Home | History | Annotate | Download | only in ExecutionEngine
      1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the abstract interface that implements execution support
     11 // for LLVM.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_EXECUTION_ENGINE_H
     16 #define LLVM_EXECUTION_ENGINE_H
     17 
     18 #include <vector>
     19 #include <map>
     20 #include <string>
     21 #include "llvm/MC/MCCodeGenInfo.h"
     22 #include "llvm/ADT/SmallVector.h"
     23 #include "llvm/ADT/StringRef.h"
     24 #include "llvm/ADT/ValueMap.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/Support/ValueHandle.h"
     27 #include "llvm/Support/Mutex.h"
     28 #include "llvm/Target/TargetMachine.h"
     29 
     30 namespace llvm {
     31 
     32 struct GenericValue;
     33 class Constant;
     34 class ExecutionEngine;
     35 class Function;
     36 class GlobalVariable;
     37 class GlobalValue;
     38 class JITEventListener;
     39 class JITMemoryManager;
     40 class MachineCodeInfo;
     41 class Module;
     42 class MutexGuard;
     43 class TargetData;
     44 class Type;
     45 
     46 /// \brief Helper class for helping synchronize access to the global address map
     47 /// table.
     48 class ExecutionEngineState {
     49 public:
     50   struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
     51     typedef ExecutionEngineState *ExtraData;
     52     static sys::Mutex *getMutex(ExecutionEngineState *EES);
     53     static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
     54     static void onRAUW(ExecutionEngineState *, const GlobalValue *,
     55                        const GlobalValue *);
     56   };
     57 
     58   typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
     59       GlobalAddressMapTy;
     60 
     61 private:
     62   ExecutionEngine &EE;
     63 
     64   /// GlobalAddressMap - A mapping between LLVM global values and their
     65   /// actualized version...
     66   GlobalAddressMapTy GlobalAddressMap;
     67 
     68   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
     69   /// used to convert raw addresses into the LLVM global value that is emitted
     70   /// at the address.  This map is not computed unless getGlobalValueAtAddress
     71   /// is called at some point.
     72   std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
     73 
     74 public:
     75   ExecutionEngineState(ExecutionEngine &EE);
     76 
     77   GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
     78     return GlobalAddressMap;
     79   }
     80 
     81   std::map<void*, AssertingVH<const GlobalValue> > &
     82   getGlobalAddressReverseMap(const MutexGuard &) {
     83     return GlobalAddressReverseMap;
     84   }
     85 
     86   /// \brief Erase an entry from the mapping table.
     87   ///
     88   /// \returns The address that \arg ToUnmap was happed to.
     89   void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
     90 };
     91 
     92 /// \brief Abstract interface for implementation execution of LLVM modules,
     93 /// designed to support both interpreter and just-in-time (JIT) compiler
     94 /// implementations.
     95 class ExecutionEngine {
     96   /// The state object holding the global address mapping, which must be
     97   /// accessed synchronously.
     98   //
     99   // FIXME: There is no particular need the entire map needs to be
    100   // synchronized.  Wouldn't a reader-writer design be better here?
    101   ExecutionEngineState EEState;
    102 
    103   /// The target data for the platform for which execution is being performed.
    104   const TargetData *TD;
    105 
    106   /// Whether lazy JIT compilation is enabled.
    107   bool CompilingLazily;
    108 
    109   /// Whether JIT compilation of external global variables is allowed.
    110   bool GVCompilationDisabled;
    111 
    112   /// Whether the JIT should perform lookups of external symbols (e.g.,
    113   /// using dlsym).
    114   bool SymbolSearchingDisabled;
    115 
    116   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
    117 
    118 protected:
    119   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
    120   /// optimize for the case where there is only one module.
    121   SmallVector<Module*, 1> Modules;
    122 
    123   void setTargetData(const TargetData *td) {
    124     TD = td;
    125   }
    126 
    127   /// getMemoryforGV - Allocate memory for a global variable.
    128   virtual char *getMemoryForGV(const GlobalVariable *GV);
    129 
    130   // To avoid having libexecutionengine depend on the JIT and interpreter
    131   // libraries, the execution engine implementations set these functions to ctor
    132   // pointers at startup time if they are linked in.
    133   static ExecutionEngine *(*JITCtor)(
    134     Module *M,
    135     std::string *ErrorStr,
    136     JITMemoryManager *JMM,
    137     CodeGenOpt::Level OptLevel,
    138     bool GVsWithCode,
    139     TargetMachine *TM);
    140   static ExecutionEngine *(*MCJITCtor)(
    141     Module *M,
    142     std::string *ErrorStr,
    143     JITMemoryManager *JMM,
    144     CodeGenOpt::Level OptLevel,
    145     bool GVsWithCode,
    146     TargetMachine *TM);
    147   static ExecutionEngine *(*InterpCtor)(Module *M,
    148                                         std::string *ErrorStr);
    149 
    150   /// LazyFunctionCreator - If an unknown function is needed, this function
    151   /// pointer is invoked to create it.  If this returns null, the JIT will
    152   /// abort.
    153   void *(*LazyFunctionCreator)(const std::string &);
    154 
    155   /// ExceptionTableRegister - If Exception Handling is set, the JIT will
    156   /// register dwarf tables with this function.
    157   typedef void (*EERegisterFn)(void*);
    158   EERegisterFn ExceptionTableRegister;
    159   EERegisterFn ExceptionTableDeregister;
    160   /// This maps functions to their exception tables frames.
    161   DenseMap<const Function*, void*> AllExceptionTables;
    162 
    163 
    164 public:
    165   /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
    166   /// JITEmitter classes.  It must be held while changing the internal state of
    167   /// any of those classes.
    168   sys::Mutex lock;
    169 
    170   //===--------------------------------------------------------------------===//
    171   //  ExecutionEngine Startup
    172   //===--------------------------------------------------------------------===//
    173 
    174   virtual ~ExecutionEngine();
    175 
    176   /// create - This is the factory method for creating an execution engine which
    177   /// is appropriate for the current machine.  This takes ownership of the
    178   /// module.
    179   ///
    180   /// \param GVsWithCode - Allocating globals with code breaks
    181   /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
    182   /// However, we have clients who depend on this behavior, so we must support
    183   /// it.  Eventually, when we're willing to break some backwards compatibility,
    184   /// this flag should be flipped to false, so that by default
    185   /// freeMachineCodeForFunction works.
    186   static ExecutionEngine *create(Module *M,
    187                                  bool ForceInterpreter = false,
    188                                  std::string *ErrorStr = 0,
    189                                  CodeGenOpt::Level OptLevel =
    190                                    CodeGenOpt::Default,
    191                                  bool GVsWithCode = true);
    192 
    193   /// createJIT - This is the factory method for creating a JIT for the current
    194   /// machine, it does not fall back to the interpreter.  This takes ownership
    195   /// of the Module and JITMemoryManager if successful.
    196   ///
    197   /// Clients should make sure to initialize targets prior to calling this
    198   /// function.
    199   static ExecutionEngine *createJIT(Module *M,
    200                                     std::string *ErrorStr = 0,
    201                                     JITMemoryManager *JMM = 0,
    202                                     CodeGenOpt::Level OptLevel =
    203                                       CodeGenOpt::Default,
    204                                     bool GVsWithCode = true,
    205                                     Reloc::Model RM = Reloc::Default,
    206                                     CodeModel::Model CMM =
    207                                       CodeModel::Default);
    208 
    209   /// addModule - Add a Module to the list of modules that we can JIT from.
    210   /// Note that this takes ownership of the Module: when the ExecutionEngine is
    211   /// destroyed, it destroys the Module as well.
    212   virtual void addModule(Module *M) {
    213     Modules.push_back(M);
    214   }
    215 
    216   //===--------------------------------------------------------------------===//
    217 
    218   const TargetData *getTargetData() const { return TD; }
    219 
    220   /// removeModule - Remove a Module from the list of modules.  Returns true if
    221   /// M is found.
    222   virtual bool removeModule(Module *M);
    223 
    224   /// FindFunctionNamed - Search all of the active modules to find the one that
    225   /// defines FnName.  This is very slow operation and shouldn't be used for
    226   /// general code.
    227   Function *FindFunctionNamed(const char *FnName);
    228 
    229   /// runFunction - Execute the specified function with the specified arguments,
    230   /// and return the result.
    231   virtual GenericValue runFunction(Function *F,
    232                                 const std::vector<GenericValue> &ArgValues) = 0;
    233 
    234   /// runStaticConstructorsDestructors - This method is used to execute all of
    235   /// the static constructors or destructors for a program.
    236   ///
    237   /// \param isDtors - Run the destructors instead of constructors.
    238   void runStaticConstructorsDestructors(bool isDtors);
    239 
    240   /// runStaticConstructorsDestructors - This method is used to execute all of
    241   /// the static constructors or destructors for a particular module.
    242   ///
    243   /// \param isDtors - Run the destructors instead of constructors.
    244   void runStaticConstructorsDestructors(Module *module, bool isDtors);
    245 
    246 
    247   /// runFunctionAsMain - This is a helper function which wraps runFunction to
    248   /// handle the common task of starting up main with the specified argc, argv,
    249   /// and envp parameters.
    250   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
    251                         const char * const * envp);
    252 
    253 
    254   /// addGlobalMapping - Tell the execution engine that the specified global is
    255   /// at the specified location.  This is used internally as functions are JIT'd
    256   /// and as global variables are laid out in memory.  It can and should also be
    257   /// used by clients of the EE that want to have an LLVM global overlay
    258   /// existing data in memory.  Mappings are automatically removed when their
    259   /// GlobalValue is destroyed.
    260   void addGlobalMapping(const GlobalValue *GV, void *Addr);
    261 
    262   /// clearAllGlobalMappings - Clear all global mappings and start over again,
    263   /// for use in dynamic compilation scenarios to move globals.
    264   void clearAllGlobalMappings();
    265 
    266   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
    267   /// particular module, because it has been removed from the JIT.
    268   void clearGlobalMappingsFromModule(Module *M);
    269 
    270   /// updateGlobalMapping - Replace an existing mapping for GV with a new
    271   /// address.  This updates both maps as required.  If "Addr" is null, the
    272   /// entry for the global is removed from the mappings.  This returns the old
    273   /// value of the pointer, or null if it was not in the map.
    274   void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
    275 
    276   /// getPointerToGlobalIfAvailable - This returns the address of the specified
    277   /// global value if it is has already been codegen'd, otherwise it returns
    278   /// null.
    279   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
    280 
    281   /// getPointerToGlobal - This returns the address of the specified global
    282   /// value. This may involve code generation if it's a function.
    283   void *getPointerToGlobal(const GlobalValue *GV);
    284 
    285   /// getPointerToFunction - The different EE's represent function bodies in
    286   /// different ways.  They should each implement this to say what a function
    287   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
    288   /// remove its global mapping and free any machine code.  Be sure no threads
    289   /// are running inside F when that happens.
    290   virtual void *getPointerToFunction(Function *F) = 0;
    291 
    292   /// getPointerToBasicBlock - The different EE's represent basic blocks in
    293   /// different ways.  Return the representation for a blockaddress of the
    294   /// specified block.
    295   virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
    296 
    297   /// getPointerToFunctionOrStub - If the specified function has been
    298   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
    299   /// a stub to implement lazy compilation if available.  See
    300   /// getPointerToFunction for the requirements on destroying F.
    301   virtual void *getPointerToFunctionOrStub(Function *F) {
    302     // Default implementation, just codegen the function.
    303     return getPointerToFunction(F);
    304   }
    305 
    306   // The JIT overrides a version that actually does this.
    307   virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
    308 
    309   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
    310   /// at the specified address.
    311   ///
    312   const GlobalValue *getGlobalValueAtAddress(void *Addr);
    313 
    314   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
    315   /// Ptr is the address of the memory at which to store Val, cast to
    316   /// GenericValue *.  It is not a pointer to a GenericValue containing the
    317   /// address at which to store Val.
    318   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
    319                           Type *Ty);
    320 
    321   void InitializeMemory(const Constant *Init, void *Addr);
    322 
    323   /// recompileAndRelinkFunction - This method is used to force a function which
    324   /// has already been compiled to be compiled again, possibly after it has been
    325   /// modified.  Then the entry to the old copy is overwritten with a branch to
    326   /// the new copy.  If there was no old copy, this acts just like
    327   /// VM::getPointerToFunction().
    328   virtual void *recompileAndRelinkFunction(Function *F) = 0;
    329 
    330   /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
    331   /// corresponding to the machine code emitted to execute this function, useful
    332   /// for garbage-collecting generated code.
    333   virtual void freeMachineCodeForFunction(Function *F) = 0;
    334 
    335   /// getOrEmitGlobalVariable - Return the address of the specified global
    336   /// variable, possibly emitting it to memory if needed.  This is used by the
    337   /// Emitter.
    338   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
    339     return getPointerToGlobal((GlobalValue*)GV);
    340   }
    341 
    342   /// Registers a listener to be called back on various events within
    343   /// the JIT.  See JITEventListener.h for more details.  Does not
    344   /// take ownership of the argument.  The argument may be NULL, in
    345   /// which case these functions do nothing.
    346   virtual void RegisterJITEventListener(JITEventListener *) {}
    347   virtual void UnregisterJITEventListener(JITEventListener *) {}
    348 
    349   /// DisableLazyCompilation - When lazy compilation is off (the default), the
    350   /// JIT will eagerly compile every function reachable from the argument to
    351   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
    352   /// compile the one function and emit stubs to compile the rest when they're
    353   /// first called.  If lazy compilation is turned off again while some lazy
    354   /// stubs are still around, and one of those stubs is called, the program will
    355   /// abort.
    356   ///
    357   /// In order to safely compile lazily in a threaded program, the user must
    358   /// ensure that 1) only one thread at a time can call any particular lazy
    359   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
    360   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
    361   /// lazy stub.  See http://llvm.org/PR5184 for details.
    362   void DisableLazyCompilation(bool Disabled = true) {
    363     CompilingLazily = !Disabled;
    364   }
    365   bool isCompilingLazily() const {
    366     return CompilingLazily;
    367   }
    368   // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
    369   // Remove this in LLVM 2.8.
    370   bool isLazyCompilationDisabled() const {
    371     return !CompilingLazily;
    372   }
    373 
    374   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
    375   /// allocate space and populate a GlobalVariable that is not internal to
    376   /// the module.
    377   void DisableGVCompilation(bool Disabled = true) {
    378     GVCompilationDisabled = Disabled;
    379   }
    380   bool isGVCompilationDisabled() const {
    381     return GVCompilationDisabled;
    382   }
    383 
    384   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
    385   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
    386   /// resolve symbols in a custom way.
    387   void DisableSymbolSearching(bool Disabled = true) {
    388     SymbolSearchingDisabled = Disabled;
    389   }
    390   bool isSymbolSearchingDisabled() const {
    391     return SymbolSearchingDisabled;
    392   }
    393 
    394   /// InstallLazyFunctionCreator - If an unknown function is needed, the
    395   /// specified function pointer is invoked to create it.  If it returns null,
    396   /// the JIT will abort.
    397   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
    398     LazyFunctionCreator = P;
    399   }
    400 
    401   /// InstallExceptionTableRegister - The JIT will use the given function
    402   /// to register the exception tables it generates.
    403   void InstallExceptionTableRegister(EERegisterFn F) {
    404     ExceptionTableRegister = F;
    405   }
    406   void InstallExceptionTableDeregister(EERegisterFn F) {
    407     ExceptionTableDeregister = F;
    408   }
    409 
    410   /// RegisterTable - Registers the given pointer as an exception table.  It
    411   /// uses the ExceptionTableRegister function.
    412   void RegisterTable(const Function *fn, void* res) {
    413     if (ExceptionTableRegister) {
    414       ExceptionTableRegister(res);
    415       AllExceptionTables[fn] = res;
    416     }
    417   }
    418 
    419   /// DeregisterTable - Deregisters the exception frame previously registered
    420   /// for the given function.
    421   void DeregisterTable(const Function *Fn) {
    422     if (ExceptionTableDeregister) {
    423       DenseMap<const Function*, void*>::iterator frame =
    424         AllExceptionTables.find(Fn);
    425       if(frame != AllExceptionTables.end()) {
    426         ExceptionTableDeregister(frame->second);
    427         AllExceptionTables.erase(frame);
    428       }
    429     }
    430   }
    431 
    432   /// DeregisterAllTables - Deregisters all previously registered pointers to an
    433   /// exception tables.  It uses the ExceptionTableoDeregister function.
    434   void DeregisterAllTables();
    435 
    436 protected:
    437   explicit ExecutionEngine(Module *M);
    438 
    439   void emitGlobals();
    440 
    441   void EmitGlobalVariable(const GlobalVariable *GV);
    442 
    443   GenericValue getConstantValue(const Constant *C);
    444   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
    445                            Type *Ty);
    446 };
    447 
    448 namespace EngineKind {
    449   // These are actually bitmasks that get or-ed together.
    450   enum Kind {
    451     JIT         = 0x1,
    452     Interpreter = 0x2
    453   };
    454   const static Kind Either = (Kind)(JIT | Interpreter);
    455 }
    456 
    457 /// EngineBuilder - Builder class for ExecutionEngines.  Use this by
    458 /// stack-allocating a builder, chaining the various set* methods, and
    459 /// terminating it with a .create() call.
    460 class EngineBuilder {
    461 private:
    462   Module *M;
    463   EngineKind::Kind WhichEngine;
    464   std::string *ErrorStr;
    465   CodeGenOpt::Level OptLevel;
    466   JITMemoryManager *JMM;
    467   bool AllocateGVsWithCode;
    468   Reloc::Model RelocModel;
    469   CodeModel::Model CMModel;
    470   std::string MArch;
    471   std::string MCPU;
    472   SmallVector<std::string, 4> MAttrs;
    473   bool UseMCJIT;
    474 
    475   /// InitEngine - Does the common initialization of default options.
    476   void InitEngine() {
    477     WhichEngine = EngineKind::Either;
    478     ErrorStr = NULL;
    479     OptLevel = CodeGenOpt::Default;
    480     JMM = NULL;
    481     AllocateGVsWithCode = false;
    482     RelocModel = Reloc::Default;
    483     CMModel = CodeModel::Default;
    484     UseMCJIT = false;
    485   }
    486 
    487 public:
    488   /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
    489   /// is successful, the created engine takes ownership of the module.
    490   EngineBuilder(Module *m) : M(m) {
    491     InitEngine();
    492   }
    493 
    494   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
    495   /// or whichever engine works.  This option defaults to EngineKind::Either.
    496   EngineBuilder &setEngineKind(EngineKind::Kind w) {
    497     WhichEngine = w;
    498     return *this;
    499   }
    500 
    501   /// setJITMemoryManager - Sets the memory manager to use.  This allows
    502   /// clients to customize their memory allocation policies.  If create() is
    503   /// called and is successful, the created engine takes ownership of the
    504   /// memory manager.  This option defaults to NULL.
    505   EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
    506     JMM = jmm;
    507     return *this;
    508   }
    509 
    510   /// setErrorStr - Set the error string to write to on error.  This option
    511   /// defaults to NULL.
    512   EngineBuilder &setErrorStr(std::string *e) {
    513     ErrorStr = e;
    514     return *this;
    515   }
    516 
    517   /// setOptLevel - Set the optimization level for the JIT.  This option
    518   /// defaults to CodeGenOpt::Default.
    519   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
    520     OptLevel = l;
    521     return *this;
    522   }
    523 
    524   /// setRelocationModel - Set the relocation model that the ExecutionEngine
    525   /// target is using. Defaults to target specific default "Reloc::Default".
    526   EngineBuilder &setRelocationModel(Reloc::Model RM) {
    527     RelocModel = RM;
    528     return *this;
    529   }
    530 
    531   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
    532   /// data is using. Defaults to target specific default "CodeModel::Default".
    533   EngineBuilder &setCodeModel(CodeModel::Model M) {
    534     CMModel = M;
    535     return *this;
    536   }
    537 
    538   /// setAllocateGVsWithCode - Sets whether global values should be allocated
    539   /// into the same buffer as code.  For most applications this should be set
    540   /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
    541   /// and is probably unsafe and bad for performance.  However, we have clients
    542   /// who depend on this behavior, so we must support it.  This option defaults
    543   /// to false so that users of the new API can safely use the new memory
    544   /// manager and free machine code.
    545   EngineBuilder &setAllocateGVsWithCode(bool a) {
    546     AllocateGVsWithCode = a;
    547     return *this;
    548   }
    549 
    550   /// setMArch - Override the architecture set by the Module's triple.
    551   EngineBuilder &setMArch(StringRef march) {
    552     MArch.assign(march.begin(), march.end());
    553     return *this;
    554   }
    555 
    556   /// setMCPU - Target a specific cpu type.
    557   EngineBuilder &setMCPU(StringRef mcpu) {
    558     MCPU.assign(mcpu.begin(), mcpu.end());
    559     return *this;
    560   }
    561 
    562   /// setUseMCJIT - Set whether the MC-JIT implementation should be used
    563   /// (experimental).
    564   EngineBuilder &setUseMCJIT(bool Value) {
    565     UseMCJIT = Value;
    566     return *this;
    567   }
    568 
    569   /// setMAttrs - Set cpu-specific attributes.
    570   template<typename StringSequence>
    571   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
    572     MAttrs.clear();
    573     MAttrs.append(mattrs.begin(), mattrs.end());
    574     return *this;
    575   }
    576 
    577   /// selectTarget - Pick a target either via -march or by guessing the native
    578   /// arch.  Add any CPU features specified via -mcpu or -mattr.
    579   static TargetMachine *selectTarget(Module *M,
    580                                      StringRef MArch,
    581                                      StringRef MCPU,
    582                                      const SmallVectorImpl<std::string>& MAttrs,
    583                                      Reloc::Model RM,
    584                                      std::string *Err);
    585 
    586   ExecutionEngine *create();
    587 };
    588 
    589 } // End llvm namespace
    590 
    591 #endif
    592