1 /* 2 ******************************************************************************* 3 * 4 * Copyright (C) 2000-2010, International Business Machines 5 * Corporation and others. All Rights Reserved. 6 * 7 ******************************************************************************* 8 * 9 * File reslist.c 10 * 11 * Modification History: 12 * 13 * Date Name Description 14 * 02/21/00 weiv Creation. 15 ******************************************************************************* 16 */ 17 18 #include <assert.h> 19 #include <stdio.h> 20 #include "reslist.h" 21 #include "unewdata.h" 22 #include "unicode/ures.h" 23 #include "unicode/putil.h" 24 #include "errmsg.h" 25 26 #include "uarrsort.h" 27 #include "uinvchar.h" 28 29 /* 30 * Align binary data at a 16-byte offset from the start of the resource bundle, 31 * to be safe for any data type it may contain. 32 */ 33 #define BIN_ALIGNMENT 16 34 35 static UBool gIncludeCopyright = FALSE; 36 static UBool gUsePoolBundle = FALSE; 37 static int32_t gFormatVersion = 2; 38 39 static UChar gEmptyString = 0; 40 41 /* How do we store string values? */ 42 enum { 43 STRINGS_UTF16_V1, /* formatVersion 1: int length + UChars + NUL + padding to 4 bytes */ 44 STRINGS_UTF16_V2 /* formatVersion 2: optional length in 1..3 UChars + UChars + NUL */ 45 }; 46 47 enum { 48 MAX_IMPLICIT_STRING_LENGTH = 40 /* do not store the length explicitly for such strings */ 49 }; 50 51 /* 52 * res_none() returns the address of kNoResource, 53 * for use in non-error cases when no resource is to be added to the bundle. 54 * (NULL is used in error cases.) 55 */ 56 static const struct SResource kNoResource = { URES_NONE }; 57 58 static UDataInfo dataInfo= { 59 sizeof(UDataInfo), 60 0, 61 62 U_IS_BIG_ENDIAN, 63 U_CHARSET_FAMILY, 64 sizeof(UChar), 65 0, 66 67 {0x52, 0x65, 0x73, 0x42}, /* dataFormat="ResB" */ 68 {1, 3, 0, 0}, /* formatVersion */ 69 {1, 4, 0, 0} /* dataVersion take a look at version inside parsed resb*/ 70 }; 71 72 static const UVersionInfo gFormatVersions[3] = { /* indexed by a major-formatVersion integer */ 73 { 0, 0, 0, 0 }, 74 { 1, 3, 0, 0 }, 75 { 2, 0, 0, 0 } 76 }; 77 78 static uint8_t calcPadding(uint32_t size) { 79 /* returns space we need to pad */ 80 return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0); 81 82 } 83 84 void setIncludeCopyright(UBool val){ 85 gIncludeCopyright=val; 86 } 87 88 UBool getIncludeCopyright(void){ 89 return gIncludeCopyright; 90 } 91 92 void setFormatVersion(int32_t formatVersion) { 93 gFormatVersion = formatVersion; 94 } 95 96 void setUsePoolBundle(UBool use) { 97 gUsePoolBundle = use; 98 } 99 100 static void 101 bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status); 102 103 /* Writing Functions */ 104 105 /* 106 * type_write16() functions write resource values into f16BitUnits 107 * and determine the resource item word, if possible. 108 */ 109 static void 110 res_write16(struct SRBRoot *bundle, struct SResource *res, 111 UErrorCode *status); 112 113 /* 114 * type_preWrite() functions calculate ("preflight") and advance the *byteOffset 115 * by the size of their data in the binary file and 116 * determine the resource item word. 117 * Most type_preWrite() functions may add any number of bytes, but res_preWrite() 118 * will always pad it to a multiple of 4. 119 * The resource item type may be a related subtype of the fType. 120 * 121 * The type_preWrite() and type_write() functions start and end at the same 122 * byteOffset values. 123 * Prewriting allows bundle_write() to determine the root resource item word, 124 * before actually writing the bundle contents to the file, 125 * which is necessary because the root item is stored at the beginning. 126 */ 127 static void 128 res_preWrite(uint32_t *byteOffset, 129 struct SRBRoot *bundle, struct SResource *res, 130 UErrorCode *status); 131 132 /* 133 * type_write() functions write their data to mem and update the byteOffset 134 * in parallel. 135 * (A kingdom for C++ and polymorphism...) 136 */ 137 static void 138 res_write(UNewDataMemory *mem, uint32_t *byteOffset, 139 struct SRBRoot *bundle, struct SResource *res, 140 UErrorCode *status); 141 142 static uint16_t * 143 reserve16BitUnits(struct SRBRoot *bundle, int32_t length, UErrorCode *status) { 144 if (U_FAILURE(*status)) { 145 return NULL; 146 } 147 if ((bundle->f16BitUnitsLength + length) > bundle->f16BitUnitsCapacity) { 148 uint16_t *newUnits; 149 int32_t capacity = 2 * bundle->f16BitUnitsCapacity + length + 1024; 150 capacity &= ~1; /* ensures padding fits if f16BitUnitsLength needs it */ 151 newUnits = (uint16_t *)uprv_malloc(capacity * 2); 152 if (newUnits == NULL) { 153 *status = U_MEMORY_ALLOCATION_ERROR; 154 return NULL; 155 } 156 if (bundle->f16BitUnitsLength > 0) { 157 uprv_memcpy(newUnits, bundle->f16BitUnits, bundle->f16BitUnitsLength * 2); 158 } else { 159 newUnits[0] = 0; 160 bundle->f16BitUnitsLength = 1; 161 } 162 uprv_free(bundle->f16BitUnits); 163 bundle->f16BitUnits = newUnits; 164 bundle->f16BitUnitsCapacity = capacity; 165 } 166 return bundle->f16BitUnits + bundle->f16BitUnitsLength; 167 } 168 169 static int32_t 170 makeRes16(uint32_t resWord) { 171 uint32_t type, offset; 172 if (resWord == 0) { 173 return 0; /* empty string */ 174 } 175 type = RES_GET_TYPE(resWord); 176 offset = RES_GET_OFFSET(resWord); 177 if (type == URES_STRING_V2 && offset <= 0xffff) { 178 return (int32_t)offset; 179 } 180 return -1; 181 } 182 183 static int32_t 184 mapKey(struct SRBRoot *bundle, int32_t oldpos) { 185 const KeyMapEntry *map = bundle->fKeyMap; 186 int32_t i, start, limit; 187 188 /* do a binary search for the old, pre-bundle_compactKeys() key offset */ 189 start = bundle->fPoolBundleKeysCount; 190 limit = start + bundle->fKeysCount; 191 while (start < limit - 1) { 192 i = (start + limit) / 2; 193 if (oldpos < map[i].oldpos) { 194 limit = i; 195 } else { 196 start = i; 197 } 198 } 199 assert(oldpos == map[start].oldpos); 200 return map[start].newpos; 201 } 202 203 static uint16_t 204 makeKey16(struct SRBRoot *bundle, int32_t key) { 205 if (key >= 0) { 206 return (uint16_t)key; 207 } else { 208 return (uint16_t)(key + bundle->fLocalKeyLimit); /* offset in the pool bundle */ 209 } 210 } 211 212 /* 213 * Only called for UTF-16 v1 strings and duplicate UTF-16 v2 strings. 214 * For unique UTF-16 v2 strings, res_write16() sees fRes != RES_BOGUS 215 * and exits early. 216 */ 217 static void 218 string_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { 219 struct SResource *same; 220 if ((same = res->u.fString.fSame) != NULL) { 221 /* This is a duplicate. */ 222 if (same->fRes == RES_BOGUS) { 223 /* The original has not been visited yet. */ 224 string_write16(bundle, same, status); 225 } 226 res->fRes = same->fRes; 227 res->fWritten = same->fWritten; 228 } 229 } 230 231 static void 232 array_write16(struct SRBRoot *bundle, struct SResource *res, 233 UErrorCode *status) { 234 struct SResource *current; 235 int32_t res16 = 0; 236 237 if (U_FAILURE(*status)) { 238 return; 239 } 240 if (res->u.fArray.fCount == 0 && gFormatVersion > 1) { 241 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ARRAY); 242 res->fWritten = TRUE; 243 return; 244 } 245 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { 246 res_write16(bundle, current, status); 247 res16 |= makeRes16(current->fRes); 248 } 249 if (U_SUCCESS(*status) && res->u.fArray.fCount <= 0xffff && res16 >= 0 && gFormatVersion > 1) { 250 uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fArray.fCount, status); 251 if (U_SUCCESS(*status)) { 252 res->fRes = URES_MAKE_RESOURCE(URES_ARRAY16, bundle->f16BitUnitsLength); 253 *p16++ = (uint16_t)res->u.fArray.fCount; 254 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { 255 *p16++ = (uint16_t)makeRes16(current->fRes); 256 } 257 bundle->f16BitUnitsLength += 1 + res->u.fArray.fCount; 258 res->fWritten = TRUE; 259 } 260 } 261 } 262 263 static void 264 table_write16(struct SRBRoot *bundle, struct SResource *res, 265 UErrorCode *status) { 266 struct SResource *current; 267 int32_t maxKey = 0, maxPoolKey = 0x80000000; 268 int32_t res16 = 0; 269 UBool hasLocalKeys = FALSE, hasPoolKeys = FALSE; 270 271 if (U_FAILURE(*status)) { 272 return; 273 } 274 if (res->u.fTable.fCount == 0 && gFormatVersion > 1) { 275 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_TABLE); 276 res->fWritten = TRUE; 277 return; 278 } 279 /* Find the smallest table type that fits the data. */ 280 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 281 int32_t key; 282 res_write16(bundle, current, status); 283 if (bundle->fKeyMap == NULL) { 284 key = current->fKey; 285 } else { 286 key = current->fKey = mapKey(bundle, current->fKey); 287 } 288 if (key >= 0) { 289 hasLocalKeys = TRUE; 290 if (key > maxKey) { 291 maxKey = key; 292 } 293 } else { 294 hasPoolKeys = TRUE; 295 if (key > maxPoolKey) { 296 maxPoolKey = key; 297 } 298 } 299 res16 |= makeRes16(current->fRes); 300 } 301 if (U_FAILURE(*status)) { 302 return; 303 } 304 if(res->u.fTable.fCount > (uint32_t)bundle->fMaxTableLength) { 305 bundle->fMaxTableLength = res->u.fTable.fCount; 306 } 307 maxPoolKey &= 0x7fffffff; 308 if (res->u.fTable.fCount <= 0xffff && 309 (!hasLocalKeys || maxKey < bundle->fLocalKeyLimit) && 310 (!hasPoolKeys || maxPoolKey < (0x10000 - bundle->fLocalKeyLimit)) 311 ) { 312 if (res16 >= 0 && gFormatVersion > 1) { 313 uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fTable.fCount * 2, status); 314 if (U_SUCCESS(*status)) { 315 /* 16-bit count, key offsets and values */ 316 res->fRes = URES_MAKE_RESOURCE(URES_TABLE16, bundle->f16BitUnitsLength); 317 *p16++ = (uint16_t)res->u.fTable.fCount; 318 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 319 *p16++ = makeKey16(bundle, current->fKey); 320 } 321 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 322 *p16++ = (uint16_t)makeRes16(current->fRes); 323 } 324 bundle->f16BitUnitsLength += 1 + res->u.fTable.fCount * 2; 325 res->fWritten = TRUE; 326 } 327 } else { 328 /* 16-bit count, 16-bit key offsets, 32-bit values */ 329 res->u.fTable.fType = URES_TABLE; 330 } 331 } else { 332 /* 32-bit count, key offsets and values */ 333 res->u.fTable.fType = URES_TABLE32; 334 } 335 } 336 337 static void 338 res_write16(struct SRBRoot *bundle, struct SResource *res, 339 UErrorCode *status) { 340 if (U_FAILURE(*status) || res == NULL) { 341 return; 342 } 343 if (res->fRes != RES_BOGUS) { 344 /* 345 * The resource item word was already precomputed, which means 346 * no further data needs to be written. 347 * This might be an integer, or an empty or UTF-16 v2 string, 348 * an empty binary, etc. 349 */ 350 return; 351 } 352 switch (res->fType) { 353 case URES_STRING: 354 string_write16(bundle, res, status); 355 break; 356 case URES_ARRAY: 357 array_write16(bundle, res, status); 358 break; 359 case URES_TABLE: 360 table_write16(bundle, res, status); 361 break; 362 default: 363 /* Only a few resource types write 16-bit units. */ 364 break; 365 } 366 } 367 368 /* 369 * Only called for UTF-16 v1 strings. 370 * For UTF-16 v2 strings, res_preWrite() sees fRes != RES_BOGUS 371 * and exits early. 372 */ 373 static void 374 string_preWrite(uint32_t *byteOffset, 375 struct SRBRoot *bundle, struct SResource *res, 376 UErrorCode *status) { 377 /* Write the UTF-16 v1 string. */ 378 res->fRes = URES_MAKE_RESOURCE(URES_STRING, *byteOffset >> 2); 379 *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR; 380 } 381 382 static void 383 bin_preWrite(uint32_t *byteOffset, 384 struct SRBRoot *bundle, struct SResource *res, 385 UErrorCode *status) { 386 uint32_t pad = 0; 387 uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength); 388 389 if (dataStart % BIN_ALIGNMENT) { 390 pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); 391 *byteOffset += pad; /* pad == 4 or 8 or 12 */ 392 } 393 res->fRes = URES_MAKE_RESOURCE(URES_BINARY, *byteOffset >> 2); 394 *byteOffset += 4 + res->u.fBinaryValue.fLength; 395 } 396 397 static void 398 array_preWrite(uint32_t *byteOffset, 399 struct SRBRoot *bundle, struct SResource *res, 400 UErrorCode *status) { 401 struct SResource *current; 402 403 if (U_FAILURE(*status)) { 404 return; 405 } 406 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { 407 res_preWrite(byteOffset, bundle, current, status); 408 } 409 res->fRes = URES_MAKE_RESOURCE(URES_ARRAY, *byteOffset >> 2); 410 *byteOffset += (1 + res->u.fArray.fCount) * 4; 411 } 412 413 static void 414 table_preWrite(uint32_t *byteOffset, 415 struct SRBRoot *bundle, struct SResource *res, 416 UErrorCode *status) { 417 struct SResource *current; 418 419 if (U_FAILURE(*status)) { 420 return; 421 } 422 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 423 res_preWrite(byteOffset, bundle, current, status); 424 } 425 if (res->u.fTable.fType == URES_TABLE) { 426 /* 16-bit count, 16-bit key offsets, 32-bit values */ 427 res->fRes = URES_MAKE_RESOURCE(URES_TABLE, *byteOffset >> 2); 428 *byteOffset += 2 + res->u.fTable.fCount * 6; 429 } else { 430 /* 32-bit count, key offsets and values */ 431 res->fRes = URES_MAKE_RESOURCE(URES_TABLE32, *byteOffset >> 2); 432 *byteOffset += 4 + res->u.fTable.fCount * 8; 433 } 434 } 435 436 static void 437 res_preWrite(uint32_t *byteOffset, 438 struct SRBRoot *bundle, struct SResource *res, 439 UErrorCode *status) { 440 if (U_FAILURE(*status) || res == NULL) { 441 return; 442 } 443 if (res->fRes != RES_BOGUS) { 444 /* 445 * The resource item word was already precomputed, which means 446 * no further data needs to be written. 447 * This might be an integer, or an empty or UTF-16 v2 string, 448 * an empty binary, etc. 449 */ 450 return; 451 } 452 switch (res->fType) { 453 case URES_STRING: 454 string_preWrite(byteOffset, bundle, res, status); 455 break; 456 case URES_ALIAS: 457 res->fRes = URES_MAKE_RESOURCE(URES_ALIAS, *byteOffset >> 2); 458 *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR; 459 break; 460 case URES_INT_VECTOR: 461 if (res->u.fIntVector.fCount == 0 && gFormatVersion > 1) { 462 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_INT_VECTOR); 463 res->fWritten = TRUE; 464 } else { 465 res->fRes = URES_MAKE_RESOURCE(URES_INT_VECTOR, *byteOffset >> 2); 466 *byteOffset += (1 + res->u.fIntVector.fCount) * 4; 467 } 468 break; 469 case URES_BINARY: 470 bin_preWrite(byteOffset, bundle, res, status); 471 break; 472 case URES_INT: 473 break; 474 case URES_ARRAY: 475 array_preWrite(byteOffset, bundle, res, status); 476 break; 477 case URES_TABLE: 478 table_preWrite(byteOffset, bundle, res, status); 479 break; 480 default: 481 *status = U_INTERNAL_PROGRAM_ERROR; 482 break; 483 } 484 *byteOffset += calcPadding(*byteOffset); 485 } 486 487 /* 488 * Only called for UTF-16 v1 strings. For UTF-16 v2 strings, 489 * res_write() sees fWritten and exits early. 490 */ 491 static void string_write(UNewDataMemory *mem, uint32_t *byteOffset, 492 struct SRBRoot *bundle, struct SResource *res, 493 UErrorCode *status) { 494 /* Write the UTF-16 v1 string. */ 495 int32_t length = res->u.fString.fLength; 496 udata_write32(mem, length); 497 udata_writeUString(mem, res->u.fString.fChars, length + 1); 498 *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR; 499 res->fWritten = TRUE; 500 } 501 502 static void alias_write(UNewDataMemory *mem, uint32_t *byteOffset, 503 struct SRBRoot *bundle, struct SResource *res, 504 UErrorCode *status) { 505 int32_t length = res->u.fString.fLength; 506 udata_write32(mem, length); 507 udata_writeUString(mem, res->u.fString.fChars, length + 1); 508 *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR; 509 } 510 511 static void array_write(UNewDataMemory *mem, uint32_t *byteOffset, 512 struct SRBRoot *bundle, struct SResource *res, 513 UErrorCode *status) { 514 uint32_t i; 515 516 struct SResource *current = NULL; 517 518 if (U_FAILURE(*status)) { 519 return; 520 } 521 for (i = 0, current = res->u.fArray.fFirst; current != NULL; ++i, current = current->fNext) { 522 res_write(mem, byteOffset, bundle, current, status); 523 } 524 assert(i == res->u.fArray.fCount); 525 526 udata_write32(mem, res->u.fArray.fCount); 527 for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { 528 udata_write32(mem, current->fRes); 529 } 530 *byteOffset += (1 + res->u.fArray.fCount) * 4; 531 } 532 533 static void intvector_write(UNewDataMemory *mem, uint32_t *byteOffset, 534 struct SRBRoot *bundle, struct SResource *res, 535 UErrorCode *status) { 536 uint32_t i = 0; 537 udata_write32(mem, res->u.fIntVector.fCount); 538 for(i = 0; i<res->u.fIntVector.fCount; i++) { 539 udata_write32(mem, res->u.fIntVector.fArray[i]); 540 } 541 *byteOffset += (1 + res->u.fIntVector.fCount) * 4; 542 } 543 544 static void bin_write(UNewDataMemory *mem, uint32_t *byteOffset, 545 struct SRBRoot *bundle, struct SResource *res, 546 UErrorCode *status) { 547 uint32_t pad = 0; 548 uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength); 549 550 if (dataStart % BIN_ALIGNMENT) { 551 pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); 552 udata_writePadding(mem, pad); /* pad == 4 or 8 or 12 */ 553 *byteOffset += pad; 554 } 555 556 udata_write32(mem, res->u.fBinaryValue.fLength); 557 if (res->u.fBinaryValue.fLength > 0) { 558 udata_writeBlock(mem, res->u.fBinaryValue.fData, res->u.fBinaryValue.fLength); 559 } 560 *byteOffset += 4 + res->u.fBinaryValue.fLength; 561 } 562 563 static void table_write(UNewDataMemory *mem, uint32_t *byteOffset, 564 struct SRBRoot *bundle, struct SResource *res, 565 UErrorCode *status) { 566 struct SResource *current; 567 uint32_t i; 568 569 if (U_FAILURE(*status)) { 570 return; 571 } 572 for (i = 0, current = res->u.fTable.fFirst; current != NULL; ++i, current = current->fNext) { 573 assert(i < res->u.fTable.fCount); 574 res_write(mem, byteOffset, bundle, current, status); 575 } 576 assert(i == res->u.fTable.fCount); 577 578 if(res->u.fTable.fType == URES_TABLE) { 579 udata_write16(mem, (uint16_t)res->u.fTable.fCount); 580 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 581 udata_write16(mem, makeKey16(bundle, current->fKey)); 582 } 583 *byteOffset += (1 + res->u.fTable.fCount)* 2; 584 if ((res->u.fTable.fCount & 1) == 0) { 585 /* 16-bit count and even number of 16-bit key offsets need padding before 32-bit resource items */ 586 udata_writePadding(mem, 2); 587 *byteOffset += 2; 588 } 589 } else /* URES_TABLE32 */ { 590 udata_write32(mem, res->u.fTable.fCount); 591 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 592 udata_write32(mem, (uint32_t)current->fKey); 593 } 594 *byteOffset += (1 + res->u.fTable.fCount)* 4; 595 } 596 for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { 597 udata_write32(mem, current->fRes); 598 } 599 *byteOffset += res->u.fTable.fCount * 4; 600 } 601 602 void res_write(UNewDataMemory *mem, uint32_t *byteOffset, 603 struct SRBRoot *bundle, struct SResource *res, 604 UErrorCode *status) { 605 uint8_t paddingSize; 606 607 if (U_FAILURE(*status) || res == NULL) { 608 return; 609 } 610 if (res->fWritten) { 611 assert(res->fRes != RES_BOGUS); 612 return; 613 } 614 switch (res->fType) { 615 case URES_STRING: 616 string_write (mem, byteOffset, bundle, res, status); 617 break; 618 case URES_ALIAS: 619 alias_write (mem, byteOffset, bundle, res, status); 620 break; 621 case URES_INT_VECTOR: 622 intvector_write (mem, byteOffset, bundle, res, status); 623 break; 624 case URES_BINARY: 625 bin_write (mem, byteOffset, bundle, res, status); 626 break; 627 case URES_INT: 628 break; /* fRes was set by int_open() */ 629 case URES_ARRAY: 630 array_write (mem, byteOffset, bundle, res, status); 631 break; 632 case URES_TABLE: 633 table_write (mem, byteOffset, bundle, res, status); 634 break; 635 default: 636 *status = U_INTERNAL_PROGRAM_ERROR; 637 break; 638 } 639 paddingSize = calcPadding(*byteOffset); 640 if (paddingSize > 0) { 641 udata_writePadding(mem, paddingSize); 642 *byteOffset += paddingSize; 643 } 644 res->fWritten = TRUE; 645 } 646 647 void bundle_write(struct SRBRoot *bundle, 648 const char *outputDir, const char *outputPkg, 649 char *writtenFilename, int writtenFilenameLen, 650 UErrorCode *status) { 651 UNewDataMemory *mem = NULL; 652 uint32_t byteOffset = 0; 653 uint32_t top, size; 654 char dataName[1024]; 655 int32_t indexes[URES_INDEX_TOP]; 656 657 bundle_compactKeys(bundle, status); 658 /* 659 * Add padding bytes to fKeys so that fKeysTop is 4-aligned. 660 * Safe because the capacity is a multiple of 4. 661 */ 662 while (bundle->fKeysTop & 3) { 663 bundle->fKeys[bundle->fKeysTop++] = (char)0xaa; 664 } 665 /* 666 * In URES_TABLE, use all local key offsets that fit into 16 bits, 667 * and use the remaining 16-bit offsets for pool key offsets 668 * if there are any. 669 * If there are no local keys, then use the whole 16-bit space 670 * for pool key offsets. 671 * Note: This cannot be changed without changing the major formatVersion. 672 */ 673 if (bundle->fKeysBottom < bundle->fKeysTop) { 674 if (bundle->fKeysTop <= 0x10000) { 675 bundle->fLocalKeyLimit = bundle->fKeysTop; 676 } else { 677 bundle->fLocalKeyLimit = 0x10000; 678 } 679 } else { 680 bundle->fLocalKeyLimit = 0; 681 } 682 683 bundle_compactStrings(bundle, status); 684 res_write16(bundle, bundle->fRoot, status); 685 if (bundle->f16BitUnitsLength & 1) { 686 bundle->f16BitUnits[bundle->f16BitUnitsLength++] = 0xaaaa; /* pad to multiple of 4 bytes */ 687 } 688 /* all keys have been mapped */ 689 uprv_free(bundle->fKeyMap); 690 bundle->fKeyMap = NULL; 691 692 byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2; 693 res_preWrite(&byteOffset, bundle, bundle->fRoot, status); 694 695 /* total size including the root item */ 696 top = byteOffset; 697 698 if (U_FAILURE(*status)) { 699 return; 700 } 701 702 if (writtenFilename && writtenFilenameLen) { 703 *writtenFilename = 0; 704 } 705 706 if (writtenFilename) { 707 int32_t off = 0, len = 0; 708 if (outputDir) { 709 len = (int32_t)uprv_strlen(outputDir); 710 if (len > writtenFilenameLen) { 711 len = writtenFilenameLen; 712 } 713 uprv_strncpy(writtenFilename, outputDir, len); 714 } 715 if (writtenFilenameLen -= len) { 716 off += len; 717 writtenFilename[off] = U_FILE_SEP_CHAR; 718 if (--writtenFilenameLen) { 719 ++off; 720 if(outputPkg != NULL) 721 { 722 uprv_strcpy(writtenFilename+off, outputPkg); 723 off += (int32_t)uprv_strlen(outputPkg); 724 writtenFilename[off] = '_'; 725 ++off; 726 } 727 728 len = (int32_t)uprv_strlen(bundle->fLocale); 729 if (len > writtenFilenameLen) { 730 len = writtenFilenameLen; 731 } 732 uprv_strncpy(writtenFilename + off, bundle->fLocale, len); 733 if (writtenFilenameLen -= len) { 734 off += len; 735 len = 5; 736 if (len > writtenFilenameLen) { 737 len = writtenFilenameLen; 738 } 739 uprv_strncpy(writtenFilename + off, ".res", len); 740 } 741 } 742 } 743 } 744 745 if(outputPkg) 746 { 747 uprv_strcpy(dataName, outputPkg); 748 uprv_strcat(dataName, "_"); 749 uprv_strcat(dataName, bundle->fLocale); 750 } 751 else 752 { 753 uprv_strcpy(dataName, bundle->fLocale); 754 } 755 756 uprv_memcpy(dataInfo.formatVersion, gFormatVersions + gFormatVersion, sizeof(UVersionInfo)); 757 758 mem = udata_create(outputDir, "res", dataName, &dataInfo, (gIncludeCopyright==TRUE)? U_COPYRIGHT_STRING:NULL, status); 759 if(U_FAILURE(*status)){ 760 return; 761 } 762 763 /* write the root item */ 764 udata_write32(mem, bundle->fRoot->fRes); 765 766 /* 767 * formatVersion 1.1 (ICU 2.8): 768 * write int32_t indexes[] after root and before the strings 769 * to make it easier to parse resource bundles in icuswap or from Java etc. 770 */ 771 uprv_memset(indexes, 0, sizeof(indexes)); 772 indexes[URES_INDEX_LENGTH]= bundle->fIndexLength; 773 indexes[URES_INDEX_KEYS_TOP]= bundle->fKeysTop>>2; 774 indexes[URES_INDEX_RESOURCES_TOP]= (int32_t)(top>>2); 775 indexes[URES_INDEX_BUNDLE_TOP]= indexes[URES_INDEX_RESOURCES_TOP]; 776 indexes[URES_INDEX_MAX_TABLE_LENGTH]= bundle->fMaxTableLength; 777 778 /* 779 * formatVersion 1.2 (ICU 3.6): 780 * write indexes[URES_INDEX_ATTRIBUTES] with URES_ATT_NO_FALLBACK set or not set 781 * the memset() above initialized all indexes[] to 0 782 */ 783 if (bundle->noFallback) { 784 indexes[URES_INDEX_ATTRIBUTES]=URES_ATT_NO_FALLBACK; 785 } 786 /* 787 * formatVersion 2.0 (ICU 4.4): 788 * more compact string value storage, optional pool bundle 789 */ 790 if (URES_INDEX_16BIT_TOP < bundle->fIndexLength) { 791 indexes[URES_INDEX_16BIT_TOP] = (bundle->fKeysTop>>2) + (bundle->f16BitUnitsLength>>1); 792 } 793 if (URES_INDEX_POOL_CHECKSUM < bundle->fIndexLength) { 794 if (bundle->fIsPoolBundle) { 795 indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_IS_POOL_BUNDLE | URES_ATT_NO_FALLBACK; 796 indexes[URES_INDEX_POOL_CHECKSUM] = 797 (int32_t)computeCRC((char *)(bundle->fKeys + bundle->fKeysBottom), 798 (uint32_t)(bundle->fKeysTop - bundle->fKeysBottom), 799 0); 800 } else if (gUsePoolBundle) { 801 indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_USES_POOL_BUNDLE; 802 indexes[URES_INDEX_POOL_CHECKSUM] = bundle->fPoolChecksum; 803 } 804 } 805 806 /* write the indexes[] */ 807 udata_writeBlock(mem, indexes, bundle->fIndexLength*4); 808 809 /* write the table key strings */ 810 udata_writeBlock(mem, bundle->fKeys+bundle->fKeysBottom, 811 bundle->fKeysTop-bundle->fKeysBottom); 812 813 /* write the v2 UTF-16 strings, URES_TABLE16 and URES_ARRAY16 */ 814 udata_writeBlock(mem, bundle->f16BitUnits, bundle->f16BitUnitsLength*2); 815 816 /* write all of the bundle contents: the root item and its children */ 817 byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2; 818 res_write(mem, &byteOffset, bundle, bundle->fRoot, status); 819 assert(byteOffset == top); 820 821 size = udata_finish(mem, status); 822 if(top != size) { 823 fprintf(stderr, "genrb error: wrote %u bytes but counted %u\n", 824 (int)size, (int)top); 825 *status = U_INTERNAL_PROGRAM_ERROR; 826 } 827 } 828 829 /* Opening Functions */ 830 831 /* gcc 4.2 complained "no previous prototype for res_open" without this prototype... */ 832 struct SResource* res_open(struct SRBRoot *bundle, const char *tag, 833 const struct UString* comment, UErrorCode* status); 834 835 struct SResource* res_open(struct SRBRoot *bundle, const char *tag, 836 const struct UString* comment, UErrorCode* status){ 837 struct SResource *res; 838 int32_t key = bundle_addtag(bundle, tag, status); 839 if (U_FAILURE(*status)) { 840 return NULL; 841 } 842 843 res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); 844 if (res == NULL) { 845 *status = U_MEMORY_ALLOCATION_ERROR; 846 return NULL; 847 } 848 uprv_memset(res, 0, sizeof(struct SResource)); 849 res->fKey = key; 850 res->fRes = RES_BOGUS; 851 852 ustr_init(&res->fComment); 853 if(comment != NULL){ 854 ustr_cpy(&res->fComment, comment, status); 855 if (U_FAILURE(*status)) { 856 res_close(res); 857 return NULL; 858 } 859 } 860 return res; 861 } 862 863 struct SResource* res_none() { 864 return (struct SResource*)&kNoResource; 865 } 866 867 struct SResource* table_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { 868 struct SResource *res = res_open(bundle, tag, comment, status); 869 if (U_FAILURE(*status)) { 870 return NULL; 871 } 872 res->fType = URES_TABLE; 873 res->u.fTable.fRoot = bundle; 874 return res; 875 } 876 877 struct SResource* array_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { 878 struct SResource *res = res_open(bundle, tag, comment, status); 879 if (U_FAILURE(*status)) { 880 return NULL; 881 } 882 res->fType = URES_ARRAY; 883 return res; 884 } 885 886 static int32_t U_CALLCONV 887 string_hash(const UHashTok key) { 888 const struct SResource *res = (struct SResource *)key.pointer; 889 return uhash_hashUCharsN(res->u.fString.fChars, res->u.fString.fLength); 890 } 891 892 static UBool U_CALLCONV 893 string_comp(const UHashTok key1, const UHashTok key2) { 894 const struct SResource *res1 = (struct SResource *)key1.pointer; 895 const struct SResource *res2 = (struct SResource *)key2.pointer; 896 return 0 == u_strCompare(res1->u.fString.fChars, res1->u.fString.fLength, 897 res2->u.fString.fChars, res2->u.fString.fLength, 898 FALSE); 899 } 900 901 struct SResource *string_open(struct SRBRoot *bundle, char *tag, const UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) { 902 struct SResource *res = res_open(bundle, tag, comment, status); 903 if (U_FAILURE(*status)) { 904 return NULL; 905 } 906 res->fType = URES_STRING; 907 908 if (len == 0 && gFormatVersion > 1) { 909 res->u.fString.fChars = &gEmptyString; 910 res->fRes = 0; 911 res->fWritten = TRUE; 912 return res; 913 } 914 915 res->u.fString.fLength = len; 916 917 if (gFormatVersion > 1) { 918 /* check for duplicates */ 919 res->u.fString.fChars = (UChar *)value; 920 if (bundle->fStringSet == NULL) { 921 UErrorCode localStatus = U_ZERO_ERROR; /* if failure: just don't detect dups */ 922 bundle->fStringSet = uhash_open(string_hash, string_comp, string_comp, &localStatus); 923 } else { 924 res->u.fString.fSame = uhash_get(bundle->fStringSet, res); 925 } 926 } 927 if (res->u.fString.fSame == NULL) { 928 /* this is a new string */ 929 res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1)); 930 931 if (res->u.fString.fChars == NULL) { 932 *status = U_MEMORY_ALLOCATION_ERROR; 933 uprv_free(res); 934 return NULL; 935 } 936 937 uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * len); 938 res->u.fString.fChars[len] = 0; 939 if (bundle->fStringSet != NULL) { 940 /* put it into the set for finding duplicates */ 941 uhash_put(bundle->fStringSet, res, res, status); 942 } 943 944 if (bundle->fStringsForm != STRINGS_UTF16_V1) { 945 if (len <= MAX_IMPLICIT_STRING_LENGTH && !U16_IS_TRAIL(value[0]) && len == u_strlen(value)) { 946 /* 947 * This string will be stored without an explicit length. 948 * Runtime will detect !U16_IS_TRAIL(value[0]) and call u_strlen(). 949 */ 950 res->u.fString.fNumCharsForLength = 0; 951 } else if (len <= 0x3ee) { 952 res->u.fString.fNumCharsForLength = 1; 953 } else if (len <= 0xfffff) { 954 res->u.fString.fNumCharsForLength = 2; 955 } else { 956 res->u.fString.fNumCharsForLength = 3; 957 } 958 bundle->f16BitUnitsLength += res->u.fString.fNumCharsForLength + len + 1; /* +1 for the NUL */ 959 } 960 } else { 961 /* this is a duplicate of fSame */ 962 struct SResource *same = res->u.fString.fSame; 963 res->u.fString.fChars = same->u.fString.fChars; 964 } 965 return res; 966 } 967 968 /* TODO: make alias_open and string_open use the same code */ 969 struct SResource *alias_open(struct SRBRoot *bundle, char *tag, UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) { 970 struct SResource *res = res_open(bundle, tag, comment, status); 971 if (U_FAILURE(*status)) { 972 return NULL; 973 } 974 res->fType = URES_ALIAS; 975 if (len == 0 && gFormatVersion > 1) { 976 res->u.fString.fChars = &gEmptyString; 977 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ALIAS); 978 res->fWritten = TRUE; 979 return res; 980 } 981 982 res->u.fString.fLength = len; 983 res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1)); 984 if (res->u.fString.fChars == NULL) { 985 *status = U_MEMORY_ALLOCATION_ERROR; 986 uprv_free(res); 987 return NULL; 988 } 989 uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * (len + 1)); 990 return res; 991 } 992 993 994 struct SResource* intvector_open(struct SRBRoot *bundle, char *tag, const struct UString* comment, UErrorCode *status) { 995 struct SResource *res = res_open(bundle, tag, comment, status); 996 if (U_FAILURE(*status)) { 997 return NULL; 998 } 999 res->fType = URES_INT_VECTOR; 1000 1001 res->u.fIntVector.fCount = 0; 1002 res->u.fIntVector.fArray = (uint32_t *) uprv_malloc(sizeof(uint32_t) * RESLIST_MAX_INT_VECTOR); 1003 if (res->u.fIntVector.fArray == NULL) { 1004 *status = U_MEMORY_ALLOCATION_ERROR; 1005 uprv_free(res); 1006 return NULL; 1007 } 1008 return res; 1009 } 1010 1011 struct SResource *int_open(struct SRBRoot *bundle, char *tag, int32_t value, const struct UString* comment, UErrorCode *status) { 1012 struct SResource *res = res_open(bundle, tag, comment, status); 1013 if (U_FAILURE(*status)) { 1014 return NULL; 1015 } 1016 res->fType = URES_INT; 1017 res->u.fIntValue.fValue = value; 1018 res->fRes = URES_MAKE_RESOURCE(URES_INT, value & 0x0FFFFFFF); 1019 res->fWritten = TRUE; 1020 return res; 1021 } 1022 1023 struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const struct UString* comment, UErrorCode *status) { 1024 struct SResource *res = res_open(bundle, tag, comment, status); 1025 if (U_FAILURE(*status)) { 1026 return NULL; 1027 } 1028 res->fType = URES_BINARY; 1029 1030 res->u.fBinaryValue.fLength = length; 1031 res->u.fBinaryValue.fFileName = NULL; 1032 if(fileName!=NULL && uprv_strcmp(fileName, "") !=0){ 1033 res->u.fBinaryValue.fFileName = (char*) uprv_malloc(sizeof(char) * (uprv_strlen(fileName)+1)); 1034 uprv_strcpy(res->u.fBinaryValue.fFileName,fileName); 1035 } 1036 if (length > 0) { 1037 res->u.fBinaryValue.fData = (uint8_t *) uprv_malloc(sizeof(uint8_t) * length); 1038 1039 if (res->u.fBinaryValue.fData == NULL) { 1040 *status = U_MEMORY_ALLOCATION_ERROR; 1041 uprv_free(res); 1042 return NULL; 1043 } 1044 1045 uprv_memcpy(res->u.fBinaryValue.fData, data, length); 1046 } 1047 else { 1048 res->u.fBinaryValue.fData = NULL; 1049 if (gFormatVersion > 1) { 1050 res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_BINARY); 1051 res->fWritten = TRUE; 1052 } 1053 } 1054 1055 return res; 1056 } 1057 1058 struct SRBRoot *bundle_open(const struct UString* comment, UBool isPoolBundle, UErrorCode *status) { 1059 struct SRBRoot *bundle; 1060 1061 if (U_FAILURE(*status)) { 1062 return NULL; 1063 } 1064 1065 bundle = (struct SRBRoot *) uprv_malloc(sizeof(struct SRBRoot)); 1066 if (bundle == NULL) { 1067 *status = U_MEMORY_ALLOCATION_ERROR; 1068 return 0; 1069 } 1070 uprv_memset(bundle, 0, sizeof(struct SRBRoot)); 1071 1072 bundle->fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE); 1073 bundle->fRoot = table_open(bundle, NULL, comment, status); 1074 if (bundle->fKeys == NULL || bundle->fRoot == NULL || U_FAILURE(*status)) { 1075 if (U_SUCCESS(*status)) { 1076 *status = U_MEMORY_ALLOCATION_ERROR; 1077 } 1078 bundle_close(bundle, status); 1079 return NULL; 1080 } 1081 1082 bundle->fLocale = NULL; 1083 bundle->fKeysCapacity = KEY_SPACE_SIZE; 1084 /* formatVersion 1.1: start fKeysTop after the root item and indexes[] */ 1085 bundle->fIsPoolBundle = isPoolBundle; 1086 if (gUsePoolBundle || isPoolBundle) { 1087 bundle->fIndexLength = URES_INDEX_POOL_CHECKSUM + 1; 1088 } else if (gFormatVersion >= 2) { 1089 bundle->fIndexLength = URES_INDEX_16BIT_TOP + 1; 1090 } else /* formatVersion 1 */ { 1091 bundle->fIndexLength = URES_INDEX_ATTRIBUTES + 1; 1092 } 1093 bundle->fKeysBottom = (1 /* root */ + bundle->fIndexLength) * 4; 1094 uprv_memset(bundle->fKeys, 0, bundle->fKeysBottom); 1095 bundle->fKeysTop = bundle->fKeysBottom; 1096 1097 if (gFormatVersion == 1) { 1098 bundle->fStringsForm = STRINGS_UTF16_V1; 1099 } else { 1100 bundle->fStringsForm = STRINGS_UTF16_V2; 1101 } 1102 1103 return bundle; 1104 } 1105 1106 /* Closing Functions */ 1107 static void table_close(struct SResource *table) { 1108 struct SResource *current = NULL; 1109 struct SResource *prev = NULL; 1110 1111 current = table->u.fTable.fFirst; 1112 1113 while (current != NULL) { 1114 prev = current; 1115 current = current->fNext; 1116 1117 res_close(prev); 1118 } 1119 1120 table->u.fTable.fFirst = NULL; 1121 } 1122 1123 static void array_close(struct SResource *array) { 1124 struct SResource *current = NULL; 1125 struct SResource *prev = NULL; 1126 1127 if(array==NULL){ 1128 return; 1129 } 1130 current = array->u.fArray.fFirst; 1131 1132 while (current != NULL) { 1133 prev = current; 1134 current = current->fNext; 1135 1136 res_close(prev); 1137 } 1138 array->u.fArray.fFirst = NULL; 1139 } 1140 1141 static void string_close(struct SResource *string) { 1142 if (string->u.fString.fChars != NULL && 1143 string->u.fString.fChars != &gEmptyString && 1144 string->u.fString.fSame == NULL 1145 ) { 1146 uprv_free(string->u.fString.fChars); 1147 string->u.fString.fChars =NULL; 1148 } 1149 } 1150 1151 static void alias_close(struct SResource *alias) { 1152 if (alias->u.fString.fChars != NULL) { 1153 uprv_free(alias->u.fString.fChars); 1154 alias->u.fString.fChars =NULL; 1155 } 1156 } 1157 1158 static void intvector_close(struct SResource *intvector) { 1159 if (intvector->u.fIntVector.fArray != NULL) { 1160 uprv_free(intvector->u.fIntVector.fArray); 1161 intvector->u.fIntVector.fArray =NULL; 1162 } 1163 } 1164 1165 static void int_close(struct SResource *intres) { 1166 /* Intentionally left blank */ 1167 } 1168 1169 static void bin_close(struct SResource *binres) { 1170 if (binres->u.fBinaryValue.fData != NULL) { 1171 uprv_free(binres->u.fBinaryValue.fData); 1172 binres->u.fBinaryValue.fData = NULL; 1173 } 1174 } 1175 1176 void res_close(struct SResource *res) { 1177 if (res != NULL) { 1178 switch(res->fType) { 1179 case URES_STRING: 1180 string_close(res); 1181 break; 1182 case URES_ALIAS: 1183 alias_close(res); 1184 break; 1185 case URES_INT_VECTOR: 1186 intvector_close(res); 1187 break; 1188 case URES_BINARY: 1189 bin_close(res); 1190 break; 1191 case URES_INT: 1192 int_close(res); 1193 break; 1194 case URES_ARRAY: 1195 array_close(res); 1196 break; 1197 case URES_TABLE: 1198 table_close(res); 1199 break; 1200 default: 1201 /* Shouldn't happen */ 1202 break; 1203 } 1204 1205 ustr_deinit(&res->fComment); 1206 uprv_free(res); 1207 } 1208 } 1209 1210 void bundle_close(struct SRBRoot *bundle, UErrorCode *status) { 1211 res_close(bundle->fRoot); 1212 uprv_free(bundle->fLocale); 1213 uprv_free(bundle->fKeys); 1214 uprv_free(bundle->fKeyMap); 1215 uhash_close(bundle->fStringSet); 1216 uprv_free(bundle->f16BitUnits); 1217 uprv_free(bundle); 1218 } 1219 1220 void bundle_closeString(struct SRBRoot *bundle, struct SResource *string) { 1221 if (bundle->fStringSet != NULL) { 1222 uhash_remove(bundle->fStringSet, string); 1223 } 1224 string_close(string); 1225 } 1226 1227 /* Adding Functions */ 1228 void table_add(struct SResource *table, struct SResource *res, int linenumber, UErrorCode *status) { 1229 struct SResource *current = NULL; 1230 struct SResource *prev = NULL; 1231 struct SResTable *list; 1232 const char *resKeyString; 1233 1234 if (U_FAILURE(*status)) { 1235 return; 1236 } 1237 if (res == &kNoResource) { 1238 return; 1239 } 1240 1241 /* remember this linenumber to report to the user if there is a duplicate key */ 1242 res->line = linenumber; 1243 1244 /* here we need to traverse the list */ 1245 list = &(table->u.fTable); 1246 ++(list->fCount); 1247 1248 /* is list still empty? */ 1249 if (list->fFirst == NULL) { 1250 list->fFirst = res; 1251 res->fNext = NULL; 1252 return; 1253 } 1254 1255 resKeyString = list->fRoot->fKeys + res->fKey; 1256 1257 current = list->fFirst; 1258 1259 while (current != NULL) { 1260 const char *currentKeyString = list->fRoot->fKeys + current->fKey; 1261 int diff; 1262 /* 1263 * formatVersion 1: compare key strings in native-charset order 1264 * formatVersion 2 and up: compare key strings in ASCII order 1265 */ 1266 if (gFormatVersion == 1 || U_CHARSET_FAMILY == U_ASCII_FAMILY) { 1267 diff = uprv_strcmp(currentKeyString, resKeyString); 1268 } else { 1269 diff = uprv_compareInvCharsAsAscii(currentKeyString, resKeyString); 1270 } 1271 if (diff < 0) { 1272 prev = current; 1273 current = current->fNext; 1274 } else if (diff > 0) { 1275 /* we're either in front of list, or in middle */ 1276 if (prev == NULL) { 1277 /* front of the list */ 1278 list->fFirst = res; 1279 } else { 1280 /* middle of the list */ 1281 prev->fNext = res; 1282 } 1283 1284 res->fNext = current; 1285 return; 1286 } else { 1287 /* Key already exists! ERROR! */ 1288 error(linenumber, "duplicate key '%s' in table, first appeared at line %d", currentKeyString, current->line); 1289 *status = U_UNSUPPORTED_ERROR; 1290 return; 1291 } 1292 } 1293 1294 /* end of list */ 1295 prev->fNext = res; 1296 res->fNext = NULL; 1297 } 1298 1299 void array_add(struct SResource *array, struct SResource *res, UErrorCode *status) { 1300 if (U_FAILURE(*status)) { 1301 return; 1302 } 1303 1304 if (array->u.fArray.fFirst == NULL) { 1305 array->u.fArray.fFirst = res; 1306 array->u.fArray.fLast = res; 1307 } else { 1308 array->u.fArray.fLast->fNext = res; 1309 array->u.fArray.fLast = res; 1310 } 1311 1312 (array->u.fArray.fCount)++; 1313 } 1314 1315 void intvector_add(struct SResource *intvector, int32_t value, UErrorCode *status) { 1316 if (U_FAILURE(*status)) { 1317 return; 1318 } 1319 1320 *(intvector->u.fIntVector.fArray + intvector->u.fIntVector.fCount) = value; 1321 intvector->u.fIntVector.fCount++; 1322 } 1323 1324 /* Misc Functions */ 1325 1326 void bundle_setlocale(struct SRBRoot *bundle, UChar *locale, UErrorCode *status) { 1327 1328 if(U_FAILURE(*status)) { 1329 return; 1330 } 1331 1332 if (bundle->fLocale!=NULL) { 1333 uprv_free(bundle->fLocale); 1334 } 1335 1336 bundle->fLocale= (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1)); 1337 1338 if(bundle->fLocale == NULL) { 1339 *status = U_MEMORY_ALLOCATION_ERROR; 1340 return; 1341 } 1342 1343 /*u_strcpy(bundle->fLocale, locale);*/ 1344 u_UCharsToChars(locale, bundle->fLocale, u_strlen(locale)+1); 1345 1346 } 1347 1348 static const char * 1349 getKeyString(const struct SRBRoot *bundle, int32_t key) { 1350 if (key < 0) { 1351 return bundle->fPoolBundleKeys + (key & 0x7fffffff); 1352 } else { 1353 return bundle->fKeys + key; 1354 } 1355 } 1356 1357 const char * 1358 res_getKeyString(const struct SRBRoot *bundle, const struct SResource *res, char temp[8]) { 1359 if (res->fKey == -1) { 1360 return NULL; 1361 } 1362 return getKeyString(bundle, res->fKey); 1363 } 1364 1365 const char * 1366 bundle_getKeyBytes(struct SRBRoot *bundle, int32_t *pLength) { 1367 *pLength = bundle->fKeysTop - bundle->fKeysBottom; 1368 return bundle->fKeys + bundle->fKeysBottom; 1369 } 1370 1371 int32_t 1372 bundle_addKeyBytes(struct SRBRoot *bundle, const char *keyBytes, int32_t length, UErrorCode *status) { 1373 int32_t keypos; 1374 1375 if (U_FAILURE(*status)) { 1376 return -1; 1377 } 1378 if (length < 0 || (keyBytes == NULL && length != 0)) { 1379 *status = U_ILLEGAL_ARGUMENT_ERROR; 1380 return -1; 1381 } 1382 if (length == 0) { 1383 return bundle->fKeysTop; 1384 } 1385 1386 keypos = bundle->fKeysTop; 1387 bundle->fKeysTop += length; 1388 if (bundle->fKeysTop >= bundle->fKeysCapacity) { 1389 /* overflow - resize the keys buffer */ 1390 bundle->fKeysCapacity += KEY_SPACE_SIZE; 1391 bundle->fKeys = uprv_realloc(bundle->fKeys, bundle->fKeysCapacity); 1392 if(bundle->fKeys == NULL) { 1393 *status = U_MEMORY_ALLOCATION_ERROR; 1394 return -1; 1395 } 1396 } 1397 1398 uprv_memcpy(bundle->fKeys + keypos, keyBytes, length); 1399 1400 return keypos; 1401 } 1402 1403 int32_t 1404 bundle_addtag(struct SRBRoot *bundle, const char *tag, UErrorCode *status) { 1405 int32_t keypos; 1406 1407 if (U_FAILURE(*status)) { 1408 return -1; 1409 } 1410 1411 if (tag == NULL) { 1412 /* no error: the root table and array items have no keys */ 1413 return -1; 1414 } 1415 1416 keypos = bundle_addKeyBytes(bundle, tag, (int32_t)(uprv_strlen(tag) + 1), status); 1417 if (U_SUCCESS(*status)) { 1418 ++bundle->fKeysCount; 1419 } 1420 return keypos; 1421 } 1422 1423 static int32_t 1424 compareInt32(int32_t lPos, int32_t rPos) { 1425 /* 1426 * Compare possibly-negative key offsets. Don't just return lPos - rPos 1427 * because that is prone to negative-integer underflows. 1428 */ 1429 if (lPos < rPos) { 1430 return -1; 1431 } else if (lPos > rPos) { 1432 return 1; 1433 } else { 1434 return 0; 1435 } 1436 } 1437 1438 static int32_t U_CALLCONV 1439 compareKeySuffixes(const void *context, const void *l, const void *r) { 1440 const struct SRBRoot *bundle=(const struct SRBRoot *)context; 1441 int32_t lPos = ((const KeyMapEntry *)l)->oldpos; 1442 int32_t rPos = ((const KeyMapEntry *)r)->oldpos; 1443 const char *lStart = getKeyString(bundle, lPos); 1444 const char *lLimit = lStart; 1445 const char *rStart = getKeyString(bundle, rPos); 1446 const char *rLimit = rStart; 1447 int32_t diff; 1448 while (*lLimit != 0) { ++lLimit; } 1449 while (*rLimit != 0) { ++rLimit; } 1450 /* compare keys in reverse character order */ 1451 while (lStart < lLimit && rStart < rLimit) { 1452 diff = (int32_t)(uint8_t)*--lLimit - (int32_t)(uint8_t)*--rLimit; 1453 if (diff != 0) { 1454 return diff; 1455 } 1456 } 1457 /* sort equal suffixes by descending key length */ 1458 diff = (int32_t)(rLimit - rStart) - (int32_t)(lLimit - lStart); 1459 if (diff != 0) { 1460 return diff; 1461 } 1462 /* Sort pool bundle keys first (negative oldpos), and otherwise keys in parsing order. */ 1463 return compareInt32(lPos, rPos); 1464 } 1465 1466 static int32_t U_CALLCONV 1467 compareKeyNewpos(const void *context, const void *l, const void *r) { 1468 return compareInt32(((const KeyMapEntry *)l)->newpos, ((const KeyMapEntry *)r)->newpos); 1469 } 1470 1471 static int32_t U_CALLCONV 1472 compareKeyOldpos(const void *context, const void *l, const void *r) { 1473 return compareInt32(((const KeyMapEntry *)l)->oldpos, ((const KeyMapEntry *)r)->oldpos); 1474 } 1475 1476 void 1477 bundle_compactKeys(struct SRBRoot *bundle, UErrorCode *status) { 1478 KeyMapEntry *map; 1479 char *keys; 1480 int32_t i; 1481 int32_t keysCount = bundle->fPoolBundleKeysCount + bundle->fKeysCount; 1482 if (U_FAILURE(*status) || bundle->fKeysCount == 0 || bundle->fKeyMap != NULL) { 1483 return; 1484 } 1485 map = (KeyMapEntry *)uprv_malloc(keysCount * sizeof(KeyMapEntry)); 1486 if (map == NULL) { 1487 *status = U_MEMORY_ALLOCATION_ERROR; 1488 return; 1489 } 1490 keys = (char *)bundle->fPoolBundleKeys; 1491 for (i = 0; i < bundle->fPoolBundleKeysCount; ++i) { 1492 map[i].oldpos = 1493 (int32_t)(keys - bundle->fPoolBundleKeys) | 0x80000000; /* negative oldpos */ 1494 map[i].newpos = 0; 1495 while (*keys != 0) { ++keys; } /* skip the key */ 1496 ++keys; /* skip the NUL */ 1497 } 1498 keys = bundle->fKeys + bundle->fKeysBottom; 1499 for (; i < keysCount; ++i) { 1500 map[i].oldpos = (int32_t)(keys - bundle->fKeys); 1501 map[i].newpos = 0; 1502 while (*keys != 0) { ++keys; } /* skip the key */ 1503 ++keys; /* skip the NUL */ 1504 } 1505 /* Sort the keys so that each one is immediately followed by all of its suffixes. */ 1506 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), 1507 compareKeySuffixes, bundle, FALSE, status); 1508 /* 1509 * Make suffixes point into earlier, longer strings that contain them 1510 * and mark the old, now unused suffix bytes as deleted. 1511 */ 1512 if (U_SUCCESS(*status)) { 1513 keys = bundle->fKeys; 1514 for (i = 0; i < keysCount;) { 1515 /* 1516 * This key is not a suffix of the previous one; 1517 * keep this one and delete the following ones that are 1518 * suffixes of this one. 1519 */ 1520 const char *key; 1521 const char *keyLimit; 1522 int32_t j = i + 1; 1523 map[i].newpos = map[i].oldpos; 1524 if (j < keysCount && map[j].oldpos < 0) { 1525 /* Key string from the pool bundle, do not delete. */ 1526 i = j; 1527 continue; 1528 } 1529 key = getKeyString(bundle, map[i].oldpos); 1530 for (keyLimit = key; *keyLimit != 0; ++keyLimit) {} 1531 for (; j < keysCount && map[j].oldpos >= 0; ++j) { 1532 const char *k; 1533 char *suffix; 1534 const char *suffixLimit; 1535 int32_t offset; 1536 suffix = keys + map[j].oldpos; 1537 for (suffixLimit = suffix; *suffixLimit != 0; ++suffixLimit) {} 1538 offset = (int32_t)(keyLimit - key) - (suffixLimit - suffix); 1539 if (offset < 0) { 1540 break; /* suffix cannot be longer than the original */ 1541 } 1542 /* Is it a suffix of the earlier, longer key? */ 1543 for (k = keyLimit; suffix < suffixLimit && *--k == *--suffixLimit;) {} 1544 if (suffix == suffixLimit && *k == *suffixLimit) { 1545 map[j].newpos = map[i].oldpos + offset; /* yes, point to the earlier key */ 1546 /* mark the suffix as deleted */ 1547 while (*suffix != 0) { *suffix++ = 1; } 1548 *suffix = 1; 1549 } else { 1550 break; /* not a suffix, restart from here */ 1551 } 1552 } 1553 i = j; 1554 } 1555 /* 1556 * Re-sort by newpos, then modify the key characters array in-place 1557 * to squeeze out unused bytes, and readjust the newpos offsets. 1558 */ 1559 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), 1560 compareKeyNewpos, NULL, FALSE, status); 1561 if (U_SUCCESS(*status)) { 1562 int32_t oldpos, newpos, limit; 1563 oldpos = newpos = bundle->fKeysBottom; 1564 limit = bundle->fKeysTop; 1565 /* skip key offsets that point into the pool bundle rather than this new bundle */ 1566 for (i = 0; i < keysCount && map[i].newpos < 0; ++i) {} 1567 if (i < keysCount) { 1568 while (oldpos < limit) { 1569 if (keys[oldpos] == 1) { 1570 ++oldpos; /* skip unused bytes */ 1571 } else { 1572 /* adjust the new offsets for keys starting here */ 1573 while (i < keysCount && map[i].newpos == oldpos) { 1574 map[i++].newpos = newpos; 1575 } 1576 /* move the key characters to their new position */ 1577 keys[newpos++] = keys[oldpos++]; 1578 } 1579 } 1580 assert(i == keysCount); 1581 } 1582 bundle->fKeysTop = newpos; 1583 /* Re-sort once more, by old offsets for binary searching. */ 1584 uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), 1585 compareKeyOldpos, NULL, FALSE, status); 1586 if (U_SUCCESS(*status)) { 1587 /* key size reduction by limit - newpos */ 1588 bundle->fKeyMap = map; 1589 map = NULL; 1590 } 1591 } 1592 } 1593 uprv_free(map); 1594 } 1595 1596 static int32_t U_CALLCONV 1597 compareStringSuffixes(const void *context, const void *l, const void *r) { 1598 struct SResource *left = *((struct SResource **)l); 1599 struct SResource *right = *((struct SResource **)r); 1600 const UChar *lStart = left->u.fString.fChars; 1601 const UChar *lLimit = lStart + left->u.fString.fLength; 1602 const UChar *rStart = right->u.fString.fChars; 1603 const UChar *rLimit = rStart + right->u.fString.fLength; 1604 int32_t diff; 1605 /* compare keys in reverse character order */ 1606 while (lStart < lLimit && rStart < rLimit) { 1607 diff = (int32_t)*--lLimit - (int32_t)*--rLimit; 1608 if (diff != 0) { 1609 return diff; 1610 } 1611 } 1612 /* sort equal suffixes by descending string length */ 1613 return right->u.fString.fLength - left->u.fString.fLength; 1614 } 1615 1616 static int32_t U_CALLCONV 1617 compareStringLengths(const void *context, const void *l, const void *r) { 1618 struct SResource *left = *((struct SResource **)l); 1619 struct SResource *right = *((struct SResource **)r); 1620 int32_t diff; 1621 /* Make "is suffix of another string" compare greater than a non-suffix. */ 1622 diff = (int)(left->u.fString.fSame != NULL) - (int)(right->u.fString.fSame != NULL); 1623 if (diff != 0) { 1624 return diff; 1625 } 1626 /* sort by ascending string length */ 1627 return left->u.fString.fLength - right->u.fString.fLength; 1628 } 1629 1630 static int32_t 1631 string_writeUTF16v2(struct SRBRoot *bundle, struct SResource *res, int32_t utf16Length) { 1632 int32_t length = res->u.fString.fLength; 1633 res->fRes = URES_MAKE_RESOURCE(URES_STRING_V2, utf16Length); 1634 res->fWritten = TRUE; 1635 switch(res->u.fString.fNumCharsForLength) { 1636 case 0: 1637 break; 1638 case 1: 1639 bundle->f16BitUnits[utf16Length++] = (uint16_t)(0xdc00 + length); 1640 break; 1641 case 2: 1642 bundle->f16BitUnits[utf16Length] = (uint16_t)(0xdfef + (length >> 16)); 1643 bundle->f16BitUnits[utf16Length + 1] = (uint16_t)length; 1644 utf16Length += 2; 1645 break; 1646 case 3: 1647 bundle->f16BitUnits[utf16Length] = 0xdfff; 1648 bundle->f16BitUnits[utf16Length + 1] = (uint16_t)(length >> 16); 1649 bundle->f16BitUnits[utf16Length + 2] = (uint16_t)length; 1650 utf16Length += 3; 1651 break; 1652 default: 1653 break; /* will not occur */ 1654 } 1655 u_memcpy(bundle->f16BitUnits + utf16Length, res->u.fString.fChars, length + 1); 1656 return utf16Length + length + 1; 1657 } 1658 1659 static void 1660 bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status) { 1661 if (U_FAILURE(*status)) { 1662 return; 1663 } 1664 switch(bundle->fStringsForm) { 1665 case STRINGS_UTF16_V2: 1666 if (bundle->f16BitUnitsLength > 0) { 1667 struct SResource **array; 1668 int32_t count = uhash_count(bundle->fStringSet); 1669 int32_t i, pos; 1670 /* 1671 * Allocate enough space for the initial NUL and the UTF-16 v2 strings, 1672 * and some extra for URES_TABLE16 and URES_ARRAY16 values. 1673 * Round down to an even number. 1674 */ 1675 int32_t utf16Length = (bundle->f16BitUnitsLength + 20000) & ~1; 1676 bundle->f16BitUnits = (UChar *)uprv_malloc(utf16Length * U_SIZEOF_UCHAR); 1677 array = (struct SResource **)uprv_malloc(count * sizeof(struct SResource **)); 1678 if (bundle->f16BitUnits == NULL || array == NULL) { 1679 uprv_free(bundle->f16BitUnits); 1680 bundle->f16BitUnits = NULL; 1681 uprv_free(array); 1682 *status = U_MEMORY_ALLOCATION_ERROR; 1683 return; 1684 } 1685 bundle->f16BitUnitsCapacity = utf16Length; 1686 /* insert the initial NUL */ 1687 bundle->f16BitUnits[0] = 0; 1688 utf16Length = 1; 1689 ++bundle->f16BitUnitsLength; 1690 for (pos = -1, i = 0; i < count; ++i) { 1691 array[i] = (struct SResource *)uhash_nextElement(bundle->fStringSet, &pos)->key.pointer; 1692 } 1693 /* Sort the strings so that each one is immediately followed by all of its suffixes. */ 1694 uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **), 1695 compareStringSuffixes, NULL, FALSE, status); 1696 /* 1697 * Make suffixes point into earlier, longer strings that contain them. 1698 * Temporarily use fSame and fSuffixOffset for suffix strings to 1699 * refer to the remaining ones. 1700 */ 1701 if (U_SUCCESS(*status)) { 1702 for (i = 0; i < count;) { 1703 /* 1704 * This string is not a suffix of the previous one; 1705 * write this one and subsume the following ones that are 1706 * suffixes of this one. 1707 */ 1708 struct SResource *res = array[i]; 1709 const UChar *strLimit = res->u.fString.fChars + res->u.fString.fLength; 1710 int32_t j; 1711 for (j = i + 1; j < count; ++j) { 1712 struct SResource *suffixRes = array[j]; 1713 const UChar *s; 1714 const UChar *suffix = suffixRes->u.fString.fChars; 1715 const UChar *suffixLimit = suffix + suffixRes->u.fString.fLength; 1716 int32_t offset = res->u.fString.fLength - suffixRes->u.fString.fLength; 1717 if (offset < 0) { 1718 break; /* suffix cannot be longer than the original */ 1719 } 1720 /* Is it a suffix of the earlier, longer key? */ 1721 for (s = strLimit; suffix < suffixLimit && *--s == *--suffixLimit;) {} 1722 if (suffix == suffixLimit && *s == *suffixLimit) { 1723 if (suffixRes->u.fString.fNumCharsForLength == 0) { 1724 /* yes, point to the earlier string */ 1725 suffixRes->u.fString.fSame = res; 1726 suffixRes->u.fString.fSuffixOffset = offset; 1727 } else { 1728 /* write the suffix by itself if we need explicit length */ 1729 } 1730 } else { 1731 break; /* not a suffix, restart from here */ 1732 } 1733 } 1734 i = j; 1735 } 1736 } 1737 /* 1738 * Re-sort the strings by ascending length (except suffixes last) 1739 * to optimize for URES_TABLE16 and URES_ARRAY16: 1740 * Keep as many as possible within reach of 16-bit offsets. 1741 */ 1742 uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **), 1743 compareStringLengths, NULL, FALSE, status); 1744 if (U_SUCCESS(*status)) { 1745 /* Write the non-suffix strings. */ 1746 for (i = 0; i < count && array[i]->u.fString.fSame == NULL; ++i) { 1747 utf16Length = string_writeUTF16v2(bundle, array[i], utf16Length); 1748 } 1749 /* Write the suffix strings. Make each point to the real string. */ 1750 for (; i < count; ++i) { 1751 struct SResource *res = array[i]; 1752 struct SResource *same = res->u.fString.fSame; 1753 res->fRes = same->fRes + same->u.fString.fNumCharsForLength + res->u.fString.fSuffixOffset; 1754 res->u.fString.fSame = NULL; 1755 res->fWritten = TRUE; 1756 } 1757 } 1758 assert(utf16Length <= bundle->f16BitUnitsLength); 1759 bundle->f16BitUnitsLength = utf16Length; 1760 uprv_free(array); 1761 } 1762 break; 1763 default: 1764 break; 1765 } 1766 } 1767