Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains some templates that are useful if you are working with the
     11 // STL at all.
     12 //
     13 // No library is required when using these functions.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_ADT_STLEXTRAS_H
     18 #define LLVM_ADT_STLEXTRAS_H
     19 
     20 #include <cstddef> // for std::size_t
     21 #include <cstdlib> // for qsort
     22 #include <functional>
     23 #include <iterator>
     24 #include <utility> // for std::pair
     25 
     26 namespace llvm {
     27 
     28 //===----------------------------------------------------------------------===//
     29 //     Extra additions to <functional>
     30 //===----------------------------------------------------------------------===//
     31 
     32 template<class Ty>
     33 struct less_ptr : public std::binary_function<Ty, Ty, bool> {
     34   bool operator()(const Ty* left, const Ty* right) const {
     35     return *left < *right;
     36   }
     37 };
     38 
     39 template<class Ty>
     40 struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
     41   bool operator()(const Ty* left, const Ty* right) const {
     42     return *right < *left;
     43   }
     44 };
     45 
     46 // deleter - Very very very simple method that is used to invoke operator
     47 // delete on something.  It is used like this:
     48 //
     49 //   for_each(V.begin(), B.end(), deleter<Interval>);
     50 //
     51 template <class T>
     52 static inline void deleter(T *Ptr) {
     53   delete Ptr;
     54 }
     55 
     56 
     57 
     58 //===----------------------------------------------------------------------===//
     59 //     Extra additions to <iterator>
     60 //===----------------------------------------------------------------------===//
     61 
     62 // mapped_iterator - This is a simple iterator adapter that causes a function to
     63 // be dereferenced whenever operator* is invoked on the iterator.
     64 //
     65 template <class RootIt, class UnaryFunc>
     66 class mapped_iterator {
     67   RootIt current;
     68   UnaryFunc Fn;
     69 public:
     70   typedef typename std::iterator_traits<RootIt>::iterator_category
     71           iterator_category;
     72   typedef typename std::iterator_traits<RootIt>::difference_type
     73           difference_type;
     74   typedef typename UnaryFunc::result_type value_type;
     75 
     76   typedef void pointer;
     77   //typedef typename UnaryFunc::result_type *pointer;
     78   typedef void reference;        // Can't modify value returned by fn
     79 
     80   typedef RootIt iterator_type;
     81   typedef mapped_iterator<RootIt, UnaryFunc> _Self;
     82 
     83   inline const RootIt &getCurrent() const { return current; }
     84   inline const UnaryFunc &getFunc() const { return Fn; }
     85 
     86   inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
     87     : current(I), Fn(F) {}
     88   inline mapped_iterator(const mapped_iterator &It)
     89     : current(It.current), Fn(It.Fn) {}
     90 
     91   inline value_type operator*() const {   // All this work to do this
     92     return Fn(*current);         // little change
     93   }
     94 
     95   _Self& operator++() { ++current; return *this; }
     96   _Self& operator--() { --current; return *this; }
     97   _Self  operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
     98   _Self  operator--(int) { _Self __tmp = *this; --current; return __tmp; }
     99   _Self  operator+    (difference_type n) const {
    100     return _Self(current + n, Fn);
    101   }
    102   _Self& operator+=   (difference_type n) { current += n; return *this; }
    103   _Self  operator-    (difference_type n) const {
    104     return _Self(current - n, Fn);
    105   }
    106   _Self& operator-=   (difference_type n) { current -= n; return *this; }
    107   reference operator[](difference_type n) const { return *(*this + n); }
    108 
    109   inline bool operator!=(const _Self &X) const { return !operator==(X); }
    110   inline bool operator==(const _Self &X) const { return current == X.current; }
    111   inline bool operator< (const _Self &X) const { return current <  X.current; }
    112 
    113   inline difference_type operator-(const _Self &X) const {
    114     return current - X.current;
    115   }
    116 };
    117 
    118 template <class _Iterator, class Func>
    119 inline mapped_iterator<_Iterator, Func>
    120 operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
    121           const mapped_iterator<_Iterator, Func>& X) {
    122   return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
    123 }
    124 
    125 
    126 // map_iterator - Provide a convenient way to create mapped_iterators, just like
    127 // make_pair is useful for creating pairs...
    128 //
    129 template <class ItTy, class FuncTy>
    130 inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
    131   return mapped_iterator<ItTy, FuncTy>(I, F);
    132 }
    133 
    134 
    135 // next/prior - These functions unlike std::advance do not modify the
    136 // passed iterator but return a copy.
    137 //
    138 // next(myIt) returns copy of myIt incremented once
    139 // next(myIt, n) returns copy of myIt incremented n times
    140 // prior(myIt) returns copy of myIt decremented once
    141 // prior(myIt, n) returns copy of myIt decremented n times
    142 
    143 template <typename ItTy, typename Dist>
    144 inline ItTy next(ItTy it, Dist n)
    145 {
    146   std::advance(it, n);
    147   return it;
    148 }
    149 
    150 template <typename ItTy>
    151 inline ItTy next(ItTy it)
    152 {
    153   return ++it;
    154 }
    155 
    156 template <typename ItTy, typename Dist>
    157 inline ItTy prior(ItTy it, Dist n)
    158 {
    159   std::advance(it, -n);
    160   return it;
    161 }
    162 
    163 template <typename ItTy>
    164 inline ItTy prior(ItTy it)
    165 {
    166   return --it;
    167 }
    168 
    169 //===----------------------------------------------------------------------===//
    170 //     Extra additions to <utility>
    171 //===----------------------------------------------------------------------===//
    172 
    173 // tie - this function ties two objects and returns a temporary object
    174 // that is assignable from a std::pair. This can be used to make code
    175 // more readable when using values returned from functions bundled in
    176 // a std::pair. Since an example is worth 1000 words:
    177 //
    178 // typedef std::map<int, int> Int2IntMap;
    179 //
    180 // Int2IntMap myMap;
    181 // Int2IntMap::iterator where;
    182 // bool inserted;
    183 // tie(where, inserted) = myMap.insert(std::make_pair(123,456));
    184 //
    185 // if (inserted)
    186 //   // do stuff
    187 // else
    188 //   // do other stuff
    189 
    190 namespace
    191 {
    192   template <typename T1, typename T2>
    193   struct tier {
    194     typedef T1 &first_type;
    195     typedef T2 &second_type;
    196 
    197     first_type first;
    198     second_type second;
    199 
    200     tier(first_type f, second_type s) : first(f), second(s) { }
    201     tier& operator=(const std::pair<T1, T2>& p) {
    202       first = p.first;
    203       second = p.second;
    204       return *this;
    205     }
    206   };
    207 }
    208 
    209 template <typename T1, typename T2>
    210 inline tier<T1, T2> tie(T1& f, T2& s) {
    211   return tier<T1, T2>(f, s);
    212 }
    213 
    214 //===----------------------------------------------------------------------===//
    215 //     Extra additions for arrays
    216 //===----------------------------------------------------------------------===//
    217 
    218 /// Find where an array ends (for ending iterators)
    219 /// This returns a pointer to the byte immediately
    220 /// after the end of an array.
    221 template<class T, std::size_t N>
    222 inline T *array_endof(T (&x)[N]) {
    223   return x+N;
    224 }
    225 
    226 /// Find the length of an array.
    227 template<class T, std::size_t N>
    228 inline size_t array_lengthof(T (&)[N]) {
    229   return N;
    230 }
    231 
    232 /// array_pod_sort_comparator - This is helper function for array_pod_sort,
    233 /// which just uses operator< on T.
    234 template<typename T>
    235 static inline int array_pod_sort_comparator(const void *P1, const void *P2) {
    236   if (*reinterpret_cast<const T*>(P1) < *reinterpret_cast<const T*>(P2))
    237     return -1;
    238   if (*reinterpret_cast<const T*>(P2) < *reinterpret_cast<const T*>(P1))
    239     return 1;
    240   return 0;
    241 }
    242 
    243 /// get_array_pad_sort_comparator - This is an internal helper function used to
    244 /// get type deduction of T right.
    245 template<typename T>
    246 static int (*get_array_pad_sort_comparator(const T &))
    247              (const void*, const void*) {
    248   return array_pod_sort_comparator<T>;
    249 }
    250 
    251 
    252 /// array_pod_sort - This sorts an array with the specified start and end
    253 /// extent.  This is just like std::sort, except that it calls qsort instead of
    254 /// using an inlined template.  qsort is slightly slower than std::sort, but
    255 /// most sorts are not performance critical in LLVM and std::sort has to be
    256 /// template instantiated for each type, leading to significant measured code
    257 /// bloat.  This function should generally be used instead of std::sort where
    258 /// possible.
    259 ///
    260 /// This function assumes that you have simple POD-like types that can be
    261 /// compared with operator< and can be moved with memcpy.  If this isn't true,
    262 /// you should use std::sort.
    263 ///
    264 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
    265 /// default to std::less.
    266 template<class IteratorTy>
    267 static inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
    268   // Don't dereference start iterator of empty sequence.
    269   if (Start == End) return;
    270   qsort(&*Start, End-Start, sizeof(*Start),
    271         get_array_pad_sort_comparator(*Start));
    272 }
    273 
    274 template<class IteratorTy>
    275 static inline void array_pod_sort(IteratorTy Start, IteratorTy End,
    276                                   int (*Compare)(const void*, const void*)) {
    277   // Don't dereference start iterator of empty sequence.
    278   if (Start == End) return;
    279   qsort(&*Start, End-Start, sizeof(*Start), Compare);
    280 }
    281 
    282 //===----------------------------------------------------------------------===//
    283 //     Extra additions to <algorithm>
    284 //===----------------------------------------------------------------------===//
    285 
    286 /// For a container of pointers, deletes the pointers and then clears the
    287 /// container.
    288 template<typename Container>
    289 void DeleteContainerPointers(Container &C) {
    290   for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
    291     delete *I;
    292   C.clear();
    293 }
    294 
    295 /// In a container of pairs (usually a map) whose second element is a pointer,
    296 /// deletes the second elements and then clears the container.
    297 template<typename Container>
    298 void DeleteContainerSeconds(Container &C) {
    299   for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
    300     delete I->second;
    301   C.clear();
    302 }
    303 
    304 } // End llvm namespace
    305 
    306 #endif
    307