
    248       return *Entry = Ty;
    249 
    250     // Otherwise, rebuild a modified type.
    251     switch (Ty->getTypeID()) {
    252     default: assert(0 && "unknown derived type to remap");
    253     case Type::ArrayTyID:
    254       return *Entry = ArrayType::get(ElementTypes[0],
    255                                      cast<ArrayType>(Ty)->getNumElements());
    256     case Type::VectorTyID:
    257       return *Entry = VectorType::get(ElementTypes[0],
    258                                       cast<VectorType>(Ty)->getNumElements());
    259     case Type::PointerTyID:
    260       return *Entry = PointerType::get(ElementTypes[0],
    261                                       cast<PointerType>(Ty)->getAddressSpace());
    262     case Type::FunctionTyID:
    263       return *Entry = FunctionType::get(ElementTypes[0],
    264                                         makeArrayRef(ElementTypes).slice(1),
    265                                         cast<FunctionType>(Ty)->isVarArg());
    266     case Type::StructTyID:
    267       // Note that this is only reached for anonymous structs.
    268       return *Entry = StructType::get(Ty->getContext(), ElementTypes,
    269                                       cast<StructType>(Ty)->isPacked());
    270     }
    271   }
    272 
    273   // Otherwise, this is an unmapped named struct.  If the struct can be directly
    274   // mapped over, just use it as-is.  This happens in a case when the linked-in
    275   // module has something like:
    276   //   %T = type {%T*, i32}
    277   //   @GV = global %T* null
    278   // where T does not exist at all in the destination module.
    279   //
    280   // The other case we watch for is when the type is not in the destination
    281   // module, but that it has to be rebuilt because it refers to something that
    282   // is already mapped.  For example, if the destination module has:
    283   //  %A = type { i32 }
    284   // and the source module has something like
    285   //  %A' = type { i32 }
    286   //  %B = type { %A'* }
    287   //  @GV = global %B* null
    288   // then we want to create a new type: "%B = type { %A*}" and have it take the
    289   // pristine "%B" name from the source module.
    290   //
    291   // To determine which case this is, we have to recursively walk the type graph
    292   // speculating that we'll be able to reuse it unmodified.  Only if this is
    293   // safe would we map the entire thing over.  Because this is an optimization,
    294   // and is not required for the prettiness of the linked module, we just skip
    295   // it and always rebuild a type here.
    296   StructType *STy = cast<StructType>(Ty);
    297 
    298   // If the type is opaque, we can just use it directly.
    299   if (STy->isOpaque())
    300     return *Entry = STy;
    301 
    302   // Otherwise we create a new type and resolve its body later.  This will be
    303   // resolved by the top level of get().
    304   DefinitionsToResolve.push_back(STy);
    305   return *Entry = StructType::createNamed(STy->getContext(), "");
    306 }
    307 
    308 
    309 
    310 //===----------------------------------------------------------------------===//
    311 // ModuleLinker implementation.
    312 //===----------------------------------------------------------------------===//
    313 
    314 namespace {
    315   /// ModuleLinker - This is an implementation class for the LinkModules
    316   /// function, which is the entrypoint for this file.
    317   class ModuleLinker {
    318     Module *DstM, *SrcM;
    319 
    320     TypeMapTy TypeMap;
    321 
    322     /// ValueMap - Mapping of values from what they used to be in Src, to what
    323     /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
    324     /// some overhead due to the use of Value handles which the Linker doesn't
    325     /// actually need, but this allows us to reuse the ValueMapper code.
    326     ValueToValueMapTy ValueMap;
    327 
    328     struct AppendingVarInfo {
    329       GlobalVariable *NewGV;  // New aggregate global in dest module.
    330       Constant *DstInit;      // Old initializer from dest module.
    331       Constant *SrcInit;      // Old initializer from src module.
    332     };
    333 
    334     std::vector<AppendingVarInfo> AppendingVars;
    335 
    336   public:
    337     std::string ErrorMsg;
    338 
    339     ModuleLinker(Module *dstM, Module *srcM) : DstM(dstM), SrcM(srcM) { }
    340 
    341     bool run();
    342 
    343   private:
    344     /// emitError - Helper method for setting a message and returning an error
    345     /// code.
    346     bool emitError(const Twine &Message) {
    347       ErrorMsg = Message.str();
    348       return true;
    349     }
    350 
    351     /// getLinkageResult - This analyzes the two global values and determines
    352     /// what the result will look like in the destination module.
    353     bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    354                           GlobalValue::LinkageTypes &LT, bool &LinkFromSrc);
    355 
    356     /// getLinkedToGlobal - Given a global in the source module, return the
    357     /// global in the destination module that is being linked to, if any.
    358     GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
    359       // If the source has no name it can't link.  If it has local linkage,
    360       // there is no name match-up going on.
    361       if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
    362         return 0;
    363 
    364       // Otherwise see if we have a match in the destination module's symtab.
    365       GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
    366       if (DGV == 0) return 0;
    367 
    368       // If we found a global with the same name in the dest module, but it has
    369       // internal linkage, we are really not doing any linkage here.
    370       if (DGV->hasLocalLinkage())
    371         return 0;
    372 
    373       // Otherwise, we do in fact link to the destination global.
    374       return DGV;
    375     }
    376 
    377     void computeTypeMapping();
    378 
    379     bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
    380     bool linkGlobalProto(GlobalVariable *SrcGV);
    381     bool linkFunctionProto(Function *SrcF);
    382     bool linkAliasProto(GlobalAlias *SrcA);
    383 
    384     void linkAppendingVarInit(const AppendingVarInfo &AVI);
    385     void linkGlobalInits();
    386     void linkFunctionBody(Function *Dst, Function *Src);
    387     void linkAliasBodies();
    388     void linkNamedMDNodes();
    389   };
    390 }
    391 
    392 
    393 
    394 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
    395 /// in the symbol table.  This is good for all clients except for us.  Go
    396 /// through the trouble to force this back.
    397 static void forceRenaming(GlobalValue *GV, StringRef Name) {
    398   // If the global doesn't force its name or if it already has the right name,
    399   // there is nothing for us to do.
    400   if (GV->hasLocalLinkage() || GV->getName() == Name)
    401     return;
    402 
    403   Module *M = GV->getParent();
    404 
    405   // If there is a conflict, rename the conflict.
    406   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    407     GV->takeName(ConflictGV);
    408     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
    409     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
    410   } else {
    411     GV->setName(Name);              // Force the name back
    412   }
    413 }
    414 
    415 /// CopyGVAttributes - copy additional attributes (those not needed to construct
    416 /// a GlobalValue) from the SrcGV to the DestGV.
    417 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
    418   // Use the maximum alignment, rather than just copying the alignment of SrcGV.
    419   unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
    420   DestGV->copyAttributesFrom(SrcGV);
    421   DestGV->setAlignment(Alignment);
    422 
    423   forceRenaming(DestGV, SrcGV->getName());
    424 }
    425 
    426 /// getLinkageResult - This analyzes the two global values and determines what
    427 /// the result will look like in the destination module.  In particular, it
    428 /// computes the resultant linkage type, computes whether the global in the
    429 /// source should be copied over to the destination (replacing the existing
    430 /// one), and computes whether this linkage is an error or not. It also performs
    431 /// visibility checks: we cannot link together two symbols with different
    432 /// visibilities.
    433 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    434                                     GlobalValue::LinkageTypes &LT,
    435                                     bool &LinkFromSrc) {
    436   assert(Dest && "Must have two globals being queried");
    437   assert(!Src->hasLocalLinkage() &&
    438          "If Src has internal linkage, Dest shouldn't be set!");
    439 
    440   bool SrcIsDeclaration = Src->isDeclaration();
    441   bool DestIsDeclaration = Dest->isDeclaration();
    442 
    443   if (SrcIsDeclaration) {
    444     // If Src is external or if both Src & Dest are external..  Just link the
    445     // external globals, we aren't adding anything.
    446     if (Src->hasDLLImportLinkage()) {
    447       // If one of GVs has DLLImport linkage, result should be dllimport'ed.
    448       if (DestIsDeclaration) {
    449         LinkFromSrc = true;
    450         LT = Src->getLinkage();
    451       }
    452     } else if (Dest->hasExternalWeakLinkage()) {
    453       // If the Dest is weak, use the source linkage.
    454       LinkFromSrc = true;
    455       LT = Src->getLinkage();
    456     } else {
    457       LinkFromSrc = false;
    458       LT = Dest->getLinkage();
    459     }
    460   } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
    461     // If Dest is external but Src is not:
    462     LinkFromSrc = true;
    463     LT = Src->getLinkage();
    464   } else if (Src->isWeakForLinker()) {
    465     // At this point we know that Dest has LinkOnce, External*, Weak, Common,
    466     // or DLL* linkage.
    467     if (Dest->hasExternalWeakLinkage() ||
    468         Dest->hasAvailableExternallyLinkage() ||
    469         (Dest->hasLinkOnceLinkage() &&
    470          (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
    471       LinkFromSrc = true;
    472       LT = Src->getLinkage();
    473     } else {
    474       LinkFromSrc = false;
    475       LT = Dest->getLinkage();
    476     }
    477   } else if (Dest->isWeakForLinker()) {
    478     // At this point we know that Src has External* or DLL* linkage.
    479     if (Src->hasExternalWeakLinkage()) {
    480       LinkFromSrc = false;
    481       LT = Dest->getLinkage();
    482     } else {
    483       LinkFromSrc = true;
    484       LT = GlobalValue::ExternalLinkage;
    485     }
    486   } else {
    487     assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
    488             Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
    489            (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
    490             Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
    491            "Unexpected linkage type!");
    492     return emitError("Linking globals named '" + Src->getName() +
    493                  "': symbol multiply defined!");
    494   }
    495 
    496   // Check visibility
    497   if (Src->getVisibility() != Dest->getVisibility() &&
    498       !SrcIsDeclaration && !DestIsDeclaration &&
    499       !Src->hasAvailableExternallyLinkage() &&
    500       !Dest->hasAvailableExternallyLinkage())
    501     return emitError("Linking globals named '" + Src->getName() +
    502                    "': symbols have different visibilities!");
    503   return false;
    504 }
    505 
    506 /// computeTypeMapping - Loop over all of the linked values to compute type
    507 /// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
    508 /// we have two struct types 'Foo' but one got renamed when the module was
    509 /// loaded into the same LLVMContext.
    510 void ModuleLinker::computeTypeMapping() {
    511   // Incorporate globals.
    512   for (Module::global_iterator I = SrcM->global_begin(),
    513        E = SrcM->global_end(); I != E; ++I) {
    514     GlobalValue *DGV = getLinkedToGlobal(I);
    515     if (DGV == 0) continue;
    516 
    517     if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
    518       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    519       continue;
    520     }
    521 
    522     // Unify the element type of appending arrays.
    523     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    524     ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
    525     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
    526   }
    527 
    528   // Incorporate functions.
    529   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
    530     if (GlobalValue *DGV = getLinkedToGlobal(I))
    531       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    532   }
    533 
    534   // Don't bother incorporating aliases, they aren't generally typed well.
    535 
    536   // Now that we have discovered all of the type equivalences, get a body for
    537   // any 'opaque' types in the dest module that are now resolved.
    538   TypeMap.linkDefinedTypeBodies();
    539 }
    540 
    541 /// linkAppendingVarProto - If there were any appending global variables, link
    542 /// them together now.  Return true on error.
    543 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
    544                                          GlobalVariable *SrcGV) {
    545 
    546   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    547     return emitError("Linking globals named '" + SrcGV->getName() +
    548            "': can only link appending global with another appending global!");
    549 
    550   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
    551   ArrayType *SrcTy =
    552     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
    553   Type *EltTy = DstTy->getElementType();
    554 
    555   // Check to see that they two arrays agree on type.
    556   if (EltTy != SrcTy->getElementType())
    557     return emitError("Appending variables with different element types!");
    558   if (DstGV->isConstant() != SrcGV->isConstant())
    559     return emitError("Appending variables linked with different const'ness!");
    560 
    561   if (DstGV->getAlignment() != SrcGV->getAlignment())
    562     return emitError(
    563              "Appending variables with different alignment need to be linked!");
    564 
    565   if (DstGV->getVisibility() != SrcGV->getVisibility())
    566     return emitError(
    567             "Appending variables with different visibility need to be linked!");
    568 
    569   if (DstGV->getSection() != SrcGV->getSection())
    570     return emitError(
    571           "Appending variables with different section name need to be linked!");
    572 
    573   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
    574   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
    575 
    576   // Create the new global variable.
    577   GlobalVariable *NG =
    578     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
    579                        DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
    580                        DstGV->isThreadLocal(),
    581                        DstGV->getType()->getAddressSpace());
    582 
    583   // Propagate alignment, visibility and section info.
    584   CopyGVAttributes(NG, DstGV);
    585 
    586   AppendingVarInfo AVI;
    587   AVI.NewGV = NG;
    588   AVI.DstInit = DstGV->getInitializer();
    589   AVI.SrcInit = SrcGV->getInitializer();
    590   AppendingVars.push_back(AVI);
    591 
    592   // Replace any uses of the two global variables with uses of the new
    593   // global.
    594   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
    595 
    596   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
    597   DstGV->eraseFromParent();
    598 
    599   // Zap the initializer in the source variable so we don't try to link it.
    600   SrcGV->setInitializer(0);
    601   SrcGV->setLinkage(GlobalValue::ExternalLinkage);
    602   return false;
    603 }
    604 
    605 /// linkGlobalProto - Loop through the global variables in the src module and
    606 /// merge them into the dest module.
    607 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
    608   GlobalValue *DGV = getLinkedToGlobal(SGV);
    609 
    610   if (DGV) {
    611     // Concatenation of appending linkage variables is magic and handled later.
    612     if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
    613       return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
    614 
    615     // Determine whether linkage of these two globals follows the source
    616     // module's definition or the destination module's definition.
    617     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    618     bool LinkFromSrc = false;
    619     if (getLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc))
    620       return true;
    621 
    622     // If we're not linking from the source, then keep the definition that we
    623     // have.
    624     if (!LinkFromSrc) {
    625       // Special case for const propagation.
    626       if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
    627         if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
    628           DGVar->setConstant(true);
    629 
    630       // Set calculated linkage.
    631       DGV->setLinkage(NewLinkage);
    632 
    633       // Make sure to remember this mapping.
    634       ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
    635 
    636       // Destroy the source global's initializer (and convert it to a prototype)
    637       // so that we don't attempt to copy it over when processing global
    638       // initializers.
    639       SGV->setInitializer(0);
    640       SGV->setLinkage(GlobalValue::ExternalLinkage);
    641       return false;
    642     }
    643   }
    644 
    645   // No linking to be performed or linking from the source: simply create an
    646   // identical version of the symbol over in the dest module... the
    647   // initializer will be filled in later by LinkGlobalInits.
    648   GlobalVariable *NewDGV =
    649     new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
    650                        SGV->isConstant(), SGV->getLinkage(), /*init*/0,
    651                        SGV->getName(), /*insertbefore*/0,
    652                        SGV->isThreadLocal(),
    653                        SGV->getType()->getAddressSpace());
    654   // Propagate alignment, visibility and section info.
    655   CopyGVAttributes(NewDGV, SGV);
    656 
    657   if (DGV) {
    658     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
    659     DGV->eraseFromParent();
    660   }
    661 
    662   // Make sure to remember this mapping.
    663   ValueMap[SGV] = NewDGV;
    664   return false;
    665 }
    666 
    667 /// linkFunctionProto - Link the function in the source module into the
    668 /// destination module if needed, setting up mapping information.
    669 bool ModuleLinker::linkFunctionProto(Function *SF) {
    670   GlobalValue *DGV = getLinkedToGlobal(SF);
    671 
    672   if (DGV) {
    673     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    674     bool LinkFromSrc = false;
    675     if (getLinkageResult(DGV, SF, NewLinkage, LinkFromSrc))
    676       return true;
    677 
    678     if (!LinkFromSrc) {
    679       // Set calculated linkage
    680       DGV->setLinkage(NewLinkage);
    681 
    682       // Make sure to remember this mapping.
    683       ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
    684 
    685       // Remove the body from the source module so we don't attempt to remap it.
    686       SF->deleteBody();
    687       return false;
    688     }
    689   }
    690 
    691   // If there is no linkage to be performed or we are linking from the source,
    692   // bring SF over.
    693   Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
    694                                      SF->getLinkage(), SF->getName(), DstM);
    695   CopyGVAttributes(NewDF, SF);
    696 
    697   if (DGV) {
    698     // Any uses of DF need to change to NewDF, with cast.
    699     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
    700     DGV->eraseFromParent();
    701   }
    702 
    703   ValueMap[SF] = NewDF;
    704   return false;
    705 }
    706 
    707 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
    708 /// source module.
    709 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
    710   GlobalValue *DGV = getLinkedToGlobal(SGA);
    711 
    712   if (DGV) {
    713     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    714     bool LinkFromSrc = false;
    715     if (getLinkageResult(DGV, SGA, NewLinkage, LinkFromSrc))
    716       return true;
    717 
    718     if (!LinkFromSrc) {
    719       // Set calculated linkage.
    720       DGV->setLinkage(NewLinkage);
    721 
    722       // Make sure to remember this mapping.
    723       ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
    724 
    725       // Remove the body from the source module so we don't attempt to remap it.
    726       SGA->setAliasee(0);
    727       return false;
    728     }
    729   }
    730 
    731   // If there is no linkage to be performed or we're linking from the source,
    732   // bring over SGA.
    733   GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
    734                                        SGA->getLinkage(), SGA->getName(),
    735                                        /*aliasee*/0, DstM);
    736   CopyGVAttributes(NewDA, SGA);
    737 
    738   if (DGV) {
    739     // Any uses of DGV need to change to NewDA, with cast.
    740     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
    741     DGV->eraseFromParent();
    742   }
    743 
    744   ValueMap[SGA] = NewDA;
    745   return false;
    746 }
    747 
    748 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
    749   // Merge the initializer.
    750   SmallVector<Constant*, 16> Elements;
    751   if (ConstantArray *I = dyn_cast<ConstantArray>(AVI.DstInit)) {
    752     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    753       Elements.push_back(I->getOperand(i));
    754   } else {
    755     assert(isa<ConstantAggregateZero>(AVI.DstInit));
    756     ArrayType *DstAT = cast<ArrayType>(AVI.DstInit->getType());
    757     Type *EltTy = DstAT->getElementType();
    758     Elements.append(DstAT->getNumElements(), Constant::getNullValue(EltTy));
    759   }
    760 
    761   Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
    762   if (const ConstantArray *I = dyn_cast<ConstantArray>(SrcInit)) {
    763     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    764       Elements.push_back(I->getOperand(i));
    765   } else {
    766     assert(isa<ConstantAggregateZero>(SrcInit));
    767     ArrayType *SrcAT = cast<ArrayType>(SrcInit->getType());
    768     Type *EltTy = SrcAT->getElementType();
    769     Elements.append(SrcAT->getNumElements(), Constant::getNullValue(EltTy));
    770   }
    771   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
    772   AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
    773 }
    774 
    775 
    776 // linkGlobalInits - Update the initializers in the Dest module now that all
    777 // globals that may be referenced are in Dest.
    778 void ModuleLinker::linkGlobalInits() {
    779   // Loop over all of the globals in the src module, mapping them over as we go
    780   for (Module::const_global_iterator I = SrcM->global_begin(),
    781        E = SrcM->global_end(); I != E; ++I) {
    782     if (!I->hasInitializer()) continue;      // Only process initialized GV's.
    783 
    784     // Grab destination global variable.
    785     GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
    786     // Figure out what the initializer looks like in the dest module.
    787     DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
    788                                  RF_None, &TypeMap));
    789   }
    790 }
    791 
    792 // linkFunctionBody - Copy the source function over into the dest function and
    793 // fix up references to values.  At this point we know that Dest is an external
    794 // function, and that Src is not.
    795 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
    796   assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
    797 
    798   // Go through and convert function arguments over, remembering the mapping.
    799   Function::arg_iterator DI = Dst->arg_begin();
    800   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    801        I != E; ++I, ++DI) {
    802     DI->setName(I->getName());  // Copy the name over.
    803 
    804     // Add a mapping to our mapping.
    805     ValueMap[I] = DI;
    806   }
    807 
    808   // Splice the body of the source function into the dest function.
    809   Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
    810 
    811   // At this point, all of the instructions and values of the function are now
    812   // copied over.  The only problem is that they are still referencing values in
    813   // the Source function as operands.  Loop through all of the operands of the
    814   // functions and patch them up to point to the local versions.
    815   for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
    816     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    817       RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
    818 
    819   // There is no need to map the arguments anymore.
    820   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    821        I != E; ++I)
    822     ValueMap.erase(I);
    823 }
    824 
    825 
    826 void ModuleLinker::linkAliasBodies() {
    827   for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
    828        I != E; ++I)
    829     if (Constant *Aliasee = I->getAliasee()) {
    830       GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
    831       DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
    832     }
    833 }
    834 
    835 /// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
    836 /// module.
    837 void ModuleLinker::linkNamedMDNodes() {
    838   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
    839        E = SrcM->named_metadata_end(); I != E; ++I) {
    840     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
    841     // Add Src elements into Dest node.
    842     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    843       DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
    844                                    RF_None, &TypeMap));
    845   }
    846 }
    847 
    848 bool ModuleLinker::run() {
    849   assert(DstM && "Null Destination module");
    850   assert(SrcM && "Null Source Module");
    851 
    852   // Inherit the target data from the source module if the destination module
    853   // doesn't have one already.
    854   if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
    855     DstM->setDataLayout(SrcM->getDataLayout());
    856 
    857   // Copy the target triple from the source to dest if the dest's is empty.
    858   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
    859     DstM->setTargetTriple(SrcM->getTargetTriple());
    860 
    861   if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
    862       SrcM->getDataLayout() != DstM->getDataLayout())
    863     errs() << "WARNING: Linking two modules of different data layouts!\n";
    864   if (!SrcM->getTargetTriple().empty() &&
    865       DstM->getTargetTriple() != SrcM->getTargetTriple()) {
    866     errs() << "WARNING: Linking two modules of different target triples: ";
    867     if (!SrcM->getModuleIdentifier().empty())
    868       errs() << SrcM->getModuleIdentifier() << ": ";
    869     errs() << "'" << SrcM->getTargetTriple() << "' and '"
    870            << DstM->getTargetTriple() << "'\n";
    871   }
    872 
    873   // Append the module inline asm string.
    874   if (!SrcM->getModuleInlineAsm().empty()) {
    875     if (DstM->getModuleInlineAsm().empty())
    876       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
    877     else
    878       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
    879                                SrcM->getModuleInlineAsm());
    880   }
    881 
    882   // Update the destination module's dependent libraries list with the libraries
    883   // from the source module. There's no opportunity for duplicates here as the
    884   // Module ensures that duplicate insertions are discarded.
    885   for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
    886        SI != SE; ++SI)
    887     DstM->addLibrary(*SI);
    888 
    889   // If the source library's module id is in the dependent library list of the
    890   // destination library, remove it since that module is now linked in.
    891   StringRef ModuleId = SrcM->getModuleIdentifier();
    892   if (!ModuleId.empty())
    893     DstM->removeLibrary(sys::path::stem(ModuleId));
    894 
    895 
    896   // Loop over all of the linked values to compute type mappings.
    897   computeTypeMapping();
    898 
    899   // Remap all of the named mdnoes in Src into the DstM module. We do this
    900   // after linking GlobalValues so that MDNodes that reference GlobalValues
    901   // are properly remapped.
    902   linkNamedMDNodes();
    903 
    904   // Insert all of the globals in src into the DstM module... without linking
    905   // initializers (which could refer to functions not yet mapped over).
    906   for (Module::global_iterator I = SrcM->global_begin(),
    907        E = SrcM->global_end(); I != E; ++I)
    908     if (linkGlobalProto(I))
    909       return true;
    910 
    911   // Link the functions together between the two modules, without doing function
    912   // bodies... this just adds external function prototypes to the DstM
    913   // function...  We do this so that when we begin processing function bodies,
    914   // all of the global values that may be referenced are available in our
    915   // ValueMap.
    916   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
    917     if (linkFunctionProto(I))
    918       return true;
    919 
    920   // If there were any aliases, link them now.
    921   for (Module::alias_iterator I = SrcM->alias_begin(),
    922        E = SrcM->alias_end(); I != E; ++I)
    923     if (linkAliasProto(I))
    924       return true;
    925 
    926   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
    927     linkAppendingVarInit(AppendingVars[i]);
    928 
    929   // Update the initializers in the DstM module now that all globals that may
    930   // be referenced are in DstM.
    931   linkGlobalInits();
    932 
    933   // Link in the function bodies that are defined in the source module into
    934   // DstM.
    935   for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
    936     if (SF->isDeclaration()) continue;      // No body if function is external.
    937 
    938     linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
    939   }
    940 
    941   // Resolve all uses of aliases with aliasees.
    942   linkAliasBodies();
    943 
    944   // Now that all of the types from the source are used, resolve any structs
    945   // copied over to the dest that didn't exist there.
    946   TypeMap.linkDefinedTypeBodies();
    947 
    948   return false;
    949 }
    950 
    951 //===----------------------------------------------------------------------===//
    952 // LinkModules entrypoint.
    953 //===----------------------------------------------------------------------===//
    954 
    955 // LinkModules - This function links two modules together, with the resulting
    956 // left module modified to be the composite of the two input modules.  If an
    957 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
    958 // the problem.  Upon failure, the Dest module could be in a modified state, and
    959 // shouldn't be relied on to be consistent.
    960 bool Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
    961   ModuleLinker TheLinker(Dest, Src);
    962   if (TheLinker.run()) {
    963     if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
    964     return true;
    965   }
    966 
    967   return false;
    968 }
    969