1 /* 2 * QEMU float support 3 * 4 * Derived from SoftFloat. 5 */ 6 7 /*============================================================================ 8 9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic 10 Package, Release 2b. 11 12 Written by John R. Hauser. This work was made possible in part by the 13 International Computer Science Institute, located at Suite 600, 1947 Center 14 Street, Berkeley, California 94704. Funding was partially provided by the 15 National Science Foundation under grant MIP-9311980. The original version 16 of this code was written as part of a project to build a fixed-point vector 17 processor in collaboration with the University of California at Berkeley, 18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ 20 arithmetic/SoftFloat.html'. 21 22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has 23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES 24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS 25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, 26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE 27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE 28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR 29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. 30 31 Derivative works are acceptable, even for commercial purposes, so long as 32 (1) the source code for the derivative work includes prominent notice that 33 the work is derivative, and (2) the source code includes prominent notice with 34 these four paragraphs for those parts of this code that are retained. 35 36 =============================================================================*/ 37 38 #ifndef SOFTFLOAT_H 39 #define SOFTFLOAT_H 40 41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH) 42 #include <sunmath.h> 43 #endif 44 45 #include <inttypes.h> 46 #include "config.h" 47 48 /*---------------------------------------------------------------------------- 49 | Each of the following `typedef's defines the most convenient type that holds 50 | integers of at least as many bits as specified. For example, `uint8' should 51 | be the most convenient type that can hold unsigned integers of as many as 52 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most 53 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed 54 | to the same as `int'. 55 *----------------------------------------------------------------------------*/ 56 typedef uint8_t flag; 57 typedef uint8_t uint8; 58 typedef int8_t int8; 59 #ifndef _AIX 60 typedef int uint16; 61 typedef int int16; 62 #endif 63 typedef unsigned int uint32; 64 typedef signed int int32; 65 typedef uint64_t uint64; 66 typedef int64_t int64; 67 68 #define LIT64( a ) a##LL 69 #define INLINE static inline 70 71 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) 72 #define SNAN_BIT_IS_ONE 1 73 #else 74 #define SNAN_BIT_IS_ONE 0 75 #endif 76 77 /*---------------------------------------------------------------------------- 78 | The macro `FLOATX80' must be defined to enable the extended double-precision 79 | floating-point format `floatx80'. If this macro is not defined, the 80 | `floatx80' type will not be defined, and none of the functions that either 81 | input or output the `floatx80' type will be defined. The same applies to 82 | the `FLOAT128' macro and the quadruple-precision format `float128'. 83 *----------------------------------------------------------------------------*/ 84 #ifdef CONFIG_SOFTFLOAT 85 /* bit exact soft float support */ 86 #define FLOATX80 87 #define FLOAT128 88 #else 89 /* native float support */ 90 #if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD) 91 #define FLOATX80 92 #endif 93 #endif /* !CONFIG_SOFTFLOAT */ 94 95 #define STATUS_PARAM , float_status *status 96 #define STATUS(field) status->field 97 #define STATUS_VAR , status 98 99 /*---------------------------------------------------------------------------- 100 | Software IEC/IEEE floating-point ordering relations 101 *----------------------------------------------------------------------------*/ 102 enum { 103 float_relation_less = -1, 104 float_relation_equal = 0, 105 float_relation_greater = 1, 106 float_relation_unordered = 2 107 }; 108 109 #ifdef CONFIG_SOFTFLOAT 110 /*---------------------------------------------------------------------------- 111 | Software IEC/IEEE floating-point types. 112 *----------------------------------------------------------------------------*/ 113 /* Use structures for soft-float types. This prevents accidentally mixing 114 them with native int/float types. A sufficiently clever compiler and 115 sane ABI should be able to see though these structs. However 116 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ 117 //#define USE_SOFTFLOAT_STRUCT_TYPES 118 #ifdef USE_SOFTFLOAT_STRUCT_TYPES 119 typedef struct { 120 uint16_t v; 121 } float16; 122 #define float16_val(x) (((float16)(x)).v) 123 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; }) 124 #define const_float16(x) { x } 125 typedef struct { 126 uint32_t v; 127 } float32; 128 /* The cast ensures an error if the wrong type is passed. */ 129 #define float32_val(x) (((float32)(x)).v) 130 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) 131 #define const_float32(x) { x } 132 typedef struct { 133 uint64_t v; 134 } float64; 135 #define float64_val(x) (((float64)(x)).v) 136 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) 137 #define const_float64(x) { x } 138 #else 139 typedef uint16_t float16; 140 typedef uint32_t float32; 141 typedef uint64_t float64; 142 #define float16_val(x) (x) 143 #define float32_val(x) (x) 144 #define float64_val(x) (x) 145 #define make_float16(x) (x) 146 #define make_float32(x) (x) 147 #define make_float64(x) (x) 148 #define const_float16(x) (x) 149 #define const_float32(x) (x) 150 #define const_float64(x) (x) 151 #endif 152 #ifdef FLOATX80 153 typedef struct { 154 uint64_t low; 155 uint16_t high; 156 } floatx80; 157 #define make_floatx80(exp, mant) ((floatx80) { mant, exp }) 158 #endif 159 #ifdef FLOAT128 160 typedef struct { 161 #ifdef HOST_WORDS_BIGENDIAN 162 uint64_t high, low; 163 #else 164 uint64_t low, high; 165 #endif 166 } float128; 167 #endif 168 169 /*---------------------------------------------------------------------------- 170 | Software IEC/IEEE floating-point underflow tininess-detection mode. 171 *----------------------------------------------------------------------------*/ 172 enum { 173 float_tininess_after_rounding = 0, 174 float_tininess_before_rounding = 1 175 }; 176 177 /*---------------------------------------------------------------------------- 178 | Software IEC/IEEE floating-point rounding mode. 179 *----------------------------------------------------------------------------*/ 180 enum { 181 float_round_nearest_even = 0, 182 float_round_down = 1, 183 float_round_up = 2, 184 float_round_to_zero = 3 185 }; 186 187 /*---------------------------------------------------------------------------- 188 | Software IEC/IEEE floating-point exception flags. 189 *----------------------------------------------------------------------------*/ 190 enum { 191 float_flag_invalid = 1, 192 float_flag_divbyzero = 4, 193 float_flag_overflow = 8, 194 float_flag_underflow = 16, 195 float_flag_inexact = 32, 196 float_flag_input_denormal = 64, 197 float_flag_output_denormal = 128 198 }; 199 200 typedef struct float_status { 201 signed char float_detect_tininess; 202 signed char float_rounding_mode; 203 signed char float_exception_flags; 204 #ifdef FLOATX80 205 signed char floatx80_rounding_precision; 206 #endif 207 /* should denormalised results go to zero and set the inexact flag? */ 208 flag flush_to_zero; 209 /* should denormalised inputs go to zero and set the input_denormal flag? */ 210 flag flush_inputs_to_zero; 211 flag default_nan_mode; 212 } float_status; 213 214 void set_float_rounding_mode(int val STATUS_PARAM); 215 void set_float_exception_flags(int val STATUS_PARAM); 216 INLINE void set_float_detect_tininess(int val STATUS_PARAM) 217 { 218 STATUS(float_detect_tininess) = val; 219 } 220 INLINE void set_flush_to_zero(flag val STATUS_PARAM) 221 { 222 STATUS(flush_to_zero) = val; 223 } 224 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM) 225 { 226 STATUS(flush_inputs_to_zero) = val; 227 } 228 INLINE void set_default_nan_mode(flag val STATUS_PARAM) 229 { 230 STATUS(default_nan_mode) = val; 231 } 232 INLINE int get_float_exception_flags(float_status *status) 233 { 234 return STATUS(float_exception_flags); 235 } 236 #ifdef FLOATX80 237 void set_floatx80_rounding_precision(int val STATUS_PARAM); 238 #endif 239 240 /*---------------------------------------------------------------------------- 241 | Routine to raise any or all of the software IEC/IEEE floating-point 242 | exception flags. 243 *----------------------------------------------------------------------------*/ 244 void float_raise( int8 flags STATUS_PARAM); 245 246 /*---------------------------------------------------------------------------- 247 | Software IEC/IEEE integer-to-floating-point conversion routines. 248 *----------------------------------------------------------------------------*/ 249 float32 int32_to_float32( int32 STATUS_PARAM ); 250 float64 int32_to_float64( int32 STATUS_PARAM ); 251 float32 uint32_to_float32( unsigned int STATUS_PARAM ); 252 float64 uint32_to_float64( unsigned int STATUS_PARAM ); 253 #ifdef FLOATX80 254 floatx80 int32_to_floatx80( int32 STATUS_PARAM ); 255 #endif 256 #ifdef FLOAT128 257 float128 int32_to_float128( int32 STATUS_PARAM ); 258 #endif 259 float32 int64_to_float32( int64 STATUS_PARAM ); 260 float32 uint64_to_float32( uint64 STATUS_PARAM ); 261 float64 int64_to_float64( int64 STATUS_PARAM ); 262 float64 uint64_to_float64( uint64 STATUS_PARAM ); 263 #ifdef FLOATX80 264 floatx80 int64_to_floatx80( int64 STATUS_PARAM ); 265 #endif 266 #ifdef FLOAT128 267 float128 int64_to_float128( int64 STATUS_PARAM ); 268 #endif 269 270 /*---------------------------------------------------------------------------- 271 | Software half-precision conversion routines. 272 *----------------------------------------------------------------------------*/ 273 float16 float32_to_float16( float32, flag STATUS_PARAM ); 274 float32 float16_to_float32( float16, flag STATUS_PARAM ); 275 276 /*---------------------------------------------------------------------------- 277 | Software half-precision operations. 278 *----------------------------------------------------------------------------*/ 279 int float16_is_quiet_nan( float16 ); 280 int float16_is_signaling_nan( float16 ); 281 float16 float16_maybe_silence_nan( float16 ); 282 283 /*---------------------------------------------------------------------------- 284 | The pattern for a default generated half-precision NaN. 285 *----------------------------------------------------------------------------*/ 286 #if defined(TARGET_ARM) 287 #define float16_default_nan make_float16(0x7E00) 288 #elif SNAN_BIT_IS_ONE 289 #define float16_default_nan make_float16(0x7DFF) 290 #else 291 #define float16_default_nan make_float16(0xFE00) 292 #endif 293 294 /*---------------------------------------------------------------------------- 295 | Software IEC/IEEE single-precision conversion routines. 296 *----------------------------------------------------------------------------*/ 297 int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM ); 298 unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM ); 299 int32 float32_to_int32( float32 STATUS_PARAM ); 300 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM ); 301 uint32 float32_to_uint32( float32 STATUS_PARAM ); 302 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM ); 303 int64 float32_to_int64( float32 STATUS_PARAM ); 304 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM ); 305 float64 float32_to_float64( float32 STATUS_PARAM ); 306 #ifdef FLOATX80 307 floatx80 float32_to_floatx80( float32 STATUS_PARAM ); 308 #endif 309 #ifdef FLOAT128 310 float128 float32_to_float128( float32 STATUS_PARAM ); 311 #endif 312 313 /*---------------------------------------------------------------------------- 314 | Software IEC/IEEE single-precision operations. 315 *----------------------------------------------------------------------------*/ 316 float32 float32_round_to_int( float32 STATUS_PARAM ); 317 float32 float32_add( float32, float32 STATUS_PARAM ); 318 float32 float32_sub( float32, float32 STATUS_PARAM ); 319 float32 float32_mul( float32, float32 STATUS_PARAM ); 320 float32 float32_div( float32, float32 STATUS_PARAM ); 321 float32 float32_rem( float32, float32 STATUS_PARAM ); 322 float32 float32_sqrt( float32 STATUS_PARAM ); 323 float32 float32_exp2( float32 STATUS_PARAM ); 324 float32 float32_log2( float32 STATUS_PARAM ); 325 int float32_eq( float32, float32 STATUS_PARAM ); 326 int float32_le( float32, float32 STATUS_PARAM ); 327 int float32_lt( float32, float32 STATUS_PARAM ); 328 int float32_unordered( float32, float32 STATUS_PARAM ); 329 int float32_eq_quiet( float32, float32 STATUS_PARAM ); 330 int float32_le_quiet( float32, float32 STATUS_PARAM ); 331 int float32_lt_quiet( float32, float32 STATUS_PARAM ); 332 int float32_unordered_quiet( float32, float32 STATUS_PARAM ); 333 int float32_compare( float32, float32 STATUS_PARAM ); 334 int float32_compare_quiet( float32, float32 STATUS_PARAM ); 335 float32 float32_min(float32, float32 STATUS_PARAM); 336 float32 float32_max(float32, float32 STATUS_PARAM); 337 int float32_is_quiet_nan( float32 ); 338 int float32_is_signaling_nan( float32 ); 339 float32 float32_maybe_silence_nan( float32 ); 340 float32 float32_scalbn( float32, int STATUS_PARAM ); 341 342 INLINE float32 float32_abs(float32 a) 343 { 344 /* Note that abs does *not* handle NaN specially, nor does 345 * it flush denormal inputs to zero. 346 */ 347 return make_float32(float32_val(a) & 0x7fffffff); 348 } 349 350 INLINE float32 float32_chs(float32 a) 351 { 352 /* Note that chs does *not* handle NaN specially, nor does 353 * it flush denormal inputs to zero. 354 */ 355 return make_float32(float32_val(a) ^ 0x80000000); 356 } 357 358 INLINE int float32_is_infinity(float32 a) 359 { 360 return (float32_val(a) & 0x7fffffff) == 0x7f800000; 361 } 362 363 INLINE int float32_is_neg(float32 a) 364 { 365 return float32_val(a) >> 31; 366 } 367 368 INLINE int float32_is_zero(float32 a) 369 { 370 return (float32_val(a) & 0x7fffffff) == 0; 371 } 372 373 INLINE int float32_is_any_nan(float32 a) 374 { 375 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); 376 } 377 378 INLINE int float32_is_zero_or_denormal(float32 a) 379 { 380 return (float32_val(a) & 0x7f800000) == 0; 381 } 382 383 INLINE float32 float32_set_sign(float32 a, int sign) 384 { 385 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); 386 } 387 388 #define float32_zero make_float32(0) 389 #define float32_one make_float32(0x3f800000) 390 #define float32_ln2 make_float32(0x3f317218) 391 #define float32_pi make_float32(0x40490fdb) 392 #define float32_half make_float32(0x3f000000) 393 #define float32_infinity make_float32(0x7f800000) 394 395 396 /*---------------------------------------------------------------------------- 397 | The pattern for a default generated single-precision NaN. 398 *----------------------------------------------------------------------------*/ 399 #if defined(TARGET_SPARC) 400 #define float32_default_nan make_float32(0x7FFFFFFF) 401 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) 402 #define float32_default_nan make_float32(0x7FC00000) 403 #elif SNAN_BIT_IS_ONE 404 #define float32_default_nan make_float32(0x7FBFFFFF) 405 #else 406 #define float32_default_nan make_float32(0xFFC00000) 407 #endif 408 409 /*---------------------------------------------------------------------------- 410 | Software IEC/IEEE double-precision conversion routines. 411 *----------------------------------------------------------------------------*/ 412 int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM ); 413 unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM ); 414 int32 float64_to_int32( float64 STATUS_PARAM ); 415 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM ); 416 uint32 float64_to_uint32( float64 STATUS_PARAM ); 417 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); 418 int64 float64_to_int64( float64 STATUS_PARAM ); 419 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM ); 420 uint64 float64_to_uint64 (float64 a STATUS_PARAM); 421 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM); 422 float32 float64_to_float32( float64 STATUS_PARAM ); 423 #ifdef FLOATX80 424 floatx80 float64_to_floatx80( float64 STATUS_PARAM ); 425 #endif 426 #ifdef FLOAT128 427 float128 float64_to_float128( float64 STATUS_PARAM ); 428 #endif 429 430 /*---------------------------------------------------------------------------- 431 | Software IEC/IEEE double-precision operations. 432 *----------------------------------------------------------------------------*/ 433 float64 float64_round_to_int( float64 STATUS_PARAM ); 434 float64 float64_trunc_to_int( float64 STATUS_PARAM ); 435 float64 float64_add( float64, float64 STATUS_PARAM ); 436 float64 float64_sub( float64, float64 STATUS_PARAM ); 437 float64 float64_mul( float64, float64 STATUS_PARAM ); 438 float64 float64_div( float64, float64 STATUS_PARAM ); 439 float64 float64_rem( float64, float64 STATUS_PARAM ); 440 float64 float64_sqrt( float64 STATUS_PARAM ); 441 float64 float64_log2( float64 STATUS_PARAM ); 442 int float64_eq( float64, float64 STATUS_PARAM ); 443 int float64_le( float64, float64 STATUS_PARAM ); 444 int float64_lt( float64, float64 STATUS_PARAM ); 445 int float64_unordered( float64, float64 STATUS_PARAM ); 446 int float64_eq_quiet( float64, float64 STATUS_PARAM ); 447 int float64_le_quiet( float64, float64 STATUS_PARAM ); 448 int float64_lt_quiet( float64, float64 STATUS_PARAM ); 449 int float64_unordered_quiet( float64, float64 STATUS_PARAM ); 450 int float64_compare( float64, float64 STATUS_PARAM ); 451 int float64_compare_quiet( float64, float64 STATUS_PARAM ); 452 float64 float64_min(float64, float64 STATUS_PARAM); 453 float64 float64_max(float64, float64 STATUS_PARAM); 454 int float64_is_quiet_nan( float64 a ); 455 int float64_is_signaling_nan( float64 ); 456 float64 float64_maybe_silence_nan( float64 ); 457 float64 float64_scalbn( float64, int STATUS_PARAM ); 458 459 INLINE float64 float64_abs(float64 a) 460 { 461 /* Note that abs does *not* handle NaN specially, nor does 462 * it flush denormal inputs to zero. 463 */ 464 return make_float64(float64_val(a) & 0x7fffffffffffffffLL); 465 } 466 467 INLINE float64 float64_chs(float64 a) 468 { 469 /* Note that chs does *not* handle NaN specially, nor does 470 * it flush denormal inputs to zero. 471 */ 472 return make_float64(float64_val(a) ^ 0x8000000000000000LL); 473 } 474 475 INLINE int float64_is_infinity(float64 a) 476 { 477 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; 478 } 479 480 INLINE int float64_is_neg(float64 a) 481 { 482 return float64_val(a) >> 63; 483 } 484 485 INLINE int float64_is_zero(float64 a) 486 { 487 return (float64_val(a) & 0x7fffffffffffffffLL) == 0; 488 } 489 490 INLINE int float64_is_any_nan(float64 a) 491 { 492 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); 493 } 494 495 INLINE float64 float64_set_sign(float64 a, int sign) 496 { 497 return make_float64((float64_val(a) & 0x7fffffffffffffffULL) 498 | ((int64_t)sign << 63)); 499 } 500 501 #define float64_zero make_float64(0) 502 #define float64_one make_float64(0x3ff0000000000000LL) 503 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) 504 #define float64_pi make_float64(0x400921fb54442d18LL) 505 #define float64_half make_float64(0x3fe0000000000000LL) 506 #define float64_infinity make_float64(0x7ff0000000000000LL) 507 508 /*---------------------------------------------------------------------------- 509 | The pattern for a default generated double-precision NaN. 510 *----------------------------------------------------------------------------*/ 511 #if defined(TARGET_SPARC) 512 #define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF )) 513 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) 514 #define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 )) 515 #elif SNAN_BIT_IS_ONE 516 #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF )) 517 #else 518 #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 )) 519 #endif 520 521 #ifdef FLOATX80 522 523 /*---------------------------------------------------------------------------- 524 | Software IEC/IEEE extended double-precision conversion routines. 525 *----------------------------------------------------------------------------*/ 526 int32 floatx80_to_int32( floatx80 STATUS_PARAM ); 527 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); 528 int64 floatx80_to_int64( floatx80 STATUS_PARAM ); 529 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); 530 float32 floatx80_to_float32( floatx80 STATUS_PARAM ); 531 float64 floatx80_to_float64( floatx80 STATUS_PARAM ); 532 #ifdef FLOAT128 533 float128 floatx80_to_float128( floatx80 STATUS_PARAM ); 534 #endif 535 536 /*---------------------------------------------------------------------------- 537 | Software IEC/IEEE extended double-precision operations. 538 *----------------------------------------------------------------------------*/ 539 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); 540 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM ); 541 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM ); 542 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM ); 543 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM ); 544 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); 545 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); 546 int floatx80_eq( floatx80, floatx80 STATUS_PARAM ); 547 int floatx80_le( floatx80, floatx80 STATUS_PARAM ); 548 int floatx80_lt( floatx80, floatx80 STATUS_PARAM ); 549 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM ); 550 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM ); 551 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); 552 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); 553 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM ); 554 int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); 555 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); 556 int floatx80_is_quiet_nan( floatx80 ); 557 int floatx80_is_signaling_nan( floatx80 ); 558 floatx80 floatx80_maybe_silence_nan( floatx80 ); 559 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM ); 560 561 INLINE floatx80 floatx80_abs(floatx80 a) 562 { 563 a.high &= 0x7fff; 564 return a; 565 } 566 567 INLINE floatx80 floatx80_chs(floatx80 a) 568 { 569 a.high ^= 0x8000; 570 return a; 571 } 572 573 INLINE int floatx80_is_infinity(floatx80 a) 574 { 575 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL; 576 } 577 578 INLINE int floatx80_is_neg(floatx80 a) 579 { 580 return a.high >> 15; 581 } 582 583 INLINE int floatx80_is_zero(floatx80 a) 584 { 585 return (a.high & 0x7fff) == 0 && a.low == 0; 586 } 587 588 INLINE int floatx80_is_any_nan(floatx80 a) 589 { 590 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); 591 } 592 593 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) 594 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) 595 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) 596 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) 597 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) 598 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL) 599 600 /*---------------------------------------------------------------------------- 601 | The pattern for a default generated extended double-precision NaN. The 602 | `high' and `low' values hold the most- and least-significant bits, 603 | respectively. 604 *----------------------------------------------------------------------------*/ 605 #if SNAN_BIT_IS_ONE 606 #define floatx80_default_nan_high 0x7FFF 607 #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF ) 608 #else 609 #define floatx80_default_nan_high 0xFFFF 610 #define floatx80_default_nan_low LIT64( 0xC000000000000000 ) 611 #endif 612 613 #endif 614 615 #ifdef FLOAT128 616 617 /*---------------------------------------------------------------------------- 618 | Software IEC/IEEE quadruple-precision conversion routines. 619 *----------------------------------------------------------------------------*/ 620 int32 float128_to_int32( float128 STATUS_PARAM ); 621 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM ); 622 int64 float128_to_int64( float128 STATUS_PARAM ); 623 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM ); 624 float32 float128_to_float32( float128 STATUS_PARAM ); 625 float64 float128_to_float64( float128 STATUS_PARAM ); 626 #ifdef FLOATX80 627 floatx80 float128_to_floatx80( float128 STATUS_PARAM ); 628 #endif 629 630 /*---------------------------------------------------------------------------- 631 | Software IEC/IEEE quadruple-precision operations. 632 *----------------------------------------------------------------------------*/ 633 float128 float128_round_to_int( float128 STATUS_PARAM ); 634 float128 float128_add( float128, float128 STATUS_PARAM ); 635 float128 float128_sub( float128, float128 STATUS_PARAM ); 636 float128 float128_mul( float128, float128 STATUS_PARAM ); 637 float128 float128_div( float128, float128 STATUS_PARAM ); 638 float128 float128_rem( float128, float128 STATUS_PARAM ); 639 float128 float128_sqrt( float128 STATUS_PARAM ); 640 int float128_eq( float128, float128 STATUS_PARAM ); 641 int float128_le( float128, float128 STATUS_PARAM ); 642 int float128_lt( float128, float128 STATUS_PARAM ); 643 int float128_unordered( float128, float128 STATUS_PARAM ); 644 int float128_eq_quiet( float128, float128 STATUS_PARAM ); 645 int float128_le_quiet( float128, float128 STATUS_PARAM ); 646 int float128_lt_quiet( float128, float128 STATUS_PARAM ); 647 int float128_unordered_quiet( float128, float128 STATUS_PARAM ); 648 int float128_compare( float128, float128 STATUS_PARAM ); 649 int float128_compare_quiet( float128, float128 STATUS_PARAM ); 650 int float128_is_quiet_nan( float128 ); 651 int float128_is_signaling_nan( float128 ); 652 float128 float128_maybe_silence_nan( float128 ); 653 float128 float128_scalbn( float128, int STATUS_PARAM ); 654 655 INLINE float128 float128_abs(float128 a) 656 { 657 a.high &= 0x7fffffffffffffffLL; 658 return a; 659 } 660 661 INLINE float128 float128_chs(float128 a) 662 { 663 a.high ^= 0x8000000000000000LL; 664 return a; 665 } 666 667 INLINE int float128_is_infinity(float128 a) 668 { 669 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; 670 } 671 672 INLINE int float128_is_neg(float128 a) 673 { 674 return a.high >> 63; 675 } 676 677 INLINE int float128_is_zero(float128 a) 678 { 679 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; 680 } 681 682 INLINE int float128_is_any_nan(float128 a) 683 { 684 return ((a.high >> 48) & 0x7fff) == 0x7fff && 685 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); 686 } 687 688 /*---------------------------------------------------------------------------- 689 | The pattern for a default generated quadruple-precision NaN. The `high' and 690 | `low' values hold the most- and least-significant bits, respectively. 691 *----------------------------------------------------------------------------*/ 692 #if SNAN_BIT_IS_ONE 693 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF ) 694 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) 695 #else 696 #define float128_default_nan_high LIT64( 0xFFFF800000000000 ) 697 #define float128_default_nan_low LIT64( 0x0000000000000000 ) 698 #endif 699 700 #endif 701 702 #else /* CONFIG_SOFTFLOAT */ 703 704 #include "softfloat-native.h" 705 706 #endif /* !CONFIG_SOFTFLOAT */ 707 708 #endif /* !SOFTFLOAT_H */ 709