Home | History | Annotate | Download | only in src
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2011 the V8 project authors. All rights reserved.
     34 
     35 #ifndef V8_ASSEMBLER_H_
     36 #define V8_ASSEMBLER_H_
     37 
     38 #include "gdb-jit.h"
     39 #include "runtime.h"
     40 #include "token.h"
     41 
     42 namespace v8 {
     43 namespace internal {
     44 
     45 
     46 // -----------------------------------------------------------------------------
     47 // Platform independent assembler base class.
     48 
     49 class AssemblerBase: public Malloced {
     50  public:
     51   explicit AssemblerBase(Isolate* isolate);
     52 
     53   Isolate* isolate() const { return isolate_; }
     54   int jit_cookie() { return jit_cookie_; }
     55 
     56  private:
     57   Isolate* isolate_;
     58   int jit_cookie_;
     59 };
     60 
     61 // -----------------------------------------------------------------------------
     62 // Common double constants.
     63 
     64 class DoubleConstant: public AllStatic {
     65  public:
     66   static const double min_int;
     67   static const double one_half;
     68   static const double minus_zero;
     69   static const double negative_infinity;
     70   static const double nan;
     71 };
     72 
     73 
     74 // -----------------------------------------------------------------------------
     75 // Labels represent pc locations; they are typically jump or call targets.
     76 // After declaration, a label can be freely used to denote known or (yet)
     77 // unknown pc location. Assembler::bind() is used to bind a label to the
     78 // current pc. A label can be bound only once.
     79 
     80 class Label BASE_EMBEDDED {
     81  public:
     82   INLINE(Label())                 { Unuse(); }
     83   INLINE(~Label())                { ASSERT(!is_linked()); }
     84 
     85   INLINE(void Unuse())            { pos_ = 0; }
     86 
     87   INLINE(bool is_bound() const)  { return pos_ <  0; }
     88   INLINE(bool is_unused() const)  { return pos_ == 0; }
     89   INLINE(bool is_linked() const)  { return pos_ >  0; }
     90 
     91   // Returns the position of bound or linked labels. Cannot be used
     92   // for unused labels.
     93   int pos() const;
     94 
     95  private:
     96   // pos_ encodes both the binding state (via its sign)
     97   // and the binding position (via its value) of a label.
     98   //
     99   // pos_ <  0  bound label, pos() returns the jump target position
    100   // pos_ == 0  unused label
    101   // pos_ >  0  linked label, pos() returns the last reference position
    102   int pos_;
    103 
    104   void bind_to(int pos)  {
    105     pos_ = -pos - 1;
    106     ASSERT(is_bound());
    107   }
    108   void link_to(int pos)  {
    109     pos_ =  pos + 1;
    110     ASSERT(is_linked());
    111   }
    112 
    113   friend class Assembler;
    114   friend class RegexpAssembler;
    115   friend class Displacement;
    116   friend class RegExpMacroAssemblerIrregexp;
    117 };
    118 
    119 
    120 // -----------------------------------------------------------------------------
    121 // NearLabels are labels used for short jumps (in Intel jargon).
    122 // NearLabels should be used if it can be guaranteed that the jump range is
    123 // within -128 to +127. We already use short jumps when jumping backwards,
    124 // so using a NearLabel will only have performance impact if used for forward
    125 // jumps.
    126 class NearLabel BASE_EMBEDDED {
    127  public:
    128   NearLabel() { Unuse(); }
    129   ~NearLabel() { ASSERT(!is_linked()); }
    130 
    131   void Unuse() {
    132     pos_ = -1;
    133     unresolved_branches_ = 0;
    134 #ifdef DEBUG
    135     for (int i = 0; i < kMaxUnresolvedBranches; i++) {
    136       unresolved_positions_[i] = -1;
    137     }
    138 #endif
    139   }
    140 
    141   int pos() {
    142     ASSERT(is_bound());
    143     return pos_;
    144   }
    145 
    146   bool is_bound() { return pos_ >= 0; }
    147   bool is_linked() { return !is_bound() && unresolved_branches_ > 0; }
    148   bool is_unused() { return !is_bound() && unresolved_branches_ == 0; }
    149 
    150   void bind_to(int position) {
    151     ASSERT(!is_bound());
    152     pos_ = position;
    153   }
    154 
    155   void link_to(int position) {
    156     ASSERT(!is_bound());
    157     ASSERT(unresolved_branches_ < kMaxUnresolvedBranches);
    158     unresolved_positions_[unresolved_branches_++] = position;
    159   }
    160 
    161  private:
    162   static const int kMaxUnresolvedBranches = 8;
    163   int pos_;
    164   int unresolved_branches_;
    165   int unresolved_positions_[kMaxUnresolvedBranches];
    166 
    167   friend class Assembler;
    168 };
    169 
    170 
    171 // -----------------------------------------------------------------------------
    172 // Relocation information
    173 
    174 
    175 // Relocation information consists of the address (pc) of the datum
    176 // to which the relocation information applies, the relocation mode
    177 // (rmode), and an optional data field. The relocation mode may be
    178 // "descriptive" and not indicate a need for relocation, but simply
    179 // describe a property of the datum. Such rmodes are useful for GC
    180 // and nice disassembly output.
    181 
    182 class RelocInfo BASE_EMBEDDED {
    183  public:
    184   // The constant kNoPosition is used with the collecting of source positions
    185   // in the relocation information. Two types of source positions are collected
    186   // "position" (RelocMode position) and "statement position" (RelocMode
    187   // statement_position). The "position" is collected at places in the source
    188   // code which are of interest when making stack traces to pin-point the source
    189   // location of a stack frame as close as possible. The "statement position" is
    190   // collected at the beginning at each statement, and is used to indicate
    191   // possible break locations. kNoPosition is used to indicate an
    192   // invalid/uninitialized position value.
    193   static const int kNoPosition = -1;
    194 
    195   // This string is used to add padding comments to the reloc info in cases
    196   // where we are not sure to have enough space for patching in during
    197   // lazy deoptimization. This is the case if we have indirect calls for which
    198   // we do not normally record relocation info.
    199   static const char* kFillerCommentString;
    200 
    201   // The minimum size of a comment is equal to three bytes for the extra tagged
    202   // pc + the tag for the data, and kPointerSize for the actual pointer to the
    203   // comment.
    204   static const int kMinRelocCommentSize = 3 + kPointerSize;
    205 
    206   // The maximum size for a call instruction including pc-jump.
    207   static const int kMaxCallSize = 6;
    208 
    209   // The maximum pc delta that will use the short encoding.
    210   static const int kMaxSmallPCDelta;
    211 
    212   enum Mode {
    213     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    214     CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
    215     CODE_TARGET_CONTEXT,  // Code target used for contextual loads and stores.
    216     DEBUG_BREAK,  // Code target for the debugger statement.
    217     CODE_TARGET,  // Code target which is not any of the above.
    218     EMBEDDED_OBJECT,
    219     GLOBAL_PROPERTY_CELL,
    220 
    221     // Everything after runtime_entry (inclusive) is not GC'ed.
    222     RUNTIME_ENTRY,
    223     JS_RETURN,  // Marks start of the ExitJSFrame code.
    224     COMMENT,
    225     POSITION,  // See comment for kNoPosition above.
    226     STATEMENT_POSITION,  // See comment for kNoPosition above.
    227     DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
    228     EXTERNAL_REFERENCE,  // The address of an external C++ function.
    229     INTERNAL_REFERENCE,  // An address inside the same function.
    230 
    231     // add more as needed
    232     // Pseudo-types
    233     NUMBER_OF_MODES,  // must be no greater than 14 - see RelocInfoWriter
    234     NONE,  // never recorded
    235     LAST_CODE_ENUM = CODE_TARGET,
    236     LAST_GCED_ENUM = GLOBAL_PROPERTY_CELL
    237   };
    238 
    239 
    240   RelocInfo() {}
    241   RelocInfo(byte* pc, Mode rmode, intptr_t data)
    242       : pc_(pc), rmode_(rmode), data_(data) {
    243   }
    244 
    245   static inline bool IsConstructCall(Mode mode) {
    246     return mode == CONSTRUCT_CALL;
    247   }
    248   static inline bool IsCodeTarget(Mode mode) {
    249     return mode <= LAST_CODE_ENUM;
    250   }
    251   // Is the relocation mode affected by GC?
    252   static inline bool IsGCRelocMode(Mode mode) {
    253     return mode <= LAST_GCED_ENUM;
    254   }
    255   static inline bool IsJSReturn(Mode mode) {
    256     return mode == JS_RETURN;
    257   }
    258   static inline bool IsComment(Mode mode) {
    259     return mode == COMMENT;
    260   }
    261   static inline bool IsPosition(Mode mode) {
    262     return mode == POSITION || mode == STATEMENT_POSITION;
    263   }
    264   static inline bool IsStatementPosition(Mode mode) {
    265     return mode == STATEMENT_POSITION;
    266   }
    267   static inline bool IsExternalReference(Mode mode) {
    268     return mode == EXTERNAL_REFERENCE;
    269   }
    270   static inline bool IsInternalReference(Mode mode) {
    271     return mode == INTERNAL_REFERENCE;
    272   }
    273   static inline bool IsDebugBreakSlot(Mode mode) {
    274     return mode == DEBUG_BREAK_SLOT;
    275   }
    276   static inline int ModeMask(Mode mode) { return 1 << mode; }
    277 
    278   // Accessors
    279   byte* pc() const { return pc_; }
    280   void set_pc(byte* pc) { pc_ = pc; }
    281   Mode rmode() const {  return rmode_; }
    282   intptr_t data() const { return data_; }
    283 
    284   // Apply a relocation by delta bytes
    285   INLINE(void apply(intptr_t delta));
    286 
    287   // Is the pointer this relocation info refers to coded like a plain pointer
    288   // or is it strange in some way (eg relative or patched into a series of
    289   // instructions).
    290   bool IsCodedSpecially();
    291 
    292   // Read/modify the code target in the branch/call instruction
    293   // this relocation applies to;
    294   // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
    295   INLINE(Address target_address());
    296   INLINE(void set_target_address(Address target));
    297   INLINE(Object* target_object());
    298   INLINE(Handle<Object> target_object_handle(Assembler* origin));
    299   INLINE(Object** target_object_address());
    300   INLINE(void set_target_object(Object* target));
    301   INLINE(JSGlobalPropertyCell* target_cell());
    302   INLINE(Handle<JSGlobalPropertyCell> target_cell_handle());
    303   INLINE(void set_target_cell(JSGlobalPropertyCell* cell));
    304 
    305 
    306   // Read the address of the word containing the target_address in an
    307   // instruction stream.  What this means exactly is architecture-independent.
    308   // The only architecture-independent user of this function is the serializer.
    309   // The serializer uses it to find out how many raw bytes of instruction to
    310   // output before the next target.  Architecture-independent code shouldn't
    311   // dereference the pointer it gets back from this.
    312   INLINE(Address target_address_address());
    313   // This indicates how much space a target takes up when deserializing a code
    314   // stream.  For most architectures this is just the size of a pointer.  For
    315   // an instruction like movw/movt where the target bits are mixed into the
    316   // instruction bits the size of the target will be zero, indicating that the
    317   // serializer should not step forwards in memory after a target is resolved
    318   // and written.  In this case the target_address_address function above
    319   // should return the end of the instructions to be patched, allowing the
    320   // deserializer to deserialize the instructions as raw bytes and put them in
    321   // place, ready to be patched with the target.
    322   INLINE(int target_address_size());
    323 
    324   // Read/modify the reference in the instruction this relocation
    325   // applies to; can only be called if rmode_ is external_reference
    326   INLINE(Address* target_reference_address());
    327 
    328   // Read/modify the address of a call instruction. This is used to relocate
    329   // the break points where straight-line code is patched with a call
    330   // instruction.
    331   INLINE(Address call_address());
    332   INLINE(void set_call_address(Address target));
    333   INLINE(Object* call_object());
    334   INLINE(void set_call_object(Object* target));
    335   INLINE(Object** call_object_address());
    336 
    337   template<typename StaticVisitor> inline void Visit(Heap* heap);
    338   inline void Visit(ObjectVisitor* v);
    339 
    340   // Patch the code with some other code.
    341   void PatchCode(byte* instructions, int instruction_count);
    342 
    343   // Patch the code with a call.
    344   void PatchCodeWithCall(Address target, int guard_bytes);
    345 
    346   // Check whether this return sequence has been patched
    347   // with a call to the debugger.
    348   INLINE(bool IsPatchedReturnSequence());
    349 
    350   // Check whether this debug break slot has been patched with a call to the
    351   // debugger.
    352   INLINE(bool IsPatchedDebugBreakSlotSequence());
    353 
    354 #ifdef ENABLE_DISASSEMBLER
    355   // Printing
    356   static const char* RelocModeName(Mode rmode);
    357   void Print(FILE* out);
    358 #endif  // ENABLE_DISASSEMBLER
    359 #ifdef DEBUG
    360   // Debugging
    361   void Verify();
    362 #endif
    363 
    364   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
    365   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
    366   static const int kDebugMask = kPositionMask | 1 << COMMENT;
    367   static const int kApplyMask;  // Modes affected by apply. Depends on arch.
    368 
    369  private:
    370   // On ARM, note that pc_ is the address of the constant pool entry
    371   // to be relocated and not the address of the instruction
    372   // referencing the constant pool entry (except when rmode_ ==
    373   // comment).
    374   byte* pc_;
    375   Mode rmode_;
    376   intptr_t data_;
    377   friend class RelocIterator;
    378 };
    379 
    380 
    381 // RelocInfoWriter serializes a stream of relocation info. It writes towards
    382 // lower addresses.
    383 class RelocInfoWriter BASE_EMBEDDED {
    384  public:
    385   RelocInfoWriter() : pos_(NULL), last_pc_(NULL), last_data_(0) {}
    386   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc),
    387                                          last_data_(0) {}
    388 
    389   byte* pos() const { return pos_; }
    390   byte* last_pc() const { return last_pc_; }
    391 
    392   void Write(const RelocInfo* rinfo);
    393 
    394   // Update the state of the stream after reloc info buffer
    395   // and/or code is moved while the stream is active.
    396   void Reposition(byte* pos, byte* pc) {
    397     pos_ = pos;
    398     last_pc_ = pc;
    399   }
    400 
    401   // Max size (bytes) of a written RelocInfo. Longest encoding is
    402   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
    403   // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
    404   // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
    405   // Here we use the maximum of the two.
    406   static const int kMaxSize = 16;
    407 
    408  private:
    409   inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
    410   inline void WriteTaggedPC(uint32_t pc_delta, int tag);
    411   inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
    412   inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
    413   inline void WriteTaggedData(intptr_t data_delta, int tag);
    414   inline void WriteExtraTag(int extra_tag, int top_tag);
    415 
    416   byte* pos_;
    417   byte* last_pc_;
    418   intptr_t last_data_;
    419   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
    420 };
    421 
    422 
    423 // A RelocIterator iterates over relocation information.
    424 // Typical use:
    425 //
    426 //   for (RelocIterator it(code); !it.done(); it.next()) {
    427 //     // do something with it.rinfo() here
    428 //   }
    429 //
    430 // A mask can be specified to skip unwanted modes.
    431 class RelocIterator: public Malloced {
    432  public:
    433   // Create a new iterator positioned at
    434   // the beginning of the reloc info.
    435   // Relocation information with mode k is included in the
    436   // iteration iff bit k of mode_mask is set.
    437   explicit RelocIterator(Code* code, int mode_mask = -1);
    438   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
    439 
    440   // Iteration
    441   bool done() const { return done_; }
    442   void next();
    443 
    444   // Return pointer valid until next next().
    445   RelocInfo* rinfo() {
    446     ASSERT(!done());
    447     return &rinfo_;
    448   }
    449 
    450  private:
    451   // Advance* moves the position before/after reading.
    452   // *Read* reads from current byte(s) into rinfo_.
    453   // *Get* just reads and returns info on current byte.
    454   void Advance(int bytes = 1) { pos_ -= bytes; }
    455   int AdvanceGetTag();
    456   int GetExtraTag();
    457   int GetTopTag();
    458   void ReadTaggedPC();
    459   void AdvanceReadPC();
    460   void AdvanceReadData();
    461   void AdvanceReadVariableLengthPCJump();
    462   int GetPositionTypeTag();
    463   void ReadTaggedData();
    464 
    465   static RelocInfo::Mode DebugInfoModeFromTag(int tag);
    466 
    467   // If the given mode is wanted, set it in rinfo_ and return true.
    468   // Else return false. Used for efficiently skipping unwanted modes.
    469   bool SetMode(RelocInfo::Mode mode) {
    470     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
    471   }
    472 
    473   byte* pos_;
    474   byte* end_;
    475   RelocInfo rinfo_;
    476   bool done_;
    477   int mode_mask_;
    478   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
    479 };
    480 
    481 
    482 //------------------------------------------------------------------------------
    483 // External function
    484 
    485 //----------------------------------------------------------------------------
    486 class IC_Utility;
    487 class SCTableReference;
    488 #ifdef ENABLE_DEBUGGER_SUPPORT
    489 class Debug_Address;
    490 #endif
    491 
    492 
    493 // An ExternalReference represents a C++ address used in the generated
    494 // code. All references to C++ functions and variables must be encapsulated in
    495 // an ExternalReference instance. This is done in order to track the origin of
    496 // all external references in the code so that they can be bound to the correct
    497 // addresses when deserializing a heap.
    498 class ExternalReference BASE_EMBEDDED {
    499  public:
    500   // Used in the simulator to support different native api calls.
    501   enum Type {
    502     // Builtin call.
    503     // MaybeObject* f(v8::internal::Arguments).
    504     BUILTIN_CALL,  // default
    505 
    506     // Builtin call that returns floating point.
    507     // double f(double, double).
    508     FP_RETURN_CALL,
    509 
    510     // Direct call to API function callback.
    511     // Handle<Value> f(v8::Arguments&)
    512     DIRECT_API_CALL,
    513 
    514     // Direct call to accessor getter callback.
    515     // Handle<value> f(Local<String> property, AccessorInfo& info)
    516     DIRECT_GETTER_CALL
    517   };
    518 
    519   typedef void* ExternalReferenceRedirector(void* original, Type type);
    520 
    521   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
    522 
    523   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
    524 
    525   ExternalReference(Builtins::Name name, Isolate* isolate);
    526 
    527   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
    528 
    529   ExternalReference(const Runtime::Function* f, Isolate* isolate);
    530 
    531   ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
    532 
    533 #ifdef ENABLE_DEBUGGER_SUPPORT
    534   ExternalReference(const Debug_Address& debug_address, Isolate* isolate);
    535 #endif
    536 
    537   explicit ExternalReference(StatsCounter* counter);
    538 
    539   ExternalReference(Isolate::AddressId id, Isolate* isolate);
    540 
    541   explicit ExternalReference(const SCTableReference& table_ref);
    542 
    543   // Isolate::Current() as an external reference.
    544   static ExternalReference isolate_address();
    545 
    546   // One-of-a-kind references. These references are not part of a general
    547   // pattern. This means that they have to be added to the
    548   // ExternalReferenceTable in serialize.cc manually.
    549 
    550   static ExternalReference perform_gc_function(Isolate* isolate);
    551   static ExternalReference fill_heap_number_with_random_function(
    552       Isolate* isolate);
    553   static ExternalReference random_uint32_function(Isolate* isolate);
    554   static ExternalReference transcendental_cache_array_address(Isolate* isolate);
    555   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
    556 
    557   // Deoptimization support.
    558   static ExternalReference new_deoptimizer_function(Isolate* isolate);
    559   static ExternalReference compute_output_frames_function(Isolate* isolate);
    560   static ExternalReference global_contexts_list(Isolate* isolate);
    561 
    562   // Static data in the keyed lookup cache.
    563   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
    564   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
    565 
    566   // Static variable Factory::the_hole_value.location()
    567   static ExternalReference the_hole_value_location(Isolate* isolate);
    568 
    569   // Static variable Factory::arguments_marker.location()
    570   static ExternalReference arguments_marker_location(Isolate* isolate);
    571 
    572   // Static variable Heap::roots_address()
    573   static ExternalReference roots_address(Isolate* isolate);
    574 
    575   // Static variable StackGuard::address_of_jslimit()
    576   static ExternalReference address_of_stack_limit(Isolate* isolate);
    577 
    578   // Static variable StackGuard::address_of_real_jslimit()
    579   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
    580 
    581   // Static variable RegExpStack::limit_address()
    582   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
    583 
    584   // Static variables for RegExp.
    585   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
    586   static ExternalReference address_of_regexp_stack_memory_address(
    587       Isolate* isolate);
    588   static ExternalReference address_of_regexp_stack_memory_size(
    589       Isolate* isolate);
    590 
    591   // Static variable Heap::NewSpaceStart()
    592   static ExternalReference new_space_start(Isolate* isolate);
    593   static ExternalReference new_space_mask(Isolate* isolate);
    594   static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
    595 
    596   // Used for fast allocation in generated code.
    597   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
    598   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
    599 
    600   static ExternalReference double_fp_operation(Token::Value operation,
    601                                                Isolate* isolate);
    602   static ExternalReference compare_doubles(Isolate* isolate);
    603   static ExternalReference power_double_double_function(Isolate* isolate);
    604   static ExternalReference power_double_int_function(Isolate* isolate);
    605 
    606   static ExternalReference handle_scope_next_address();
    607   static ExternalReference handle_scope_limit_address();
    608   static ExternalReference handle_scope_level_address();
    609 
    610   static ExternalReference scheduled_exception_address(Isolate* isolate);
    611 
    612   // Static variables containing common double constants.
    613   static ExternalReference address_of_min_int();
    614   static ExternalReference address_of_one_half();
    615   static ExternalReference address_of_minus_zero();
    616   static ExternalReference address_of_negative_infinity();
    617   static ExternalReference address_of_nan();
    618 
    619   static ExternalReference math_sin_double_function(Isolate* isolate);
    620   static ExternalReference math_cos_double_function(Isolate* isolate);
    621   static ExternalReference math_log_double_function(Isolate* isolate);
    622 
    623   Address address() const {return reinterpret_cast<Address>(address_);}
    624 
    625 #ifdef ENABLE_DEBUGGER_SUPPORT
    626   // Function Debug::Break()
    627   static ExternalReference debug_break(Isolate* isolate);
    628 
    629   // Used to check if single stepping is enabled in generated code.
    630   static ExternalReference debug_step_in_fp_address(Isolate* isolate);
    631 #endif
    632 
    633 #ifndef V8_INTERPRETED_REGEXP
    634   // C functions called from RegExp generated code.
    635 
    636   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
    637   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
    638 
    639   // Function RegExpMacroAssembler*::CheckStackGuardState()
    640   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
    641 
    642   // Function NativeRegExpMacroAssembler::GrowStack()
    643   static ExternalReference re_grow_stack(Isolate* isolate);
    644 
    645   // byte NativeRegExpMacroAssembler::word_character_bitmap
    646   static ExternalReference re_word_character_map();
    647 
    648 #endif
    649 
    650   // This lets you register a function that rewrites all external references.
    651   // Used by the ARM simulator to catch calls to external references.
    652   static void set_redirector(ExternalReferenceRedirector* redirector) {
    653     // We can't stack them.
    654     ASSERT(Isolate::Current()->external_reference_redirector() == NULL);
    655     Isolate::Current()->set_external_reference_redirector(
    656         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
    657   }
    658 
    659  private:
    660   explicit ExternalReference(void* address)
    661       : address_(address) {}
    662 
    663   static void* Redirect(Isolate* isolate,
    664                         void* address,
    665                         Type type = ExternalReference::BUILTIN_CALL) {
    666     ExternalReferenceRedirector* redirector =
    667         reinterpret_cast<ExternalReferenceRedirector*>(
    668             isolate->external_reference_redirector());
    669     if (redirector == NULL) return address;
    670     void* answer = (*redirector)(address, type);
    671     return answer;
    672   }
    673 
    674   static void* Redirect(Isolate* isolate,
    675                         Address address_arg,
    676                         Type type = ExternalReference::BUILTIN_CALL) {
    677     ExternalReferenceRedirector* redirector =
    678         reinterpret_cast<ExternalReferenceRedirector*>(
    679             isolate->external_reference_redirector());
    680     void* address = reinterpret_cast<void*>(address_arg);
    681     void* answer = (redirector == NULL) ?
    682                    address :
    683                    (*redirector)(address, type);
    684     return answer;
    685   }
    686 
    687   void* address_;
    688 };
    689 
    690 
    691 // -----------------------------------------------------------------------------
    692 // Position recording support
    693 
    694 struct PositionState {
    695   PositionState() : current_position(RelocInfo::kNoPosition),
    696                     written_position(RelocInfo::kNoPosition),
    697                     current_statement_position(RelocInfo::kNoPosition),
    698                     written_statement_position(RelocInfo::kNoPosition) {}
    699 
    700   int current_position;
    701   int written_position;
    702 
    703   int current_statement_position;
    704   int written_statement_position;
    705 };
    706 
    707 
    708 class PositionsRecorder BASE_EMBEDDED {
    709  public:
    710   explicit PositionsRecorder(Assembler* assembler)
    711       : assembler_(assembler) {
    712 #ifdef ENABLE_GDB_JIT_INTERFACE
    713     gdbjit_lineinfo_ = NULL;
    714 #endif
    715   }
    716 
    717 #ifdef ENABLE_GDB_JIT_INTERFACE
    718   ~PositionsRecorder() {
    719     delete gdbjit_lineinfo_;
    720   }
    721 
    722   void StartGDBJITLineInfoRecording() {
    723     if (FLAG_gdbjit) {
    724       gdbjit_lineinfo_ = new GDBJITLineInfo();
    725     }
    726   }
    727 
    728   GDBJITLineInfo* DetachGDBJITLineInfo() {
    729     GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
    730     gdbjit_lineinfo_ = NULL;  // To prevent deallocation in destructor.
    731     return lineinfo;
    732   }
    733 #endif
    734 
    735   // Set current position to pos.
    736   void RecordPosition(int pos);
    737 
    738   // Set current statement position to pos.
    739   void RecordStatementPosition(int pos);
    740 
    741   // Write recorded positions to relocation information.
    742   bool WriteRecordedPositions();
    743 
    744   int current_position() const { return state_.current_position; }
    745 
    746   int current_statement_position() const {
    747     return state_.current_statement_position;
    748   }
    749 
    750  private:
    751   Assembler* assembler_;
    752   PositionState state_;
    753 #ifdef ENABLE_GDB_JIT_INTERFACE
    754   GDBJITLineInfo* gdbjit_lineinfo_;
    755 #endif
    756 
    757   friend class PreservePositionScope;
    758 
    759   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
    760 };
    761 
    762 
    763 class PreservePositionScope BASE_EMBEDDED {
    764  public:
    765   explicit PreservePositionScope(PositionsRecorder* positions_recorder)
    766       : positions_recorder_(positions_recorder),
    767         saved_state_(positions_recorder->state_) {}
    768 
    769   ~PreservePositionScope() {
    770     positions_recorder_->state_ = saved_state_;
    771   }
    772 
    773  private:
    774   PositionsRecorder* positions_recorder_;
    775   const PositionState saved_state_;
    776 
    777   DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
    778 };
    779 
    780 
    781 // -----------------------------------------------------------------------------
    782 // Utility functions
    783 
    784 static inline bool is_intn(int x, int n)  {
    785   return -(1 << (n-1)) <= x && x < (1 << (n-1));
    786 }
    787 
    788 static inline bool is_int8(int x)  { return is_intn(x, 8); }
    789 static inline bool is_int16(int x)  { return is_intn(x, 16); }
    790 static inline bool is_int18(int x)  { return is_intn(x, 18); }
    791 static inline bool is_int24(int x)  { return is_intn(x, 24); }
    792 
    793 static inline bool is_uintn(int x, int n) {
    794   return (x & -(1 << n)) == 0;
    795 }
    796 
    797 static inline bool is_uint2(int x)  { return is_uintn(x, 2); }
    798 static inline bool is_uint3(int x)  { return is_uintn(x, 3); }
    799 static inline bool is_uint4(int x)  { return is_uintn(x, 4); }
    800 static inline bool is_uint5(int x)  { return is_uintn(x, 5); }
    801 static inline bool is_uint6(int x)  { return is_uintn(x, 6); }
    802 static inline bool is_uint8(int x)  { return is_uintn(x, 8); }
    803 static inline bool is_uint10(int x)  { return is_uintn(x, 10); }
    804 static inline bool is_uint12(int x)  { return is_uintn(x, 12); }
    805 static inline bool is_uint16(int x)  { return is_uintn(x, 16); }
    806 static inline bool is_uint24(int x)  { return is_uintn(x, 24); }
    807 static inline bool is_uint26(int x)  { return is_uintn(x, 26); }
    808 static inline bool is_uint28(int x)  { return is_uintn(x, 28); }
    809 
    810 static inline int NumberOfBitsSet(uint32_t x) {
    811   unsigned int num_bits_set;
    812   for (num_bits_set = 0; x; x >>= 1) {
    813     num_bits_set += x & 1;
    814   }
    815   return num_bits_set;
    816 }
    817 
    818 // Computes pow(x, y) with the special cases in the spec for Math.pow.
    819 double power_double_int(double x, int y);
    820 double power_double_double(double x, double y);
    821 
    822 } }  // namespace v8::internal
    823 
    824 #endif  // V8_ASSEMBLER_H_
    825