Home | History | Annotate | Download | only in Utils
      1 //===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides a template that implements the core algorithm for the
     11 // SSAUpdater and MachineSSAUpdater.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
     16 #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
     17 
     18 namespace llvm {
     19 
     20 template<typename T> class SSAUpdaterTraits;
     21 
     22 template<typename UpdaterT>
     23 class SSAUpdaterImpl {
     24 private:
     25   UpdaterT *Updater;
     26 
     27   typedef SSAUpdaterTraits<UpdaterT> Traits;
     28   typedef typename Traits::BlkT BlkT;
     29   typedef typename Traits::ValT ValT;
     30   typedef typename Traits::PhiT PhiT;
     31 
     32   /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
     33   /// The predecessors of each block are cached here since pred_iterator is
     34   /// slow and we need to iterate over the blocks at least a few times.
     35   class BBInfo {
     36   public:
     37     BlkT *BB;          // Back-pointer to the corresponding block.
     38     ValT AvailableVal; // Value to use in this block.
     39     BBInfo *DefBB;     // Block that defines the available value.
     40     int BlkNum;        // Postorder number.
     41     BBInfo *IDom;      // Immediate dominator.
     42     unsigned NumPreds; // Number of predecessor blocks.
     43     BBInfo **Preds;    // Array[NumPreds] of predecessor blocks.
     44     PhiT *PHITag;      // Marker for existing PHIs that match.
     45 
     46     BBInfo(BlkT *ThisBB, ValT V)
     47       : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
     48       NumPreds(0), Preds(0), PHITag(0) { }
     49   };
     50 
     51   typedef DenseMap<BlkT*, ValT> AvailableValsTy;
     52   AvailableValsTy *AvailableVals;
     53 
     54   SmallVectorImpl<PhiT*> *InsertedPHIs;
     55 
     56   typedef SmallVectorImpl<BBInfo*> BlockListTy;
     57   typedef DenseMap<BlkT*, BBInfo*> BBMapTy;
     58   BBMapTy BBMap;
     59   BumpPtrAllocator Allocator;
     60 
     61 public:
     62   explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
     63                           SmallVectorImpl<PhiT*> *Ins) :
     64     Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
     65 
     66   /// GetValue - Check to see if AvailableVals has an entry for the specified
     67   /// BB and if so, return it.  If not, construct SSA form by first
     68   /// calculating the required placement of PHIs and then inserting new PHIs
     69   /// where needed.
     70   ValT GetValue(BlkT *BB) {
     71     SmallVector<BBInfo*, 100> BlockList;
     72     BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
     73 
     74     // Special case: bail out if BB is unreachable.
     75     if (BlockList.size() == 0) {
     76       ValT V = Traits::GetUndefVal(BB, Updater);
     77       (*AvailableVals)[BB] = V;
     78       return V;
     79     }
     80 
     81     FindDominators(&BlockList, PseudoEntry);
     82     FindPHIPlacement(&BlockList);
     83     FindAvailableVals(&BlockList);
     84 
     85     return BBMap[BB]->DefBB->AvailableVal;
     86   }
     87 
     88   /// BuildBlockList - Starting from the specified basic block, traverse back
     89   /// through its predecessors until reaching blocks with known values.
     90   /// Create BBInfo structures for the blocks and append them to the block
     91   /// list.
     92   BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
     93     SmallVector<BBInfo*, 10> RootList;
     94     SmallVector<BBInfo*, 64> WorkList;
     95 
     96     BBInfo *Info = new (Allocator) BBInfo(BB, 0);
     97     BBMap[BB] = Info;
     98     WorkList.push_back(Info);
     99 
    100     // Search backward from BB, creating BBInfos along the way and stopping
    101     // when reaching blocks that define the value.  Record those defining
    102     // blocks on the RootList.
    103     SmallVector<BlkT*, 10> Preds;
    104     while (!WorkList.empty()) {
    105       Info = WorkList.pop_back_val();
    106       Preds.clear();
    107       Traits::FindPredecessorBlocks(Info->BB, &Preds);
    108       Info->NumPreds = Preds.size();
    109       if (Info->NumPreds == 0)
    110         Info->Preds = 0;
    111       else
    112         Info->Preds = static_cast<BBInfo**>
    113           (Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
    114                               AlignOf<BBInfo*>::Alignment));
    115 
    116       for (unsigned p = 0; p != Info->NumPreds; ++p) {
    117         BlkT *Pred = Preds[p];
    118         // Check if BBMap already has a BBInfo for the predecessor block.
    119         typename BBMapTy::value_type &BBMapBucket =
    120           BBMap.FindAndConstruct(Pred);
    121         if (BBMapBucket.second) {
    122           Info->Preds[p] = BBMapBucket.second;
    123           continue;
    124         }
    125 
    126         // Create a new BBInfo for the predecessor.
    127         ValT PredVal = AvailableVals->lookup(Pred);
    128         BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
    129         BBMapBucket.second = PredInfo;
    130         Info->Preds[p] = PredInfo;
    131 
    132         if (PredInfo->AvailableVal) {
    133           RootList.push_back(PredInfo);
    134           continue;
    135         }
    136         WorkList.push_back(PredInfo);
    137       }
    138     }
    139 
    140     // Now that we know what blocks are backwards-reachable from the starting
    141     // block, do a forward depth-first traversal to assign postorder numbers
    142     // to those blocks.
    143     BBInfo *PseudoEntry = new (Allocator) BBInfo(0, 0);
    144     unsigned BlkNum = 1;
    145 
    146     // Initialize the worklist with the roots from the backward traversal.
    147     while (!RootList.empty()) {
    148       Info = RootList.pop_back_val();
    149       Info->IDom = PseudoEntry;
    150       Info->BlkNum = -1;
    151       WorkList.push_back(Info);
    152     }
    153 
    154     while (!WorkList.empty()) {
    155       Info = WorkList.back();
    156 
    157       if (Info->BlkNum == -2) {
    158         // All the successors have been handled; assign the postorder number.
    159         Info->BlkNum = BlkNum++;
    160         // If not a root, put it on the BlockList.
    161         if (!Info->AvailableVal)
    162           BlockList->push_back(Info);
    163         WorkList.pop_back();
    164         continue;
    165       }
    166 
    167       // Leave this entry on the worklist, but set its BlkNum to mark that its
    168       // successors have been put on the worklist.  When it returns to the top
    169       // the list, after handling its successors, it will be assigned a
    170       // number.
    171       Info->BlkNum = -2;
    172 
    173       // Add unvisited successors to the work list.
    174       for (typename Traits::BlkSucc_iterator SI =
    175              Traits::BlkSucc_begin(Info->BB),
    176              E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
    177         BBInfo *SuccInfo = BBMap[*SI];
    178         if (!SuccInfo || SuccInfo->BlkNum)
    179           continue;
    180         SuccInfo->BlkNum = -1;
    181         WorkList.push_back(SuccInfo);
    182       }
    183     }
    184     PseudoEntry->BlkNum = BlkNum;
    185     return PseudoEntry;
    186   }
    187 
    188   /// IntersectDominators - This is the dataflow lattice "meet" operation for
    189   /// finding dominators.  Given two basic blocks, it walks up the dominator
    190   /// tree until it finds a common dominator of both.  It uses the postorder
    191   /// number of the blocks to determine how to do that.
    192   BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
    193     while (Blk1 != Blk2) {
    194       while (Blk1->BlkNum < Blk2->BlkNum) {
    195         Blk1 = Blk1->IDom;
    196         if (!Blk1)
    197           return Blk2;
    198       }
    199       while (Blk2->BlkNum < Blk1->BlkNum) {
    200         Blk2 = Blk2->IDom;
    201         if (!Blk2)
    202           return Blk1;
    203       }
    204     }
    205     return Blk1;
    206   }
    207 
    208   /// FindDominators - Calculate the dominator tree for the subset of the CFG
    209   /// corresponding to the basic blocks on the BlockList.  This uses the
    210   /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
    211   /// and Kennedy, published in Software--Practice and Experience, 2001,
    212   /// 4:1-10.  Because the CFG subset does not include any edges leading into
    213   /// blocks that define the value, the results are not the usual dominator
    214   /// tree.  The CFG subset has a single pseudo-entry node with edges to a set
    215   /// of root nodes for blocks that define the value.  The dominators for this
    216   /// subset CFG are not the standard dominators but they are adequate for
    217   /// placing PHIs within the subset CFG.
    218   void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
    219     bool Changed;
    220     do {
    221       Changed = false;
    222       // Iterate over the list in reverse order, i.e., forward on CFG edges.
    223       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    224              E = BlockList->rend(); I != E; ++I) {
    225         BBInfo *Info = *I;
    226         BBInfo *NewIDom = 0;
    227 
    228         // Iterate through the block's predecessors.
    229         for (unsigned p = 0; p != Info->NumPreds; ++p) {
    230           BBInfo *Pred = Info->Preds[p];
    231 
    232           // Treat an unreachable predecessor as a definition with 'undef'.
    233           if (Pred->BlkNum == 0) {
    234             Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
    235             (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
    236             Pred->DefBB = Pred;
    237             Pred->BlkNum = PseudoEntry->BlkNum;
    238             PseudoEntry->BlkNum++;
    239           }
    240 
    241           if (!NewIDom)
    242             NewIDom = Pred;
    243           else
    244             NewIDom = IntersectDominators(NewIDom, Pred);
    245         }
    246 
    247         // Check if the IDom value has changed.
    248         if (NewIDom && NewIDom != Info->IDom) {
    249           Info->IDom = NewIDom;
    250           Changed = true;
    251         }
    252       }
    253     } while (Changed);
    254   }
    255 
    256   /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
    257   /// any blocks containing definitions of the value.  If one is found, then
    258   /// the successor of Pred is in the dominance frontier for the definition,
    259   /// and this function returns true.
    260   bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
    261     for (; Pred != IDom; Pred = Pred->IDom) {
    262       if (Pred->DefBB == Pred)
    263         return true;
    264     }
    265     return false;
    266   }
    267 
    268   /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
    269   /// of the known definitions.  Iteratively add PHIs in the dom frontiers
    270   /// until nothing changes.  Along the way, keep track of the nearest
    271   /// dominating definitions for non-PHI blocks.
    272   void FindPHIPlacement(BlockListTy *BlockList) {
    273     bool Changed;
    274     do {
    275       Changed = false;
    276       // Iterate over the list in reverse order, i.e., forward on CFG edges.
    277       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    278              E = BlockList->rend(); I != E; ++I) {
    279         BBInfo *Info = *I;
    280 
    281         // If this block already needs a PHI, there is nothing to do here.
    282         if (Info->DefBB == Info)
    283           continue;
    284 
    285         // Default to use the same def as the immediate dominator.
    286         BBInfo *NewDefBB = Info->IDom->DefBB;
    287         for (unsigned p = 0; p != Info->NumPreds; ++p) {
    288           if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
    289             // Need a PHI here.
    290             NewDefBB = Info;
    291             break;
    292           }
    293         }
    294 
    295         // Check if anything changed.
    296         if (NewDefBB != Info->DefBB) {
    297           Info->DefBB = NewDefBB;
    298           Changed = true;
    299         }
    300       }
    301     } while (Changed);
    302   }
    303 
    304   /// FindAvailableVal - If this block requires a PHI, first check if an
    305   /// existing PHI matches the PHI placement and reaching definitions computed
    306   /// earlier, and if not, create a new PHI.  Visit all the block's
    307   /// predecessors to calculate the available value for each one and fill in
    308   /// the incoming values for a new PHI.
    309   void FindAvailableVals(BlockListTy *BlockList) {
    310     // Go through the worklist in forward order (i.e., backward through the CFG)
    311     // and check if existing PHIs can be used.  If not, create empty PHIs where
    312     // they are needed.
    313     for (typename BlockListTy::iterator I = BlockList->begin(),
    314            E = BlockList->end(); I != E; ++I) {
    315       BBInfo *Info = *I;
    316       // Check if there needs to be a PHI in BB.
    317       if (Info->DefBB != Info)
    318         continue;
    319 
    320       // Look for an existing PHI.
    321       FindExistingPHI(Info->BB, BlockList);
    322       if (Info->AvailableVal)
    323         continue;
    324 
    325       ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
    326       Info->AvailableVal = PHI;
    327       (*AvailableVals)[Info->BB] = PHI;
    328     }
    329 
    330     // Now go back through the worklist in reverse order to fill in the
    331     // arguments for any new PHIs added in the forward traversal.
    332     for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    333            E = BlockList->rend(); I != E; ++I) {
    334       BBInfo *Info = *I;
    335 
    336       if (Info->DefBB != Info) {
    337         // Record the available value at join nodes to speed up subsequent
    338         // uses of this SSAUpdater for the same value.
    339         if (Info->NumPreds > 1)
    340           (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
    341         continue;
    342       }
    343 
    344       // Check if this block contains a newly added PHI.
    345       PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
    346       if (!PHI)
    347         continue;
    348 
    349       // Iterate through the block's predecessors.
    350       for (unsigned p = 0; p != Info->NumPreds; ++p) {
    351         BBInfo *PredInfo = Info->Preds[p];
    352         BlkT *Pred = PredInfo->BB;
    353         // Skip to the nearest preceding definition.
    354         if (PredInfo->DefBB != PredInfo)
    355           PredInfo = PredInfo->DefBB;
    356         Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
    357       }
    358 
    359       DEBUG(dbgs() << "  Inserted PHI: " << *PHI << "\n");
    360 
    361       // If the client wants to know about all new instructions, tell it.
    362       if (InsertedPHIs) InsertedPHIs->push_back(PHI);
    363     }
    364   }
    365 
    366   /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
    367   /// them match what is needed.
    368   void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
    369     for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
    370          BBI != BBE; ++BBI) {
    371       PhiT *SomePHI = Traits::InstrIsPHI(BBI);
    372       if (!SomePHI)
    373         break;
    374       if (CheckIfPHIMatches(SomePHI)) {
    375         RecordMatchingPHI(SomePHI);
    376         break;
    377       }
    378       // Match failed: clear all the PHITag values.
    379       for (typename BlockListTy::iterator I = BlockList->begin(),
    380              E = BlockList->end(); I != E; ++I)
    381         (*I)->PHITag = 0;
    382     }
    383   }
    384 
    385   /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
    386   /// in the BBMap.
    387   bool CheckIfPHIMatches(PhiT *PHI) {
    388     SmallVector<PhiT*, 20> WorkList;
    389     WorkList.push_back(PHI);
    390 
    391     // Mark that the block containing this PHI has been visited.
    392     BBMap[PHI->getParent()]->PHITag = PHI;
    393 
    394     while (!WorkList.empty()) {
    395       PHI = WorkList.pop_back_val();
    396 
    397       // Iterate through the PHI's incoming values.
    398       for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
    399              E = Traits::PHI_end(PHI); I != E; ++I) {
    400         ValT IncomingVal = I.getIncomingValue();
    401         BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
    402         // Skip to the nearest preceding definition.
    403         if (PredInfo->DefBB != PredInfo)
    404           PredInfo = PredInfo->DefBB;
    405 
    406         // Check if it matches the expected value.
    407         if (PredInfo->AvailableVal) {
    408           if (IncomingVal == PredInfo->AvailableVal)
    409             continue;
    410           return false;
    411         }
    412 
    413         // Check if the value is a PHI in the correct block.
    414         PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
    415         if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
    416           return false;
    417 
    418         // If this block has already been visited, check if this PHI matches.
    419         if (PredInfo->PHITag) {
    420           if (IncomingPHIVal == PredInfo->PHITag)
    421             continue;
    422           return false;
    423         }
    424         PredInfo->PHITag = IncomingPHIVal;
    425 
    426         WorkList.push_back(IncomingPHIVal);
    427       }
    428     }
    429     return true;
    430   }
    431 
    432   /// RecordMatchingPHI - For a PHI node that matches, record it and its input
    433   /// PHIs in both the BBMap and the AvailableVals mapping.
    434   void RecordMatchingPHI(PhiT *PHI) {
    435     SmallVector<PhiT*, 20> WorkList;
    436     WorkList.push_back(PHI);
    437 
    438     // Record this PHI.
    439     BlkT *BB = PHI->getParent();
    440     ValT PHIVal = Traits::GetPHIValue(PHI);
    441     (*AvailableVals)[BB] = PHIVal;
    442     BBMap[BB]->AvailableVal = PHIVal;
    443 
    444     while (!WorkList.empty()) {
    445       PHI = WorkList.pop_back_val();
    446 
    447       // Iterate through the PHI's incoming values.
    448       for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
    449              E = Traits::PHI_end(PHI); I != E; ++I) {
    450         ValT IncomingVal = I.getIncomingValue();
    451         PhiT *IncomingPHI = Traits::ValueIsPHI(IncomingVal, Updater);
    452         if (!IncomingPHI) continue;
    453         BB = IncomingPHI->getParent();
    454         BBInfo *Info = BBMap[BB];
    455         if (!Info || Info->AvailableVal)
    456           continue;
    457 
    458         // Record the PHI and add it to the worklist.
    459         (*AvailableVals)[BB] = IncomingVal;
    460         Info->AvailableVal = IncomingVal;
    461         WorkList.push_back(IncomingPHI);
    462       }
    463     }
    464   }
    465 };
    466 
    467 } // End llvm namespace
    468 
    469 #endif
    470