1 /* 2 * Copyright (C) 2006 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef SkTypes_DEFINED 18 #define SkTypes_DEFINED 19 20 #include "SkPreConfig.h" 21 #include "SkUserConfig.h" 22 #include "SkPostConfig.h" 23 24 #ifndef SK_IGNORE_STDINT_DOT_H 25 #include <stdint.h> 26 #endif 27 28 #include <stdio.h> 29 30 /** \file SkTypes.h 31 */ 32 33 /** See SkGraphics::GetVersion() to retrieve these at runtime 34 */ 35 #define SKIA_VERSION_MAJOR 1 36 #define SKIA_VERSION_MINOR 0 37 #define SKIA_VERSION_PATCH 0 38 39 /* 40 memory wrappers to be implemented by the porting layer (platform) 41 */ 42 43 /** Called internally if we run out of memory. The platform implementation must 44 not return, but should either throw an exception or otherwise exit. 45 */ 46 extern void sk_out_of_memory(void); 47 /** Called internally if we hit an unrecoverable error. 48 The platform implementation must not return, but should either throw 49 an exception or otherwise exit. 50 */ 51 extern void sk_throw(void); 52 53 enum { 54 SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame 55 SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated. 56 }; 57 /** Return a block of memory (at least 4-byte aligned) of at least the 58 specified size. If the requested memory cannot be returned, either 59 return null (if SK_MALLOC_TEMP bit is clear) or call sk_throw() 60 (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free(). 61 */ 62 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags); 63 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag 64 */ 65 extern void* sk_malloc_throw(size_t size); 66 /** Same as standard realloc(), but this one never returns null on failure. It will throw 67 an exception if it fails. 68 */ 69 extern void* sk_realloc_throw(void* buffer, size_t size); 70 /** Free memory returned by sk_malloc(). It is safe to pass null. 71 */ 72 SK_API extern void sk_free(void*); 73 74 // bzero is safer than memset, but we can't rely on it, so... sk_bzero() 75 static inline void sk_bzero(void* buffer, size_t size) { 76 memset(buffer, 0, size); 77 } 78 79 /////////////////////////////////////////////////////////////////////// 80 81 #define SK_INIT_TO_AVOID_WARNING = 0 82 83 #ifndef SkDebugf 84 void SkDebugf(const char format[], ...); 85 #endif 86 87 #ifdef SK_DEBUG 88 #define SkASSERT(cond) SK_DEBUGBREAK(cond) 89 #define SkDEBUGCODE(code) code 90 #define SkDECLAREPARAM(type, var) , type var 91 #define SkPARAM(var) , var 92 // #define SkDEBUGF(args ) SkDebugf##args 93 #define SkDEBUGF(args ) SkDebugf args 94 #define SkAssertResult(cond) SkASSERT(cond) 95 #else 96 #define SkASSERT(cond) 97 #define SkDEBUGCODE(code) 98 #define SkDEBUGF(args) 99 #define SkDECLAREPARAM(type, var) 100 #define SkPARAM(var) 101 102 // unlike SkASSERT, this guy executes its condition in the non-debug build 103 #define SkAssertResult(cond) cond 104 #endif 105 106 namespace { 107 108 template <bool> 109 struct SkCompileAssert { 110 }; 111 112 } // namespace 113 114 #define SK_COMPILE_ASSERT(expr, msg) \ 115 typedef SkCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1] 116 117 /////////////////////////////////////////////////////////////////////// 118 119 /** 120 * Fast type for signed 8 bits. Use for parameter passing and local variables, 121 * not for storage. 122 */ 123 typedef int S8CPU; 124 125 /** 126 * Fast type for unsigned 8 bits. Use for parameter passing and local 127 * variables, not for storage 128 */ 129 typedef unsigned U8CPU; 130 131 /** 132 * Fast type for signed 16 bits. Use for parameter passing and local variables, 133 * not for storage 134 */ 135 typedef int S16CPU; 136 137 /** 138 * Fast type for unsigned 16 bits. Use for parameter passing and local 139 * variables, not for storage 140 */ 141 typedef unsigned U16CPU; 142 143 /** 144 * Meant to be faster than bool (doesn't promise to be 0 or 1, 145 * just 0 or non-zero 146 */ 147 typedef int SkBool; 148 149 /** 150 * Meant to be a small version of bool, for storage purposes. Will be 0 or 1 151 */ 152 typedef uint8_t SkBool8; 153 154 #ifdef SK_DEBUG 155 SK_API int8_t SkToS8(long); 156 SK_API uint8_t SkToU8(size_t); 157 SK_API int16_t SkToS16(long); 158 SK_API uint16_t SkToU16(size_t); 159 SK_API int32_t SkToS32(long); 160 SK_API uint32_t SkToU32(size_t); 161 #else 162 #define SkToS8(x) ((int8_t)(x)) 163 #define SkToU8(x) ((uint8_t)(x)) 164 #define SkToS16(x) ((int16_t)(x)) 165 #define SkToU16(x) ((uint16_t)(x)) 166 #define SkToS32(x) ((int32_t)(x)) 167 #define SkToU32(x) ((uint32_t)(x)) 168 #endif 169 170 /** Returns 0 or 1 based on the condition 171 */ 172 #define SkToBool(cond) ((cond) != 0) 173 174 #define SK_MaxS16 32767 175 #define SK_MinS16 -32767 176 #define SK_MaxU16 0xFFFF 177 #define SK_MinU16 0 178 #define SK_MaxS32 0x7FFFFFFF 179 #define SK_MinS32 0x80000001 180 #define SK_MaxU32 0xFFFFFFFF 181 #define SK_MinU32 0 182 #define SK_NaN32 0x80000000 183 184 /** Returns true if the value can be represented with signed 16bits 185 */ 186 static inline bool SkIsS16(long x) { 187 return (int16_t)x == x; 188 } 189 190 /** Returns true if the value can be represented with unsigned 16bits 191 */ 192 static inline bool SkIsU16(long x) { 193 return (uint16_t)x == x; 194 } 195 196 ////////////////////////////////////////////////////////////////////////////// 197 #ifndef SK_OFFSETOF 198 #define SK_OFFSETOF(type, field) ((char*)&(((type*)1)->field) - (char*)1) 199 #endif 200 201 /** Returns the number of entries in an array (not a pointer) 202 */ 203 #define SK_ARRAY_COUNT(array) (sizeof(array) / sizeof(array[0])) 204 205 /** Returns x rounded up to a multiple of 2 206 */ 207 #define SkAlign2(x) (((x) + 1) >> 1 << 1) 208 /** Returns x rounded up to a multiple of 4 209 */ 210 #define SkAlign4(x) (((x) + 3) >> 2 << 2) 211 212 typedef uint32_t SkFourByteTag; 213 #define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) 214 215 /** 32 bit integer to hold a unicode value 216 */ 217 typedef int32_t SkUnichar; 218 /** 32 bit value to hold a millisecond count 219 */ 220 typedef uint32_t SkMSec; 221 /** 1 second measured in milliseconds 222 */ 223 #define SK_MSec1 1000 224 /** maximum representable milliseconds 225 */ 226 #define SK_MSecMax 0x7FFFFFFF 227 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0 228 */ 229 #define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0) 230 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0 231 */ 232 #define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0) 233 234 /**************************************************************************** 235 The rest of these only build with C++ 236 */ 237 #ifdef __cplusplus 238 239 /** Faster than SkToBool for integral conditions. Returns 0 or 1 240 */ 241 static inline int Sk32ToBool(uint32_t n) { 242 return (n | (0-n)) >> 31; 243 } 244 245 template <typename T> inline void SkTSwap(T& a, T& b) { 246 T c(a); 247 a = b; 248 b = c; 249 } 250 251 static inline int32_t SkAbs32(int32_t value) { 252 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR 253 if (value < 0) 254 value = -value; 255 return value; 256 #else 257 int32_t mask = value >> 31; 258 return (value ^ mask) - mask; 259 #endif 260 } 261 262 static inline int32_t SkMax32(int32_t a, int32_t b) { 263 if (a < b) 264 a = b; 265 return a; 266 } 267 268 static inline int32_t SkMin32(int32_t a, int32_t b) { 269 if (a > b) 270 a = b; 271 return a; 272 } 273 274 static inline int32_t SkSign32(int32_t a) { 275 return (a >> 31) | ((unsigned) -a >> 31); 276 } 277 278 static inline int32_t SkFastMin32(int32_t value, int32_t max) { 279 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR 280 if (value > max) 281 value = max; 282 return value; 283 #else 284 int diff = max - value; 285 // clear diff if it is negative (clear if value > max) 286 diff &= (diff >> 31); 287 return value + diff; 288 #endif 289 } 290 291 /** Returns signed 32 bit value pinned between min and max, inclusively 292 */ 293 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) { 294 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR 295 if (value < min) 296 value = min; 297 if (value > max) 298 value = max; 299 #else 300 if (value < min) 301 value = min; 302 else if (value > max) 303 value = max; 304 #endif 305 return value; 306 } 307 308 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond, 309 unsigned shift) { 310 SkASSERT((int)cond == 0 || (int)cond == 1); 311 return (bits & ~(1 << shift)) | ((int)cond << shift); 312 } 313 314 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond, 315 uint32_t mask) { 316 return cond ? bits | mask : bits & ~mask; 317 } 318 319 /////////////////////////////////////////////////////////////////////////////// 320 321 /** Use to combine multiple bits in a bitmask in a type safe way. 322 */ 323 template <typename T> 324 T SkTBitOr(T a, T b) { 325 return (T)(a | b); 326 } 327 328 /** 329 * Use to cast a pointer to a different type, and maintaining strict-aliasing 330 */ 331 template <typename Dst> Dst SkTCast(const void* ptr) { 332 union { 333 const void* src; 334 Dst dst; 335 } data; 336 data.src = ptr; 337 return data.dst; 338 } 339 340 ////////////////////////////////////////////////////////////////////////////// 341 342 /** \class SkNoncopyable 343 344 SkNoncopyable is the base class for objects that may do not want to 345 be copied. It hides its copy-constructor and its assignment-operator. 346 */ 347 class SK_API SkNoncopyable { 348 public: 349 SkNoncopyable() {} 350 351 private: 352 SkNoncopyable(const SkNoncopyable&); 353 SkNoncopyable& operator=(const SkNoncopyable&); 354 }; 355 356 class SkAutoFree : SkNoncopyable { 357 public: 358 SkAutoFree() : fPtr(NULL) {} 359 explicit SkAutoFree(void* ptr) : fPtr(ptr) {} 360 ~SkAutoFree() { sk_free(fPtr); } 361 362 /** Return the currently allocate buffer, or null 363 */ 364 void* get() const { return fPtr; } 365 366 /** Assign a new ptr allocated with sk_malloc (or null), and return the 367 previous ptr. Note it is the caller's responsibility to sk_free the 368 returned ptr. 369 */ 370 void* set(void* ptr) { 371 void* prev = fPtr; 372 fPtr = ptr; 373 return prev; 374 } 375 376 /** Transfer ownership of the current ptr to the caller, setting the 377 internal reference to null. Note the caller is reponsible for calling 378 sk_free on the returned address. 379 */ 380 void* detach() { return this->set(NULL); } 381 382 /** Free the current buffer, and set the internal reference to NULL. Same 383 as calling sk_free(detach()) 384 */ 385 void free() { 386 sk_free(fPtr); 387 fPtr = NULL; 388 } 389 390 private: 391 void* fPtr; 392 // illegal 393 SkAutoFree(const SkAutoFree&); 394 SkAutoFree& operator=(const SkAutoFree&); 395 }; 396 397 class SkAutoMalloc : public SkAutoFree { 398 public: 399 explicit SkAutoMalloc(size_t size) 400 : SkAutoFree(sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP)) {} 401 402 SkAutoMalloc(size_t size, unsigned flags) 403 : SkAutoFree(sk_malloc_flags(size, flags)) {} 404 SkAutoMalloc() {} 405 406 void* alloc(size_t size, 407 unsigned flags = (SK_MALLOC_THROW | SK_MALLOC_TEMP)) { 408 sk_free(set(sk_malloc_flags(size, flags))); 409 return get(); 410 } 411 }; 412 413 /** 414 * Manage an allocated block of memory. If the requested size is <= kSize, then 415 * the allocation will come from the stack rather than the heap. This object 416 * is the sole manager of the lifetime of the block, so the caller must not 417 * call sk_free() or delete on the block. 418 */ 419 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable { 420 public: 421 /** 422 * Creates initially empty storage. get() returns a ptr, but it is to 423 * a zero-byte allocation. Must call realloc(size) to return an allocated 424 * block. 425 */ 426 SkAutoSMalloc() { 427 fPtr = fStorage; 428 } 429 430 /** 431 * Allocate a block of the specified size. If size <= kSize, then the 432 * allocation will come from the stack, otherwise it will be dynamically 433 * allocated. 434 */ 435 explicit SkAutoSMalloc(size_t size) { 436 fPtr = fStorage; 437 this->realloc(size); 438 } 439 440 /** 441 * Free the allocated block (if any). If the block was small enought to 442 * have been allocated on the stack (size <= kSize) then this does nothing. 443 */ 444 ~SkAutoSMalloc() { 445 if (fPtr != (void*)fStorage) { 446 sk_free(fPtr); 447 } 448 } 449 450 /** 451 * Return the allocated block. May return non-null even if the block is 452 * of zero size. Since this may be on the stack or dynamically allocated, 453 * the caller must not call sk_free() on it, but must rely on SkAutoSMalloc 454 * to manage it. 455 */ 456 void* get() const { return fPtr; } 457 458 /** 459 * Return a new block of the requested size, freeing (as necessary) any 460 * previously allocated block. As with the constructor, if size <= kSize 461 * then the return block may be allocated locally, rather than from the 462 * heap. 463 */ 464 void* realloc(size_t size) { 465 if (fPtr != (void*)fStorage) { 466 sk_free(fPtr); 467 } 468 469 if (size <= kSize) { 470 fPtr = fStorage; 471 } else { 472 fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP); 473 } 474 return fPtr; 475 } 476 477 private: 478 void* fPtr; 479 uint32_t fStorage[(kSize + 3) >> 2]; 480 // illegal 481 SkAutoSMalloc(const SkAutoSMalloc&); 482 SkAutoSMalloc& operator=(const SkAutoSMalloc&); 483 }; 484 485 #endif /* C++ */ 486 487 #endif 488 489