1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2011 the V8 project authors. All rights reserved. 34 35 #ifndef V8_ASSEMBLER_H_ 36 #define V8_ASSEMBLER_H_ 37 38 #include "gdb-jit.h" 39 #include "runtime.h" 40 #include "token.h" 41 42 namespace v8 { 43 namespace internal { 44 45 46 // ----------------------------------------------------------------------------- 47 // Platform independent assembler base class. 48 49 class AssemblerBase: public Malloced { 50 public: 51 explicit AssemblerBase(Isolate* isolate); 52 53 Isolate* isolate() const { return isolate_; } 54 int jit_cookie() { return jit_cookie_; } 55 56 private: 57 Isolate* isolate_; 58 int jit_cookie_; 59 }; 60 61 // ----------------------------------------------------------------------------- 62 // Common double constants. 63 64 class DoubleConstant: public AllStatic { 65 public: 66 static const double min_int; 67 static const double one_half; 68 static const double minus_zero; 69 static const double negative_infinity; 70 static const double nan; 71 }; 72 73 74 // ----------------------------------------------------------------------------- 75 // Labels represent pc locations; they are typically jump or call targets. 76 // After declaration, a label can be freely used to denote known or (yet) 77 // unknown pc location. Assembler::bind() is used to bind a label to the 78 // current pc. A label can be bound only once. 79 80 class Label BASE_EMBEDDED { 81 public: 82 INLINE(Label()) { Unuse(); } 83 INLINE(~Label()) { ASSERT(!is_linked()); } 84 85 INLINE(void Unuse()) { pos_ = 0; } 86 87 INLINE(bool is_bound() const) { return pos_ < 0; } 88 INLINE(bool is_unused() const) { return pos_ == 0; } 89 INLINE(bool is_linked() const) { return pos_ > 0; } 90 91 // Returns the position of bound or linked labels. Cannot be used 92 // for unused labels. 93 int pos() const; 94 95 private: 96 // pos_ encodes both the binding state (via its sign) 97 // and the binding position (via its value) of a label. 98 // 99 // pos_ < 0 bound label, pos() returns the jump target position 100 // pos_ == 0 unused label 101 // pos_ > 0 linked label, pos() returns the last reference position 102 int pos_; 103 104 void bind_to(int pos) { 105 pos_ = -pos - 1; 106 ASSERT(is_bound()); 107 } 108 void link_to(int pos) { 109 pos_ = pos + 1; 110 ASSERT(is_linked()); 111 } 112 113 friend class Assembler; 114 friend class RegexpAssembler; 115 friend class Displacement; 116 friend class RegExpMacroAssemblerIrregexp; 117 }; 118 119 120 // ----------------------------------------------------------------------------- 121 // NearLabels are labels used for short jumps (in Intel jargon). 122 // NearLabels should be used if it can be guaranteed that the jump range is 123 // within -128 to +127. We already use short jumps when jumping backwards, 124 // so using a NearLabel will only have performance impact if used for forward 125 // jumps. 126 class NearLabel BASE_EMBEDDED { 127 public: 128 NearLabel() { Unuse(); } 129 ~NearLabel() { ASSERT(!is_linked()); } 130 131 void Unuse() { 132 pos_ = -1; 133 unresolved_branches_ = 0; 134 #ifdef DEBUG 135 for (int i = 0; i < kMaxUnresolvedBranches; i++) { 136 unresolved_positions_[i] = -1; 137 } 138 #endif 139 } 140 141 int pos() { 142 ASSERT(is_bound()); 143 return pos_; 144 } 145 146 bool is_bound() { return pos_ >= 0; } 147 bool is_linked() { return !is_bound() && unresolved_branches_ > 0; } 148 bool is_unused() { return !is_bound() && unresolved_branches_ == 0; } 149 150 void bind_to(int position) { 151 ASSERT(!is_bound()); 152 pos_ = position; 153 } 154 155 void link_to(int position) { 156 ASSERT(!is_bound()); 157 ASSERT(unresolved_branches_ < kMaxUnresolvedBranches); 158 unresolved_positions_[unresolved_branches_++] = position; 159 } 160 161 private: 162 static const int kMaxUnresolvedBranches = 8; 163 int pos_; 164 int unresolved_branches_; 165 int unresolved_positions_[kMaxUnresolvedBranches]; 166 167 friend class Assembler; 168 }; 169 170 171 // ----------------------------------------------------------------------------- 172 // Relocation information 173 174 175 // Relocation information consists of the address (pc) of the datum 176 // to which the relocation information applies, the relocation mode 177 // (rmode), and an optional data field. The relocation mode may be 178 // "descriptive" and not indicate a need for relocation, but simply 179 // describe a property of the datum. Such rmodes are useful for GC 180 // and nice disassembly output. 181 182 class RelocInfo BASE_EMBEDDED { 183 public: 184 // The constant kNoPosition is used with the collecting of source positions 185 // in the relocation information. Two types of source positions are collected 186 // "position" (RelocMode position) and "statement position" (RelocMode 187 // statement_position). The "position" is collected at places in the source 188 // code which are of interest when making stack traces to pin-point the source 189 // location of a stack frame as close as possible. The "statement position" is 190 // collected at the beginning at each statement, and is used to indicate 191 // possible break locations. kNoPosition is used to indicate an 192 // invalid/uninitialized position value. 193 static const int kNoPosition = -1; 194 195 // This string is used to add padding comments to the reloc info in cases 196 // where we are not sure to have enough space for patching in during 197 // lazy deoptimization. This is the case if we have indirect calls for which 198 // we do not normally record relocation info. 199 static const char* kFillerCommentString; 200 201 // The minimum size of a comment is equal to three bytes for the extra tagged 202 // pc + the tag for the data, and kPointerSize for the actual pointer to the 203 // comment. 204 static const int kMinRelocCommentSize = 3 + kPointerSize; 205 206 // The maximum size for a call instruction including pc-jump. 207 static const int kMaxCallSize = 6; 208 209 // The maximum pc delta that will use the short encoding. 210 static const int kMaxSmallPCDelta; 211 212 enum Mode { 213 // Please note the order is important (see IsCodeTarget, IsGCRelocMode). 214 CONSTRUCT_CALL, // code target that is a call to a JavaScript constructor. 215 CODE_TARGET_CONTEXT, // Code target used for contextual loads and stores. 216 DEBUG_BREAK, // Code target for the debugger statement. 217 CODE_TARGET, // Code target which is not any of the above. 218 EMBEDDED_OBJECT, 219 GLOBAL_PROPERTY_CELL, 220 221 // Everything after runtime_entry (inclusive) is not GC'ed. 222 RUNTIME_ENTRY, 223 JS_RETURN, // Marks start of the ExitJSFrame code. 224 COMMENT, 225 POSITION, // See comment for kNoPosition above. 226 STATEMENT_POSITION, // See comment for kNoPosition above. 227 DEBUG_BREAK_SLOT, // Additional code inserted for debug break slot. 228 EXTERNAL_REFERENCE, // The address of an external C++ function. 229 INTERNAL_REFERENCE, // An address inside the same function. 230 231 // add more as needed 232 // Pseudo-types 233 NUMBER_OF_MODES, // must be no greater than 14 - see RelocInfoWriter 234 NONE, // never recorded 235 LAST_CODE_ENUM = CODE_TARGET, 236 LAST_GCED_ENUM = GLOBAL_PROPERTY_CELL 237 }; 238 239 240 RelocInfo() {} 241 RelocInfo(byte* pc, Mode rmode, intptr_t data) 242 : pc_(pc), rmode_(rmode), data_(data) { 243 } 244 245 static inline bool IsConstructCall(Mode mode) { 246 return mode == CONSTRUCT_CALL; 247 } 248 static inline bool IsCodeTarget(Mode mode) { 249 return mode <= LAST_CODE_ENUM; 250 } 251 // Is the relocation mode affected by GC? 252 static inline bool IsGCRelocMode(Mode mode) { 253 return mode <= LAST_GCED_ENUM; 254 } 255 static inline bool IsJSReturn(Mode mode) { 256 return mode == JS_RETURN; 257 } 258 static inline bool IsComment(Mode mode) { 259 return mode == COMMENT; 260 } 261 static inline bool IsPosition(Mode mode) { 262 return mode == POSITION || mode == STATEMENT_POSITION; 263 } 264 static inline bool IsStatementPosition(Mode mode) { 265 return mode == STATEMENT_POSITION; 266 } 267 static inline bool IsExternalReference(Mode mode) { 268 return mode == EXTERNAL_REFERENCE; 269 } 270 static inline bool IsInternalReference(Mode mode) { 271 return mode == INTERNAL_REFERENCE; 272 } 273 static inline bool IsDebugBreakSlot(Mode mode) { 274 return mode == DEBUG_BREAK_SLOT; 275 } 276 static inline int ModeMask(Mode mode) { return 1 << mode; } 277 278 // Accessors 279 byte* pc() const { return pc_; } 280 void set_pc(byte* pc) { pc_ = pc; } 281 Mode rmode() const { return rmode_; } 282 intptr_t data() const { return data_; } 283 284 // Apply a relocation by delta bytes 285 INLINE(void apply(intptr_t delta)); 286 287 // Is the pointer this relocation info refers to coded like a plain pointer 288 // or is it strange in some way (eg relative or patched into a series of 289 // instructions). 290 bool IsCodedSpecially(); 291 292 // Read/modify the code target in the branch/call instruction 293 // this relocation applies to; 294 // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY 295 INLINE(Address target_address()); 296 INLINE(void set_target_address(Address target)); 297 INLINE(Object* target_object()); 298 INLINE(Handle<Object> target_object_handle(Assembler* origin)); 299 INLINE(Object** target_object_address()); 300 INLINE(void set_target_object(Object* target)); 301 INLINE(JSGlobalPropertyCell* target_cell()); 302 INLINE(Handle<JSGlobalPropertyCell> target_cell_handle()); 303 INLINE(void set_target_cell(JSGlobalPropertyCell* cell)); 304 305 306 // Read the address of the word containing the target_address in an 307 // instruction stream. What this means exactly is architecture-independent. 308 // The only architecture-independent user of this function is the serializer. 309 // The serializer uses it to find out how many raw bytes of instruction to 310 // output before the next target. Architecture-independent code shouldn't 311 // dereference the pointer it gets back from this. 312 INLINE(Address target_address_address()); 313 // This indicates how much space a target takes up when deserializing a code 314 // stream. For most architectures this is just the size of a pointer. For 315 // an instruction like movw/movt where the target bits are mixed into the 316 // instruction bits the size of the target will be zero, indicating that the 317 // serializer should not step forwards in memory after a target is resolved 318 // and written. In this case the target_address_address function above 319 // should return the end of the instructions to be patched, allowing the 320 // deserializer to deserialize the instructions as raw bytes and put them in 321 // place, ready to be patched with the target. 322 INLINE(int target_address_size()); 323 324 // Read/modify the reference in the instruction this relocation 325 // applies to; can only be called if rmode_ is external_reference 326 INLINE(Address* target_reference_address()); 327 328 // Read/modify the address of a call instruction. This is used to relocate 329 // the break points where straight-line code is patched with a call 330 // instruction. 331 INLINE(Address call_address()); 332 INLINE(void set_call_address(Address target)); 333 INLINE(Object* call_object()); 334 INLINE(void set_call_object(Object* target)); 335 INLINE(Object** call_object_address()); 336 337 template<typename StaticVisitor> inline void Visit(Heap* heap); 338 inline void Visit(ObjectVisitor* v); 339 340 // Patch the code with some other code. 341 void PatchCode(byte* instructions, int instruction_count); 342 343 // Patch the code with a call. 344 void PatchCodeWithCall(Address target, int guard_bytes); 345 346 // Check whether this return sequence has been patched 347 // with a call to the debugger. 348 INLINE(bool IsPatchedReturnSequence()); 349 350 // Check whether this debug break slot has been patched with a call to the 351 // debugger. 352 INLINE(bool IsPatchedDebugBreakSlotSequence()); 353 354 #ifdef ENABLE_DISASSEMBLER 355 // Printing 356 static const char* RelocModeName(Mode rmode); 357 void Print(FILE* out); 358 #endif // ENABLE_DISASSEMBLER 359 #ifdef DEBUG 360 // Debugging 361 void Verify(); 362 #endif 363 364 static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1; 365 static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION; 366 static const int kDebugMask = kPositionMask | 1 << COMMENT; 367 static const int kApplyMask; // Modes affected by apply. Depends on arch. 368 369 private: 370 // On ARM, note that pc_ is the address of the constant pool entry 371 // to be relocated and not the address of the instruction 372 // referencing the constant pool entry (except when rmode_ == 373 // comment). 374 byte* pc_; 375 Mode rmode_; 376 intptr_t data_; 377 friend class RelocIterator; 378 }; 379 380 381 // RelocInfoWriter serializes a stream of relocation info. It writes towards 382 // lower addresses. 383 class RelocInfoWriter BASE_EMBEDDED { 384 public: 385 RelocInfoWriter() : pos_(NULL), last_pc_(NULL), last_data_(0) {} 386 RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc), 387 last_data_(0) {} 388 389 byte* pos() const { return pos_; } 390 byte* last_pc() const { return last_pc_; } 391 392 void Write(const RelocInfo* rinfo); 393 394 // Update the state of the stream after reloc info buffer 395 // and/or code is moved while the stream is active. 396 void Reposition(byte* pos, byte* pc) { 397 pos_ = pos; 398 last_pc_ = pc; 399 } 400 401 // Max size (bytes) of a written RelocInfo. Longest encoding is 402 // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta. 403 // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12. 404 // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16; 405 // Here we use the maximum of the two. 406 static const int kMaxSize = 16; 407 408 private: 409 inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta); 410 inline void WriteTaggedPC(uint32_t pc_delta, int tag); 411 inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag); 412 inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag); 413 inline void WriteTaggedData(intptr_t data_delta, int tag); 414 inline void WriteExtraTag(int extra_tag, int top_tag); 415 416 byte* pos_; 417 byte* last_pc_; 418 intptr_t last_data_; 419 DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter); 420 }; 421 422 423 // A RelocIterator iterates over relocation information. 424 // Typical use: 425 // 426 // for (RelocIterator it(code); !it.done(); it.next()) { 427 // // do something with it.rinfo() here 428 // } 429 // 430 // A mask can be specified to skip unwanted modes. 431 class RelocIterator: public Malloced { 432 public: 433 // Create a new iterator positioned at 434 // the beginning of the reloc info. 435 // Relocation information with mode k is included in the 436 // iteration iff bit k of mode_mask is set. 437 explicit RelocIterator(Code* code, int mode_mask = -1); 438 explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1); 439 440 // Iteration 441 bool done() const { return done_; } 442 void next(); 443 444 // Return pointer valid until next next(). 445 RelocInfo* rinfo() { 446 ASSERT(!done()); 447 return &rinfo_; 448 } 449 450 private: 451 // Advance* moves the position before/after reading. 452 // *Read* reads from current byte(s) into rinfo_. 453 // *Get* just reads and returns info on current byte. 454 void Advance(int bytes = 1) { pos_ -= bytes; } 455 int AdvanceGetTag(); 456 int GetExtraTag(); 457 int GetTopTag(); 458 void ReadTaggedPC(); 459 void AdvanceReadPC(); 460 void AdvanceReadData(); 461 void AdvanceReadVariableLengthPCJump(); 462 int GetPositionTypeTag(); 463 void ReadTaggedData(); 464 465 static RelocInfo::Mode DebugInfoModeFromTag(int tag); 466 467 // If the given mode is wanted, set it in rinfo_ and return true. 468 // Else return false. Used for efficiently skipping unwanted modes. 469 bool SetMode(RelocInfo::Mode mode) { 470 return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false; 471 } 472 473 byte* pos_; 474 byte* end_; 475 RelocInfo rinfo_; 476 bool done_; 477 int mode_mask_; 478 DISALLOW_COPY_AND_ASSIGN(RelocIterator); 479 }; 480 481 482 //------------------------------------------------------------------------------ 483 // External function 484 485 //---------------------------------------------------------------------------- 486 class IC_Utility; 487 class SCTableReference; 488 #ifdef ENABLE_DEBUGGER_SUPPORT 489 class Debug_Address; 490 #endif 491 492 493 // An ExternalReference represents a C++ address used in the generated 494 // code. All references to C++ functions and variables must be encapsulated in 495 // an ExternalReference instance. This is done in order to track the origin of 496 // all external references in the code so that they can be bound to the correct 497 // addresses when deserializing a heap. 498 class ExternalReference BASE_EMBEDDED { 499 public: 500 // Used in the simulator to support different native api calls. 501 enum Type { 502 // Builtin call. 503 // MaybeObject* f(v8::internal::Arguments). 504 BUILTIN_CALL, // default 505 506 // Builtin call that returns floating point. 507 // double f(double, double). 508 FP_RETURN_CALL, 509 510 // Direct call to API function callback. 511 // Handle<Value> f(v8::Arguments&) 512 DIRECT_API_CALL, 513 514 // Direct call to accessor getter callback. 515 // Handle<value> f(Local<String> property, AccessorInfo& info) 516 DIRECT_GETTER_CALL 517 }; 518 519 typedef void* ExternalReferenceRedirector(void* original, Type type); 520 521 ExternalReference(Builtins::CFunctionId id, Isolate* isolate); 522 523 ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate); 524 525 ExternalReference(Builtins::Name name, Isolate* isolate); 526 527 ExternalReference(Runtime::FunctionId id, Isolate* isolate); 528 529 ExternalReference(const Runtime::Function* f, Isolate* isolate); 530 531 ExternalReference(const IC_Utility& ic_utility, Isolate* isolate); 532 533 #ifdef ENABLE_DEBUGGER_SUPPORT 534 ExternalReference(const Debug_Address& debug_address, Isolate* isolate); 535 #endif 536 537 explicit ExternalReference(StatsCounter* counter); 538 539 ExternalReference(Isolate::AddressId id, Isolate* isolate); 540 541 explicit ExternalReference(const SCTableReference& table_ref); 542 543 // Isolate::Current() as an external reference. 544 static ExternalReference isolate_address(); 545 546 // One-of-a-kind references. These references are not part of a general 547 // pattern. This means that they have to be added to the 548 // ExternalReferenceTable in serialize.cc manually. 549 550 static ExternalReference perform_gc_function(Isolate* isolate); 551 static ExternalReference fill_heap_number_with_random_function( 552 Isolate* isolate); 553 static ExternalReference random_uint32_function(Isolate* isolate); 554 static ExternalReference transcendental_cache_array_address(Isolate* isolate); 555 static ExternalReference delete_handle_scope_extensions(Isolate* isolate); 556 557 // Deoptimization support. 558 static ExternalReference new_deoptimizer_function(Isolate* isolate); 559 static ExternalReference compute_output_frames_function(Isolate* isolate); 560 static ExternalReference global_contexts_list(Isolate* isolate); 561 562 // Static data in the keyed lookup cache. 563 static ExternalReference keyed_lookup_cache_keys(Isolate* isolate); 564 static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate); 565 566 // Static variable Factory::the_hole_value.location() 567 static ExternalReference the_hole_value_location(Isolate* isolate); 568 569 // Static variable Factory::arguments_marker.location() 570 static ExternalReference arguments_marker_location(Isolate* isolate); 571 572 // Static variable Heap::roots_address() 573 static ExternalReference roots_address(Isolate* isolate); 574 575 // Static variable StackGuard::address_of_jslimit() 576 static ExternalReference address_of_stack_limit(Isolate* isolate); 577 578 // Static variable StackGuard::address_of_real_jslimit() 579 static ExternalReference address_of_real_stack_limit(Isolate* isolate); 580 581 // Static variable RegExpStack::limit_address() 582 static ExternalReference address_of_regexp_stack_limit(Isolate* isolate); 583 584 // Static variables for RegExp. 585 static ExternalReference address_of_static_offsets_vector(Isolate* isolate); 586 static ExternalReference address_of_regexp_stack_memory_address( 587 Isolate* isolate); 588 static ExternalReference address_of_regexp_stack_memory_size( 589 Isolate* isolate); 590 591 // Static variable Heap::NewSpaceStart() 592 static ExternalReference new_space_start(Isolate* isolate); 593 static ExternalReference new_space_mask(Isolate* isolate); 594 static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate); 595 596 // Used for fast allocation in generated code. 597 static ExternalReference new_space_allocation_top_address(Isolate* isolate); 598 static ExternalReference new_space_allocation_limit_address(Isolate* isolate); 599 600 static ExternalReference double_fp_operation(Token::Value operation, 601 Isolate* isolate); 602 static ExternalReference compare_doubles(Isolate* isolate); 603 static ExternalReference power_double_double_function(Isolate* isolate); 604 static ExternalReference power_double_int_function(Isolate* isolate); 605 606 static ExternalReference handle_scope_next_address(); 607 static ExternalReference handle_scope_limit_address(); 608 static ExternalReference handle_scope_level_address(); 609 610 static ExternalReference scheduled_exception_address(Isolate* isolate); 611 612 // Static variables containing common double constants. 613 static ExternalReference address_of_min_int(); 614 static ExternalReference address_of_one_half(); 615 static ExternalReference address_of_minus_zero(); 616 static ExternalReference address_of_negative_infinity(); 617 static ExternalReference address_of_nan(); 618 619 static ExternalReference math_sin_double_function(Isolate* isolate); 620 static ExternalReference math_cos_double_function(Isolate* isolate); 621 static ExternalReference math_log_double_function(Isolate* isolate); 622 623 Address address() const {return reinterpret_cast<Address>(address_);} 624 625 #ifdef ENABLE_DEBUGGER_SUPPORT 626 // Function Debug::Break() 627 static ExternalReference debug_break(Isolate* isolate); 628 629 // Used to check if single stepping is enabled in generated code. 630 static ExternalReference debug_step_in_fp_address(Isolate* isolate); 631 #endif 632 633 #ifndef V8_INTERPRETED_REGEXP 634 // C functions called from RegExp generated code. 635 636 // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16() 637 static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate); 638 639 // Function RegExpMacroAssembler*::CheckStackGuardState() 640 static ExternalReference re_check_stack_guard_state(Isolate* isolate); 641 642 // Function NativeRegExpMacroAssembler::GrowStack() 643 static ExternalReference re_grow_stack(Isolate* isolate); 644 645 // byte NativeRegExpMacroAssembler::word_character_bitmap 646 static ExternalReference re_word_character_map(); 647 648 #endif 649 650 // This lets you register a function that rewrites all external references. 651 // Used by the ARM simulator to catch calls to external references. 652 static void set_redirector(ExternalReferenceRedirector* redirector) { 653 // We can't stack them. 654 ASSERT(Isolate::Current()->external_reference_redirector() == NULL); 655 Isolate::Current()->set_external_reference_redirector( 656 reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector)); 657 } 658 659 private: 660 explicit ExternalReference(void* address) 661 : address_(address) {} 662 663 static void* Redirect(Isolate* isolate, 664 void* address, 665 Type type = ExternalReference::BUILTIN_CALL) { 666 ExternalReferenceRedirector* redirector = 667 reinterpret_cast<ExternalReferenceRedirector*>( 668 isolate->external_reference_redirector()); 669 if (redirector == NULL) return address; 670 void* answer = (*redirector)(address, type); 671 return answer; 672 } 673 674 static void* Redirect(Isolate* isolate, 675 Address address_arg, 676 Type type = ExternalReference::BUILTIN_CALL) { 677 ExternalReferenceRedirector* redirector = 678 reinterpret_cast<ExternalReferenceRedirector*>( 679 isolate->external_reference_redirector()); 680 void* address = reinterpret_cast<void*>(address_arg); 681 void* answer = (redirector == NULL) ? 682 address : 683 (*redirector)(address, type); 684 return answer; 685 } 686 687 void* address_; 688 }; 689 690 691 // ----------------------------------------------------------------------------- 692 // Position recording support 693 694 struct PositionState { 695 PositionState() : current_position(RelocInfo::kNoPosition), 696 written_position(RelocInfo::kNoPosition), 697 current_statement_position(RelocInfo::kNoPosition), 698 written_statement_position(RelocInfo::kNoPosition) {} 699 700 int current_position; 701 int written_position; 702 703 int current_statement_position; 704 int written_statement_position; 705 }; 706 707 708 class PositionsRecorder BASE_EMBEDDED { 709 public: 710 explicit PositionsRecorder(Assembler* assembler) 711 : assembler_(assembler) { 712 #ifdef ENABLE_GDB_JIT_INTERFACE 713 gdbjit_lineinfo_ = NULL; 714 #endif 715 } 716 717 #ifdef ENABLE_GDB_JIT_INTERFACE 718 ~PositionsRecorder() { 719 delete gdbjit_lineinfo_; 720 } 721 722 void StartGDBJITLineInfoRecording() { 723 if (FLAG_gdbjit) { 724 gdbjit_lineinfo_ = new GDBJITLineInfo(); 725 } 726 } 727 728 GDBJITLineInfo* DetachGDBJITLineInfo() { 729 GDBJITLineInfo* lineinfo = gdbjit_lineinfo_; 730 gdbjit_lineinfo_ = NULL; // To prevent deallocation in destructor. 731 return lineinfo; 732 } 733 #endif 734 735 // Set current position to pos. 736 void RecordPosition(int pos); 737 738 // Set current statement position to pos. 739 void RecordStatementPosition(int pos); 740 741 // Write recorded positions to relocation information. 742 bool WriteRecordedPositions(); 743 744 int current_position() const { return state_.current_position; } 745 746 int current_statement_position() const { 747 return state_.current_statement_position; 748 } 749 750 private: 751 Assembler* assembler_; 752 PositionState state_; 753 #ifdef ENABLE_GDB_JIT_INTERFACE 754 GDBJITLineInfo* gdbjit_lineinfo_; 755 #endif 756 757 friend class PreservePositionScope; 758 759 DISALLOW_COPY_AND_ASSIGN(PositionsRecorder); 760 }; 761 762 763 class PreservePositionScope BASE_EMBEDDED { 764 public: 765 explicit PreservePositionScope(PositionsRecorder* positions_recorder) 766 : positions_recorder_(positions_recorder), 767 saved_state_(positions_recorder->state_) {} 768 769 ~PreservePositionScope() { 770 positions_recorder_->state_ = saved_state_; 771 } 772 773 private: 774 PositionsRecorder* positions_recorder_; 775 const PositionState saved_state_; 776 777 DISALLOW_COPY_AND_ASSIGN(PreservePositionScope); 778 }; 779 780 781 // ----------------------------------------------------------------------------- 782 // Utility functions 783 784 static inline bool is_intn(int x, int n) { 785 return -(1 << (n-1)) <= x && x < (1 << (n-1)); 786 } 787 788 static inline bool is_int8(int x) { return is_intn(x, 8); } 789 static inline bool is_int16(int x) { return is_intn(x, 16); } 790 static inline bool is_int18(int x) { return is_intn(x, 18); } 791 static inline bool is_int24(int x) { return is_intn(x, 24); } 792 793 static inline bool is_uintn(int x, int n) { 794 return (x & -(1 << n)) == 0; 795 } 796 797 static inline bool is_uint2(int x) { return is_uintn(x, 2); } 798 static inline bool is_uint3(int x) { return is_uintn(x, 3); } 799 static inline bool is_uint4(int x) { return is_uintn(x, 4); } 800 static inline bool is_uint5(int x) { return is_uintn(x, 5); } 801 static inline bool is_uint6(int x) { return is_uintn(x, 6); } 802 static inline bool is_uint8(int x) { return is_uintn(x, 8); } 803 static inline bool is_uint10(int x) { return is_uintn(x, 10); } 804 static inline bool is_uint12(int x) { return is_uintn(x, 12); } 805 static inline bool is_uint16(int x) { return is_uintn(x, 16); } 806 static inline bool is_uint24(int x) { return is_uintn(x, 24); } 807 static inline bool is_uint26(int x) { return is_uintn(x, 26); } 808 static inline bool is_uint28(int x) { return is_uintn(x, 28); } 809 810 static inline int NumberOfBitsSet(uint32_t x) { 811 unsigned int num_bits_set; 812 for (num_bits_set = 0; x; x >>= 1) { 813 num_bits_set += x & 1; 814 } 815 return num_bits_set; 816 } 817 818 // Computes pow(x, y) with the special cases in the spec for Math.pow. 819 double power_double_int(double x, int y); 820 double power_double_double(double x, double y); 821 822 } } // namespace v8::internal 823 824 #endif // V8_ASSEMBLER_H_ 825