Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombine.h - Main InstCombine pass definition -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef INSTCOMBINE_INSTCOMBINE_H
     11 #define INSTCOMBINE_INSTCOMBINE_H
     12 
     13 #include "InstCombineWorklist.h"
     14 #include "llvm/Operator.h"
     15 #include "llvm/Pass.h"
     16 #include "llvm/Analysis/ValueTracking.h"
     17 #include "llvm/Support/IRBuilder.h"
     18 #include "llvm/Support/InstVisitor.h"
     19 #include "llvm/Support/TargetFolder.h"
     20 
     21 namespace llvm {
     22   class CallSite;
     23   class TargetData;
     24   class DbgDeclareInst;
     25   class MemIntrinsic;
     26   class MemSetInst;
     27 
     28 /// SelectPatternFlavor - We can match a variety of different patterns for
     29 /// select operations.
     30 enum SelectPatternFlavor {
     31   SPF_UNKNOWN = 0,
     32   SPF_SMIN, SPF_UMIN,
     33   SPF_SMAX, SPF_UMAX
     34   //SPF_ABS - TODO.
     35 };
     36 
     37 /// getComplexity:  Assign a complexity or rank value to LLVM Values...
     38 ///   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
     39 static inline unsigned getComplexity(Value *V) {
     40   if (isa<Instruction>(V)) {
     41     if (BinaryOperator::isNeg(V) ||
     42         BinaryOperator::isFNeg(V) ||
     43         BinaryOperator::isNot(V))
     44       return 3;
     45     return 4;
     46   }
     47   if (isa<Argument>(V)) return 3;
     48   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
     49 }
     50 
     51 
     52 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
     53 /// just like the normal insertion helper, but also adds any new instructions
     54 /// to the instcombine worklist.
     55 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
     56     : public IRBuilderDefaultInserter<true> {
     57   InstCombineWorklist &Worklist;
     58 public:
     59   InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
     60 
     61   void InsertHelper(Instruction *I, const Twine &Name,
     62                     BasicBlock *BB, BasicBlock::iterator InsertPt) const {
     63     IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
     64     Worklist.Add(I);
     65   }
     66 };
     67 
     68 /// InstCombiner - The -instcombine pass.
     69 class LLVM_LIBRARY_VISIBILITY InstCombiner
     70                              : public FunctionPass,
     71                                public InstVisitor<InstCombiner, Instruction*> {
     72   TargetData *TD;
     73   bool MadeIRChange;
     74 public:
     75   /// Worklist - All of the instructions that need to be simplified.
     76   InstCombineWorklist Worklist;
     77 
     78   /// Builder - This is an IRBuilder that automatically inserts new
     79   /// instructions into the worklist when they are created.
     80   typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
     81   BuilderTy *Builder;
     82 
     83   static char ID; // Pass identification, replacement for typeid
     84   InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
     85     initializeInstCombinerPass(*PassRegistry::getPassRegistry());
     86   }
     87 
     88 public:
     89   virtual bool runOnFunction(Function &F);
     90 
     91   bool DoOneIteration(Function &F, unsigned ItNum);
     92 
     93   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     94 
     95   TargetData *getTargetData() const { return TD; }
     96 
     97   // Visitation implementation - Implement instruction combining for different
     98   // instruction types.  The semantics are as follows:
     99   // Return Value:
    100   //    null        - No change was made
    101   //     I          - Change was made, I is still valid, I may be dead though
    102   //   otherwise    - Change was made, replace I with returned instruction
    103   //
    104   Instruction *visitAdd(BinaryOperator &I);
    105   Instruction *visitFAdd(BinaryOperator &I);
    106   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
    107   Instruction *visitSub(BinaryOperator &I);
    108   Instruction *visitFSub(BinaryOperator &I);
    109   Instruction *visitMul(BinaryOperator &I);
    110   Instruction *visitFMul(BinaryOperator &I);
    111   Instruction *visitURem(BinaryOperator &I);
    112   Instruction *visitSRem(BinaryOperator &I);
    113   Instruction *visitFRem(BinaryOperator &I);
    114   bool SimplifyDivRemOfSelect(BinaryOperator &I);
    115   Instruction *commonRemTransforms(BinaryOperator &I);
    116   Instruction *commonIRemTransforms(BinaryOperator &I);
    117   Instruction *commonDivTransforms(BinaryOperator &I);
    118   Instruction *commonIDivTransforms(BinaryOperator &I);
    119   Instruction *visitUDiv(BinaryOperator &I);
    120   Instruction *visitSDiv(BinaryOperator &I);
    121   Instruction *visitFDiv(BinaryOperator &I);
    122   Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    123   Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    124   Instruction *visitAnd(BinaryOperator &I);
    125   Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    126   Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    127   Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
    128                                    Value *A, Value *B, Value *C);
    129   Instruction *visitOr (BinaryOperator &I);
    130   Instruction *visitXor(BinaryOperator &I);
    131   Instruction *visitShl(BinaryOperator &I);
    132   Instruction *visitAShr(BinaryOperator &I);
    133   Instruction *visitLShr(BinaryOperator &I);
    134   Instruction *commonShiftTransforms(BinaryOperator &I);
    135   Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
    136                                     Constant *RHSC);
    137   Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
    138                                             GlobalVariable *GV, CmpInst &ICI,
    139                                             ConstantInt *AndCst = 0);
    140   Instruction *visitFCmpInst(FCmpInst &I);
    141   Instruction *visitICmpInst(ICmpInst &I);
    142   Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
    143   Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
    144                                               Instruction *LHS,
    145                                               ConstantInt *RHS);
    146   Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    147                               ConstantInt *DivRHS);
    148   Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
    149                               ConstantInt *DivRHS);
    150   Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
    151                                 ICmpInst::Predicate Pred, Value *TheAdd);
    152   Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    153                            ICmpInst::Predicate Cond, Instruction &I);
    154   Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
    155                                    BinaryOperator &I);
    156   Instruction *commonCastTransforms(CastInst &CI);
    157   Instruction *commonPointerCastTransforms(CastInst &CI);
    158   Instruction *visitTrunc(TruncInst &CI);
    159   Instruction *visitZExt(ZExtInst &CI);
    160   Instruction *visitSExt(SExtInst &CI);
    161   Instruction *visitFPTrunc(FPTruncInst &CI);
    162   Instruction *visitFPExt(CastInst &CI);
    163   Instruction *visitFPToUI(FPToUIInst &FI);
    164   Instruction *visitFPToSI(FPToSIInst &FI);
    165   Instruction *visitUIToFP(CastInst &CI);
    166   Instruction *visitSIToFP(CastInst &CI);
    167   Instruction *visitPtrToInt(PtrToIntInst &CI);
    168   Instruction *visitIntToPtr(IntToPtrInst &CI);
    169   Instruction *visitBitCast(BitCastInst &CI);
    170   Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    171                               Instruction *FI);
    172   Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
    173   Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
    174                             Value *A, Value *B, Instruction &Outer,
    175                             SelectPatternFlavor SPF2, Value *C);
    176   Instruction *visitSelectInst(SelectInst &SI);
    177   Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
    178   Instruction *visitCallInst(CallInst &CI);
    179   Instruction *visitInvokeInst(InvokeInst &II);
    180 
    181   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
    182   Instruction *visitPHINode(PHINode &PN);
    183   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    184   Instruction *visitAllocaInst(AllocaInst &AI);
    185   Instruction *visitMalloc(Instruction &FI);
    186   Instruction *visitFree(CallInst &FI);
    187   Instruction *visitLoadInst(LoadInst &LI);
    188   Instruction *visitStoreInst(StoreInst &SI);
    189   Instruction *visitBranchInst(BranchInst &BI);
    190   Instruction *visitSwitchInst(SwitchInst &SI);
    191   Instruction *visitInsertElementInst(InsertElementInst &IE);
    192   Instruction *visitExtractElementInst(ExtractElementInst &EI);
    193   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
    194   Instruction *visitExtractValueInst(ExtractValueInst &EV);
    195 
    196   // visitInstruction - Specify what to return for unhandled instructions...
    197   Instruction *visitInstruction(Instruction &I) { return 0; }
    198 
    199 private:
    200   bool ShouldChangeType(Type *From, Type *To) const;
    201   Value *dyn_castNegVal(Value *V) const;
    202   Value *dyn_castFNegVal(Value *V) const;
    203   Type *FindElementAtOffset(Type *Ty, int64_t Offset,
    204                                   SmallVectorImpl<Value*> &NewIndices);
    205   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
    206 
    207   /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    208   /// results in any code being generated and is interesting to optimize out. If
    209   /// the cast can be eliminated by some other simple transformation, we prefer
    210   /// to do the simplification first.
    211   bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
    212                           Type *Ty);
    213 
    214   Instruction *visitCallSite(CallSite CS);
    215   Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
    216   bool transformConstExprCastCall(CallSite CS);
    217   Instruction *transformCallThroughTrampoline(CallSite CS);
    218   Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    219                                  bool DoXform = true);
    220   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
    221   bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
    222   Value *EmitGEPOffset(User *GEP);
    223 
    224 public:
    225   // InsertNewInstBefore - insert an instruction New before instruction Old
    226   // in the program.  Add the new instruction to the worklist.
    227   //
    228   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
    229     assert(New && New->getParent() == 0 &&
    230            "New instruction already inserted into a basic block!");
    231     BasicBlock *BB = Old.getParent();
    232     BB->getInstList().insert(&Old, New);  // Insert inst
    233     Worklist.Add(New);
    234     return New;
    235   }
    236 
    237   // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
    238   // debug loc.
    239   //
    240   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
    241     New->setDebugLoc(Old.getDebugLoc());
    242     return InsertNewInstBefore(New, Old);
    243   }
    244 
    245   // ReplaceInstUsesWith - This method is to be used when an instruction is
    246   // found to be dead, replacable with another preexisting expression.  Here
    247   // we add all uses of I to the worklist, replace all uses of I with the new
    248   // value, then return I, so that the inst combiner will know that I was
    249   // modified.
    250   //
    251   Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
    252     Worklist.AddUsersToWorkList(I);   // Add all modified instrs to worklist.
    253 
    254     // If we are replacing the instruction with itself, this must be in a
    255     // segment of unreachable code, so just clobber the instruction.
    256     if (&I == V)
    257       V = UndefValue::get(I.getType());
    258 
    259     DEBUG(errs() << "IC: Replacing " << I << "\n"
    260                     "    with " << *V << '\n');
    261 
    262     I.replaceAllUsesWith(V);
    263     return &I;
    264   }
    265 
    266   // EraseInstFromFunction - When dealing with an instruction that has side
    267   // effects or produces a void value, we can't rely on DCE to delete the
    268   // instruction.  Instead, visit methods should return the value returned by
    269   // this function.
    270   Instruction *EraseInstFromFunction(Instruction &I) {
    271     DEBUG(errs() << "IC: ERASE " << I << '\n');
    272 
    273     assert(I.use_empty() && "Cannot erase instruction that is used!");
    274     // Make sure that we reprocess all operands now that we reduced their
    275     // use counts.
    276     if (I.getNumOperands() < 8) {
    277       for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
    278         if (Instruction *Op = dyn_cast<Instruction>(*i))
    279           Worklist.Add(Op);
    280     }
    281     Worklist.Remove(&I);
    282     I.eraseFromParent();
    283     MadeIRChange = true;
    284     return 0;  // Don't do anything with FI
    285   }
    286 
    287   void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
    288                          APInt &KnownOne, unsigned Depth = 0) const {
    289     return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
    290   }
    291 
    292   bool MaskedValueIsZero(Value *V, const APInt &Mask,
    293                          unsigned Depth = 0) const {
    294     return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
    295   }
    296   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
    297     return llvm::ComputeNumSignBits(Op, TD, Depth);
    298   }
    299 
    300 private:
    301 
    302   /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
    303   /// operators which are associative or commutative.
    304   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
    305 
    306   /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
    307   /// which some other binary operation distributes over either by factorizing
    308   /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
    309   /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
    310   /// a win).  Returns the simplified value, or null if it didn't simplify.
    311   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
    312 
    313   /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
    314   /// based on the demanded bits.
    315   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
    316                                  APInt& KnownZero, APInt& KnownOne,
    317                                  unsigned Depth);
    318   bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
    319                             APInt& KnownZero, APInt& KnownOne,
    320                             unsigned Depth=0);
    321 
    322   /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
    323   /// SimplifyDemandedBits knows about.  See if the instruction has any
    324   /// properties that allow us to simplify its operands.
    325   bool SimplifyDemandedInstructionBits(Instruction &Inst);
    326 
    327   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
    328                                     APInt& UndefElts, unsigned Depth = 0);
    329 
    330   // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
    331   // which has a PHI node as operand #0, see if we can fold the instruction
    332   // into the PHI (which is only possible if all operands to the PHI are
    333   // constants).
    334   //
    335   Instruction *FoldOpIntoPhi(Instruction &I);
    336 
    337   // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
    338   // operator and they all are only used by the PHI, PHI together their
    339   // inputs, and do the operation once, to the result of the PHI.
    340   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
    341   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
    342   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
    343   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
    344 
    345 
    346   Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
    347                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
    348 
    349   Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
    350                             bool isSub, Instruction &I);
    351   Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    352                          bool isSigned, bool Inside);
    353   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
    354   Instruction *MatchBSwap(BinaryOperator &I);
    355   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
    356   Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
    357   Instruction *SimplifyMemSet(MemSetInst *MI);
    358 
    359 
    360   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
    361 };
    362 
    363 
    364 
    365 } // end namespace llvm.
    366 
    367 #endif
    368