1 /* 2 * i386 emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "config.h" 20 #include "exec.h" 21 #include "disas.h" 22 #include "tcg.h" 23 #include "kvm.h" 24 #include "qemu-barrier.h" 25 26 #if !defined(CONFIG_SOFTMMU) 27 #undef EAX 28 #undef ECX 29 #undef EDX 30 #undef EBX 31 #undef ESP 32 #undef EBP 33 #undef ESI 34 #undef EDI 35 #undef EIP 36 #include <signal.h> 37 #ifdef __linux__ 38 #include <sys/ucontext.h> 39 #endif 40 #endif 41 42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS) 43 // Work around ugly bugs in glibc that mangle global register contents 44 #undef env 45 #define env cpu_single_env 46 #endif 47 48 int tb_invalidated_flag; 49 50 //#define CONFIG_DEBUG_EXEC 51 //#define DEBUG_SIGNAL 52 53 int qemu_cpu_has_work(CPUState *env) 54 { 55 return cpu_has_work(env); 56 } 57 58 void cpu_loop_exit(void) 59 { 60 env->current_tb = NULL; 61 longjmp(env->jmp_env, 1); 62 } 63 64 /* exit the current TB from a signal handler. The host registers are 65 restored in a state compatible with the CPU emulator 66 */ 67 void cpu_resume_from_signal(CPUState *env1, void *puc) 68 { 69 #if !defined(CONFIG_SOFTMMU) 70 #ifdef __linux__ 71 struct ucontext *uc = puc; 72 #elif defined(__OpenBSD__) 73 struct sigcontext *uc = puc; 74 #endif 75 #endif 76 77 env = env1; 78 79 /* XXX: restore cpu registers saved in host registers */ 80 81 #if !defined(CONFIG_SOFTMMU) 82 if (puc) { 83 /* XXX: use siglongjmp ? */ 84 #ifdef __linux__ 85 #ifdef __ia64 86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL); 87 #else 88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 89 #endif 90 #elif defined(__OpenBSD__) 91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL); 92 #endif 93 } 94 #endif 95 env->exception_index = -1; 96 longjmp(env->jmp_env, 1); 97 } 98 99 /* Execute the code without caching the generated code. An interpreter 100 could be used if available. */ 101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb) 102 { 103 unsigned long next_tb; 104 TranslationBlock *tb; 105 106 /* Should never happen. 107 We only end up here when an existing TB is too long. */ 108 if (max_cycles > CF_COUNT_MASK) 109 max_cycles = CF_COUNT_MASK; 110 111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, 112 max_cycles); 113 env->current_tb = tb; 114 /* execute the generated code */ 115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr); 116 env->current_tb = NULL; 117 118 if ((next_tb & 3) == 2) { 119 /* Restore PC. This may happen if async event occurs before 120 the TB starts executing. */ 121 cpu_pc_from_tb(env, tb); 122 } 123 tb_phys_invalidate(tb, -1); 124 tb_free(tb); 125 } 126 127 static TranslationBlock *tb_find_slow(target_ulong pc, 128 target_ulong cs_base, 129 uint64_t flags) 130 { 131 TranslationBlock *tb, **ptb1; 132 unsigned int h; 133 target_ulong phys_pc, phys_page1, phys_page2, virt_page2; 134 135 tb_invalidated_flag = 0; 136 137 /* find translated block using physical mappings */ 138 phys_pc = get_phys_addr_code(env, pc); 139 phys_page1 = phys_pc & TARGET_PAGE_MASK; 140 phys_page2 = -1; 141 h = tb_phys_hash_func(phys_pc); 142 ptb1 = &tb_phys_hash[h]; 143 for(;;) { 144 tb = *ptb1; 145 if (!tb) 146 goto not_found; 147 if (tb->pc == pc && 148 tb->page_addr[0] == phys_page1 && 149 tb->cs_base == cs_base && 150 tb->flags == flags) { 151 /* check next page if needed */ 152 if (tb->page_addr[1] != -1) { 153 virt_page2 = (pc & TARGET_PAGE_MASK) + 154 TARGET_PAGE_SIZE; 155 phys_page2 = get_phys_addr_code(env, virt_page2); 156 if (tb->page_addr[1] == phys_page2) 157 goto found; 158 } else { 159 goto found; 160 } 161 } 162 ptb1 = &tb->phys_hash_next; 163 } 164 not_found: 165 /* if no translated code available, then translate it now */ 166 tb = tb_gen_code(env, pc, cs_base, flags, 0); 167 168 found: 169 /* Move the last found TB to the head of the list */ 170 if (likely(*ptb1)) { 171 *ptb1 = tb->phys_hash_next; 172 tb->phys_hash_next = tb_phys_hash[h]; 173 tb_phys_hash[h] = tb; 174 } 175 /* we add the TB in the virtual pc hash table */ 176 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; 177 return tb; 178 } 179 180 static inline TranslationBlock *tb_find_fast(void) 181 { 182 TranslationBlock *tb; 183 target_ulong cs_base, pc; 184 int flags; 185 186 /* we record a subset of the CPU state. It will 187 always be the same before a given translated block 188 is executed. */ 189 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 190 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; 191 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || 192 tb->flags != flags)) { 193 tb = tb_find_slow(pc, cs_base, flags); 194 } 195 return tb; 196 } 197 198 static CPUDebugExcpHandler *debug_excp_handler; 199 200 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler) 201 { 202 CPUDebugExcpHandler *old_handler = debug_excp_handler; 203 204 debug_excp_handler = handler; 205 return old_handler; 206 } 207 208 static void cpu_handle_debug_exception(CPUState *env) 209 { 210 CPUWatchpoint *wp; 211 212 if (!env->watchpoint_hit) { 213 QTAILQ_FOREACH(wp, &env->watchpoints, entry) { 214 wp->flags &= ~BP_WATCHPOINT_HIT; 215 } 216 } 217 if (debug_excp_handler) { 218 debug_excp_handler(env); 219 } 220 } 221 222 /* main execution loop */ 223 224 volatile sig_atomic_t exit_request; 225 226 int cpu_exec(CPUState *env1) 227 { 228 volatile host_reg_t saved_env_reg; 229 int ret, interrupt_request; 230 TranslationBlock *tb; 231 uint8_t *tc_ptr; 232 unsigned long next_tb; 233 234 if (env1->halted) { 235 if (!cpu_has_work(env1)) { 236 return EXCP_HALTED; 237 } 238 239 env1->halted = 0; 240 } 241 242 cpu_single_env = env1; 243 244 /* the access to env below is actually saving the global register's 245 value, so that files not including target-xyz/exec.h are free to 246 use it. */ 247 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env)); 248 saved_env_reg = (host_reg_t) env; 249 barrier(); 250 env = env1; 251 252 if (unlikely(exit_request)) { 253 env->exit_request = 1; 254 } 255 256 #if defined(TARGET_I386) 257 if (!kvm_enabled()) { 258 /* put eflags in CPU temporary format */ 259 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 260 DF = 1 - (2 * ((env->eflags >> 10) & 1)); 261 CC_OP = CC_OP_EFLAGS; 262 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 263 } 264 #elif defined(TARGET_SPARC) 265 #elif defined(TARGET_M68K) 266 env->cc_op = CC_OP_FLAGS; 267 env->cc_dest = env->sr & 0xf; 268 env->cc_x = (env->sr >> 4) & 1; 269 #elif defined(TARGET_ALPHA) 270 #elif defined(TARGET_ARM) 271 #elif defined(TARGET_UNICORE32) 272 #elif defined(TARGET_PPC) 273 #elif defined(TARGET_LM32) 274 #elif defined(TARGET_MICROBLAZE) 275 #elif defined(TARGET_MIPS) 276 #elif defined(TARGET_SH4) 277 #elif defined(TARGET_CRIS) 278 #elif defined(TARGET_S390X) 279 /* XXXXX */ 280 #else 281 #error unsupported target CPU 282 #endif 283 env->exception_index = -1; 284 285 /* prepare setjmp context for exception handling */ 286 for(;;) { 287 if (setjmp(env->jmp_env) == 0) { 288 #if defined(__sparc__) && !defined(CONFIG_SOLARIS) 289 #undef env 290 env = cpu_single_env; 291 #define env cpu_single_env 292 #endif 293 /* if an exception is pending, we execute it here */ 294 if (env->exception_index >= 0) { 295 if (env->exception_index >= EXCP_INTERRUPT) { 296 /* exit request from the cpu execution loop */ 297 ret = env->exception_index; 298 if (ret == EXCP_DEBUG) { 299 cpu_handle_debug_exception(env); 300 } 301 break; 302 } else { 303 #if defined(CONFIG_USER_ONLY) 304 /* if user mode only, we simulate a fake exception 305 which will be handled outside the cpu execution 306 loop */ 307 #if defined(TARGET_I386) 308 do_interrupt_user(env->exception_index, 309 env->exception_is_int, 310 env->error_code, 311 env->exception_next_eip); 312 /* successfully delivered */ 313 env->old_exception = -1; 314 #endif 315 ret = env->exception_index; 316 break; 317 #else 318 #if defined(TARGET_I386) 319 /* simulate a real cpu exception. On i386, it can 320 trigger new exceptions, but we do not handle 321 double or triple faults yet. */ 322 do_interrupt(env->exception_index, 323 env->exception_is_int, 324 env->error_code, 325 env->exception_next_eip, 0); 326 /* successfully delivered */ 327 env->old_exception = -1; 328 #elif defined(TARGET_PPC) 329 do_interrupt(env); 330 #elif defined(TARGET_LM32) 331 do_interrupt(env); 332 #elif defined(TARGET_MICROBLAZE) 333 do_interrupt(env); 334 #elif defined(TARGET_MIPS) 335 do_interrupt(env); 336 #elif defined(TARGET_SPARC) 337 do_interrupt(env); 338 #elif defined(TARGET_ARM) 339 do_interrupt(env); 340 #elif defined(TARGET_UNICORE32) 341 do_interrupt(env); 342 #elif defined(TARGET_SH4) 343 do_interrupt(env); 344 #elif defined(TARGET_ALPHA) 345 do_interrupt(env); 346 #elif defined(TARGET_CRIS) 347 do_interrupt(env); 348 #elif defined(TARGET_M68K) 349 do_interrupt(0); 350 #elif defined(TARGET_S390X) 351 do_interrupt(env); 352 #endif 353 env->exception_index = -1; 354 #endif 355 } 356 } 357 358 if (kvm_enabled()) { 359 kvm_cpu_exec(env); 360 longjmp(env->jmp_env, 1); 361 } 362 363 next_tb = 0; /* force lookup of first TB */ 364 for(;;) { 365 interrupt_request = env->interrupt_request; 366 if (unlikely(interrupt_request)) { 367 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) { 368 /* Mask out external interrupts for this step. */ 369 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 370 } 371 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 372 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 373 env->exception_index = EXCP_DEBUG; 374 cpu_loop_exit(); 375 } 376 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ 377 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \ 378 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32) 379 if (interrupt_request & CPU_INTERRUPT_HALT) { 380 env->interrupt_request &= ~CPU_INTERRUPT_HALT; 381 env->halted = 1; 382 env->exception_index = EXCP_HLT; 383 cpu_loop_exit(); 384 } 385 #endif 386 #if defined(TARGET_I386) 387 if (interrupt_request & CPU_INTERRUPT_INIT) { 388 svm_check_intercept(SVM_EXIT_INIT); 389 do_cpu_init(env); 390 env->exception_index = EXCP_HALTED; 391 cpu_loop_exit(); 392 } else if (interrupt_request & CPU_INTERRUPT_SIPI) { 393 do_cpu_sipi(env); 394 } else if (env->hflags2 & HF2_GIF_MASK) { 395 if ((interrupt_request & CPU_INTERRUPT_SMI) && 396 !(env->hflags & HF_SMM_MASK)) { 397 svm_check_intercept(SVM_EXIT_SMI); 398 env->interrupt_request &= ~CPU_INTERRUPT_SMI; 399 do_smm_enter(); 400 next_tb = 0; 401 } else if ((interrupt_request & CPU_INTERRUPT_NMI) && 402 !(env->hflags2 & HF2_NMI_MASK)) { 403 env->interrupt_request &= ~CPU_INTERRUPT_NMI; 404 env->hflags2 |= HF2_NMI_MASK; 405 do_interrupt(EXCP02_NMI, 0, 0, 0, 1); 406 next_tb = 0; 407 } else if (interrupt_request & CPU_INTERRUPT_MCE) { 408 env->interrupt_request &= ~CPU_INTERRUPT_MCE; 409 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0); 410 next_tb = 0; 411 } else if ((interrupt_request & CPU_INTERRUPT_HARD) && 412 (((env->hflags2 & HF2_VINTR_MASK) && 413 (env->hflags2 & HF2_HIF_MASK)) || 414 (!(env->hflags2 & HF2_VINTR_MASK) && 415 (env->eflags & IF_MASK && 416 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { 417 int intno; 418 svm_check_intercept(SVM_EXIT_INTR); 419 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); 420 intno = cpu_get_pic_interrupt(env); 421 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno); 422 #if defined(__sparc__) && !defined(CONFIG_SOLARIS) 423 #undef env 424 env = cpu_single_env; 425 #define env cpu_single_env 426 #endif 427 do_interrupt(intno, 0, 0, 0, 1); 428 /* ensure that no TB jump will be modified as 429 the program flow was changed */ 430 next_tb = 0; 431 #if !defined(CONFIG_USER_ONLY) 432 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && 433 (env->eflags & IF_MASK) && 434 !(env->hflags & HF_INHIBIT_IRQ_MASK)) { 435 int intno; 436 /* FIXME: this should respect TPR */ 437 svm_check_intercept(SVM_EXIT_VINTR); 438 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); 439 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno); 440 do_interrupt(intno, 0, 0, 0, 1); 441 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; 442 next_tb = 0; 443 #endif 444 } 445 } 446 #elif defined(TARGET_PPC) 447 #if 0 448 if ((interrupt_request & CPU_INTERRUPT_RESET)) { 449 cpu_reset(env); 450 } 451 #endif 452 if (interrupt_request & CPU_INTERRUPT_HARD) { 453 ppc_hw_interrupt(env); 454 if (env->pending_interrupts == 0) 455 env->interrupt_request &= ~CPU_INTERRUPT_HARD; 456 next_tb = 0; 457 } 458 #elif defined(TARGET_LM32) 459 if ((interrupt_request & CPU_INTERRUPT_HARD) 460 && (env->ie & IE_IE)) { 461 env->exception_index = EXCP_IRQ; 462 do_interrupt(env); 463 next_tb = 0; 464 } 465 #elif defined(TARGET_MICROBLAZE) 466 if ((interrupt_request & CPU_INTERRUPT_HARD) 467 && (env->sregs[SR_MSR] & MSR_IE) 468 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) 469 && !(env->iflags & (D_FLAG | IMM_FLAG))) { 470 env->exception_index = EXCP_IRQ; 471 do_interrupt(env); 472 next_tb = 0; 473 } 474 #elif defined(TARGET_MIPS) 475 if ((interrupt_request & CPU_INTERRUPT_HARD) && 476 cpu_mips_hw_interrupts_pending(env)) { 477 /* Raise it */ 478 env->exception_index = EXCP_EXT_INTERRUPT; 479 env->error_code = 0; 480 do_interrupt(env); 481 next_tb = 0; 482 } 483 #elif defined(TARGET_SPARC) 484 if (interrupt_request & CPU_INTERRUPT_HARD) { 485 if (cpu_interrupts_enabled(env) && 486 env->interrupt_index > 0) { 487 int pil = env->interrupt_index & 0xf; 488 int type = env->interrupt_index & 0xf0; 489 490 if (((type == TT_EXTINT) && 491 cpu_pil_allowed(env, pil)) || 492 type != TT_EXTINT) { 493 env->exception_index = env->interrupt_index; 494 do_interrupt(env); 495 next_tb = 0; 496 } 497 } 498 } 499 #elif defined(TARGET_ARM) 500 if (interrupt_request & CPU_INTERRUPT_FIQ 501 && !(env->uncached_cpsr & CPSR_F)) { 502 env->exception_index = EXCP_FIQ; 503 do_interrupt(env); 504 next_tb = 0; 505 } 506 /* ARMv7-M interrupt return works by loading a magic value 507 into the PC. On real hardware the load causes the 508 return to occur. The qemu implementation performs the 509 jump normally, then does the exception return when the 510 CPU tries to execute code at the magic address. 511 This will cause the magic PC value to be pushed to 512 the stack if an interrupt occurred at the wrong time. 513 We avoid this by disabling interrupts when 514 pc contains a magic address. */ 515 if (interrupt_request & CPU_INTERRUPT_HARD 516 && ((IS_M(env) && env->regs[15] < 0xfffffff0) 517 || !(env->uncached_cpsr & CPSR_I))) { 518 env->exception_index = EXCP_IRQ; 519 do_interrupt(env); 520 next_tb = 0; 521 } 522 #elif defined(TARGET_UNICORE32) 523 if (interrupt_request & CPU_INTERRUPT_HARD 524 && !(env->uncached_asr & ASR_I)) { 525 do_interrupt(env); 526 next_tb = 0; 527 } 528 #elif defined(TARGET_SH4) 529 if (interrupt_request & CPU_INTERRUPT_HARD) { 530 do_interrupt(env); 531 next_tb = 0; 532 } 533 #elif defined(TARGET_ALPHA) 534 if (interrupt_request & CPU_INTERRUPT_HARD) { 535 do_interrupt(env); 536 next_tb = 0; 537 } 538 #elif defined(TARGET_CRIS) 539 if (interrupt_request & CPU_INTERRUPT_HARD 540 && (env->pregs[PR_CCS] & I_FLAG) 541 && !env->locked_irq) { 542 env->exception_index = EXCP_IRQ; 543 do_interrupt(env); 544 next_tb = 0; 545 } 546 if (interrupt_request & CPU_INTERRUPT_NMI 547 && (env->pregs[PR_CCS] & M_FLAG)) { 548 env->exception_index = EXCP_NMI; 549 do_interrupt(env); 550 next_tb = 0; 551 } 552 #elif defined(TARGET_M68K) 553 if (interrupt_request & CPU_INTERRUPT_HARD 554 && ((env->sr & SR_I) >> SR_I_SHIFT) 555 < env->pending_level) { 556 /* Real hardware gets the interrupt vector via an 557 IACK cycle at this point. Current emulated 558 hardware doesn't rely on this, so we 559 provide/save the vector when the interrupt is 560 first signalled. */ 561 env->exception_index = env->pending_vector; 562 do_interrupt(1); 563 next_tb = 0; 564 } 565 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY) 566 if ((interrupt_request & CPU_INTERRUPT_HARD) && 567 (env->psw.mask & PSW_MASK_EXT)) { 568 do_interrupt(env); 569 next_tb = 0; 570 } 571 #endif 572 /* Don't use the cached interrupt_request value, 573 do_interrupt may have updated the EXITTB flag. */ 574 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { 575 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 576 /* ensure that no TB jump will be modified as 577 the program flow was changed */ 578 next_tb = 0; 579 } 580 } 581 if (unlikely(env->exit_request)) { 582 env->exit_request = 0; 583 env->exception_index = EXCP_INTERRUPT; 584 cpu_loop_exit(); 585 } 586 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC) 587 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 588 /* restore flags in standard format */ 589 #if defined(TARGET_I386) 590 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); 591 log_cpu_state(env, X86_DUMP_CCOP); 592 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 593 #elif defined(TARGET_M68K) 594 cpu_m68k_flush_flags(env, env->cc_op); 595 env->cc_op = CC_OP_FLAGS; 596 env->sr = (env->sr & 0xffe0) 597 | env->cc_dest | (env->cc_x << 4); 598 log_cpu_state(env, 0); 599 #else 600 log_cpu_state(env, 0); 601 #endif 602 } 603 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */ 604 spin_lock(&tb_lock); 605 tb = tb_find_fast(); 606 /* Note: we do it here to avoid a gcc bug on Mac OS X when 607 doing it in tb_find_slow */ 608 if (tb_invalidated_flag) { 609 /* as some TB could have been invalidated because 610 of memory exceptions while generating the code, we 611 must recompute the hash index here */ 612 next_tb = 0; 613 tb_invalidated_flag = 0; 614 } 615 #ifdef CONFIG_DEBUG_EXEC 616 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", 617 (long)tb->tc_ptr, tb->pc, 618 lookup_symbol(tb->pc)); 619 #endif 620 /* see if we can patch the calling TB. When the TB 621 spans two pages, we cannot safely do a direct 622 jump. */ 623 if (next_tb != 0 && tb->page_addr[1] == -1) { 624 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); 625 } 626 spin_unlock(&tb_lock); 627 628 /* cpu_interrupt might be called while translating the 629 TB, but before it is linked into a potentially 630 infinite loop and becomes env->current_tb. Avoid 631 starting execution if there is a pending interrupt. */ 632 env->current_tb = tb; 633 barrier(); 634 if (likely(!env->exit_request)) { 635 tc_ptr = tb->tc_ptr; 636 /* execute the generated code */ 637 #if defined(__sparc__) && !defined(CONFIG_SOLARIS) 638 #undef env 639 env = cpu_single_env; 640 #define env cpu_single_env 641 #endif 642 next_tb = tcg_qemu_tb_exec(tc_ptr); 643 if ((next_tb & 3) == 2) { 644 /* Instruction counter expired. */ 645 int insns_left; 646 tb = (TranslationBlock *)(long)(next_tb & ~3); 647 /* Restore PC. */ 648 cpu_pc_from_tb(env, tb); 649 insns_left = env->icount_decr.u32; 650 if (env->icount_extra && insns_left >= 0) { 651 /* Refill decrementer and continue execution. */ 652 env->icount_extra += insns_left; 653 if (env->icount_extra > 0xffff) { 654 insns_left = 0xffff; 655 } else { 656 insns_left = env->icount_extra; 657 } 658 env->icount_extra -= insns_left; 659 env->icount_decr.u16.low = insns_left; 660 } else { 661 if (insns_left > 0) { 662 /* Execute remaining instructions. */ 663 cpu_exec_nocache(insns_left, tb); 664 } 665 env->exception_index = EXCP_INTERRUPT; 666 next_tb = 0; 667 cpu_loop_exit(); 668 } 669 } 670 } 671 env->current_tb = NULL; 672 /* reset soft MMU for next block (it can currently 673 only be set by a memory fault) */ 674 } /* for(;;) */ 675 } 676 } /* for(;;) */ 677 678 679 #if defined(TARGET_I386) 680 /* restore flags in standard format */ 681 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); 682 #elif defined(TARGET_ARM) 683 /* XXX: Save/restore host fpu exception state?. */ 684 #elif defined(TARGET_UNICORE32) 685 #elif defined(TARGET_SPARC) 686 #elif defined(TARGET_PPC) 687 #elif defined(TARGET_LM32) 688 #elif defined(TARGET_M68K) 689 cpu_m68k_flush_flags(env, env->cc_op); 690 env->cc_op = CC_OP_FLAGS; 691 env->sr = (env->sr & 0xffe0) 692 | env->cc_dest | (env->cc_x << 4); 693 #elif defined(TARGET_MICROBLAZE) 694 #elif defined(TARGET_MIPS) 695 #elif defined(TARGET_SH4) 696 #elif defined(TARGET_ALPHA) 697 #elif defined(TARGET_CRIS) 698 #elif defined(TARGET_S390X) 699 /* XXXXX */ 700 #else 701 #error unsupported target CPU 702 #endif 703 704 /* restore global registers */ 705 barrier(); 706 env = (void *) saved_env_reg; 707 708 /* fail safe : never use cpu_single_env outside cpu_exec() */ 709 cpu_single_env = NULL; 710 return ret; 711 } 712 713 /* must only be called from the generated code as an exception can be 714 generated */ 715 void tb_invalidate_page_range(target_ulong start, target_ulong end) 716 { 717 /* XXX: cannot enable it yet because it yields to MMU exception 718 where NIP != read address on PowerPC */ 719 #if 0 720 target_ulong phys_addr; 721 phys_addr = get_phys_addr_code(env, start); 722 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); 723 #endif 724 } 725 726 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) 727 728 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) 729 { 730 CPUX86State *saved_env; 731 732 saved_env = env; 733 env = s; 734 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { 735 selector &= 0xffff; 736 cpu_x86_load_seg_cache(env, seg_reg, selector, 737 (selector << 4), 0xffff, 0); 738 } else { 739 helper_load_seg(seg_reg, selector); 740 } 741 env = saved_env; 742 } 743 744 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) 745 { 746 CPUX86State *saved_env; 747 748 saved_env = env; 749 env = s; 750 751 helper_fsave(ptr, data32); 752 753 env = saved_env; 754 } 755 756 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) 757 { 758 CPUX86State *saved_env; 759 760 saved_env = env; 761 env = s; 762 763 helper_frstor(ptr, data32); 764 765 env = saved_env; 766 } 767 768 #endif /* TARGET_I386 */ 769 770 #if !defined(CONFIG_SOFTMMU) 771 772 #if defined(TARGET_I386) 773 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code) 774 #else 775 #define EXCEPTION_ACTION cpu_loop_exit() 776 #endif 777 778 /* 'pc' is the host PC at which the exception was raised. 'address' is 779 the effective address of the memory exception. 'is_write' is 1 if a 780 write caused the exception and otherwise 0'. 'old_set' is the 781 signal set which should be restored */ 782 static inline int handle_cpu_signal(unsigned long pc, unsigned long address, 783 int is_write, sigset_t *old_set, 784 void *puc) 785 { 786 TranslationBlock *tb; 787 int ret; 788 789 if (cpu_single_env) 790 env = cpu_single_env; /* XXX: find a correct solution for multithread */ 791 #if defined(DEBUG_SIGNAL) 792 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 793 pc, address, is_write, *(unsigned long *)old_set); 794 #endif 795 /* XXX: locking issue */ 796 if (is_write && page_unprotect(h2g(address), pc, puc)) { 797 return 1; 798 } 799 800 /* see if it is an MMU fault */ 801 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); 802 if (ret < 0) 803 return 0; /* not an MMU fault */ 804 if (ret == 0) 805 return 1; /* the MMU fault was handled without causing real CPU fault */ 806 /* now we have a real cpu fault */ 807 tb = tb_find_pc(pc); 808 if (tb) { 809 /* the PC is inside the translated code. It means that we have 810 a virtual CPU fault */ 811 cpu_restore_state(tb, env, pc); 812 } 813 814 /* we restore the process signal mask as the sigreturn should 815 do it (XXX: use sigsetjmp) */ 816 sigprocmask(SIG_SETMASK, old_set, NULL); 817 EXCEPTION_ACTION; 818 819 /* never comes here */ 820 return 1; 821 } 822 823 #if defined(__i386__) 824 825 #if defined(__APPLE__) 826 # include <sys/ucontext.h> 827 828 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) 829 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) 830 # define ERROR_sig(context) ((context)->uc_mcontext->es.err) 831 # define MASK_sig(context) ((context)->uc_sigmask) 832 #elif defined (__NetBSD__) 833 # include <ucontext.h> 834 835 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP]) 836 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) 837 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) 838 # define MASK_sig(context) ((context)->uc_sigmask) 839 #elif defined (__FreeBSD__) || defined(__DragonFly__) 840 # include <ucontext.h> 841 842 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip)) 843 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) 844 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err) 845 # define MASK_sig(context) ((context)->uc_sigmask) 846 #elif defined(__OpenBSD__) 847 # define EIP_sig(context) ((context)->sc_eip) 848 # define TRAP_sig(context) ((context)->sc_trapno) 849 # define ERROR_sig(context) ((context)->sc_err) 850 # define MASK_sig(context) ((context)->sc_mask) 851 #else 852 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) 853 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) 854 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) 855 # define MASK_sig(context) ((context)->uc_sigmask) 856 #endif 857 858 int cpu_signal_handler(int host_signum, void *pinfo, 859 void *puc) 860 { 861 siginfo_t *info = pinfo; 862 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__) 863 ucontext_t *uc = puc; 864 #elif defined(__OpenBSD__) 865 struct sigcontext *uc = puc; 866 #else 867 struct ucontext *uc = puc; 868 #endif 869 unsigned long pc; 870 int trapno; 871 872 #ifndef REG_EIP 873 /* for glibc 2.1 */ 874 #define REG_EIP EIP 875 #define REG_ERR ERR 876 #define REG_TRAPNO TRAPNO 877 #endif 878 pc = EIP_sig(uc); 879 trapno = TRAP_sig(uc); 880 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 881 trapno == 0xe ? 882 (ERROR_sig(uc) >> 1) & 1 : 0, 883 &MASK_sig(uc), puc); 884 } 885 886 #elif defined(__x86_64__) 887 888 #ifdef __NetBSD__ 889 #define PC_sig(context) _UC_MACHINE_PC(context) 890 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) 891 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) 892 #define MASK_sig(context) ((context)->uc_sigmask) 893 #elif defined(__OpenBSD__) 894 #define PC_sig(context) ((context)->sc_rip) 895 #define TRAP_sig(context) ((context)->sc_trapno) 896 #define ERROR_sig(context) ((context)->sc_err) 897 #define MASK_sig(context) ((context)->sc_mask) 898 #elif defined (__FreeBSD__) || defined(__DragonFly__) 899 #include <ucontext.h> 900 901 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip)) 902 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) 903 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) 904 #define MASK_sig(context) ((context)->uc_sigmask) 905 #else 906 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP]) 907 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) 908 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) 909 #define MASK_sig(context) ((context)->uc_sigmask) 910 #endif 911 912 int cpu_signal_handler(int host_signum, void *pinfo, 913 void *puc) 914 { 915 siginfo_t *info = pinfo; 916 unsigned long pc; 917 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__) 918 ucontext_t *uc = puc; 919 #elif defined(__OpenBSD__) 920 struct sigcontext *uc = puc; 921 #else 922 struct ucontext *uc = puc; 923 #endif 924 925 pc = PC_sig(uc); 926 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 927 TRAP_sig(uc) == 0xe ? 928 (ERROR_sig(uc) >> 1) & 1 : 0, 929 &MASK_sig(uc), puc); 930 } 931 932 #elif defined(_ARCH_PPC) 933 934 /*********************************************************************** 935 * signal context platform-specific definitions 936 * From Wine 937 */ 938 #ifdef linux 939 /* All Registers access - only for local access */ 940 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) 941 /* Gpr Registers access */ 942 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) 943 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ 944 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ 945 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ 946 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ 947 # define LR_sig(context) REG_sig(link, context) /* Link register */ 948 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ 949 /* Float Registers access */ 950 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) 951 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) 952 /* Exception Registers access */ 953 # define DAR_sig(context) REG_sig(dar, context) 954 # define DSISR_sig(context) REG_sig(dsisr, context) 955 # define TRAP_sig(context) REG_sig(trap, context) 956 #endif /* linux */ 957 958 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 959 #include <ucontext.h> 960 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0) 961 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1) 962 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr) 963 # define XER_sig(context) ((context)->uc_mcontext.mc_xer) 964 # define LR_sig(context) ((context)->uc_mcontext.mc_lr) 965 # define CR_sig(context) ((context)->uc_mcontext.mc_cr) 966 /* Exception Registers access */ 967 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar) 968 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr) 969 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc) 970 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */ 971 972 #ifdef __APPLE__ 973 # include <sys/ucontext.h> 974 typedef struct ucontext SIGCONTEXT; 975 /* All Registers access - only for local access */ 976 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) 977 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) 978 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) 979 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) 980 /* Gpr Registers access */ 981 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) 982 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ 983 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ 984 # define CTR_sig(context) REG_sig(ctr, context) 985 # define XER_sig(context) REG_sig(xer, context) /* Link register */ 986 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ 987 # define CR_sig(context) REG_sig(cr, context) /* Condition register */ 988 /* Float Registers access */ 989 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) 990 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) 991 /* Exception Registers access */ 992 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ 993 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) 994 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ 995 #endif /* __APPLE__ */ 996 997 int cpu_signal_handler(int host_signum, void *pinfo, 998 void *puc) 999 { 1000 siginfo_t *info = pinfo; 1001 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 1002 ucontext_t *uc = puc; 1003 #else 1004 struct ucontext *uc = puc; 1005 #endif 1006 unsigned long pc; 1007 int is_write; 1008 1009 pc = IAR_sig(uc); 1010 is_write = 0; 1011 #if 0 1012 /* ppc 4xx case */ 1013 if (DSISR_sig(uc) & 0x00800000) 1014 is_write = 1; 1015 #else 1016 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) 1017 is_write = 1; 1018 #endif 1019 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1020 is_write, &uc->uc_sigmask, puc); 1021 } 1022 1023 #elif defined(__alpha__) 1024 1025 int cpu_signal_handler(int host_signum, void *pinfo, 1026 void *puc) 1027 { 1028 siginfo_t *info = pinfo; 1029 struct ucontext *uc = puc; 1030 uint32_t *pc = uc->uc_mcontext.sc_pc; 1031 uint32_t insn = *pc; 1032 int is_write = 0; 1033 1034 /* XXX: need kernel patch to get write flag faster */ 1035 switch (insn >> 26) { 1036 case 0x0d: // stw 1037 case 0x0e: // stb 1038 case 0x0f: // stq_u 1039 case 0x24: // stf 1040 case 0x25: // stg 1041 case 0x26: // sts 1042 case 0x27: // stt 1043 case 0x2c: // stl 1044 case 0x2d: // stq 1045 case 0x2e: // stl_c 1046 case 0x2f: // stq_c 1047 is_write = 1; 1048 } 1049 1050 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1051 is_write, &uc->uc_sigmask, puc); 1052 } 1053 #elif defined(__sparc__) 1054 1055 int cpu_signal_handler(int host_signum, void *pinfo, 1056 void *puc) 1057 { 1058 siginfo_t *info = pinfo; 1059 int is_write; 1060 uint32_t insn; 1061 #if !defined(__arch64__) || defined(CONFIG_SOLARIS) 1062 uint32_t *regs = (uint32_t *)(info + 1); 1063 void *sigmask = (regs + 20); 1064 /* XXX: is there a standard glibc define ? */ 1065 unsigned long pc = regs[1]; 1066 #else 1067 #ifdef __linux__ 1068 struct sigcontext *sc = puc; 1069 unsigned long pc = sc->sigc_regs.tpc; 1070 void *sigmask = (void *)sc->sigc_mask; 1071 #elif defined(__OpenBSD__) 1072 struct sigcontext *uc = puc; 1073 unsigned long pc = uc->sc_pc; 1074 void *sigmask = (void *)(long)uc->sc_mask; 1075 #endif 1076 #endif 1077 1078 /* XXX: need kernel patch to get write flag faster */ 1079 is_write = 0; 1080 insn = *(uint32_t *)pc; 1081 if ((insn >> 30) == 3) { 1082 switch((insn >> 19) & 0x3f) { 1083 case 0x05: // stb 1084 case 0x15: // stba 1085 case 0x06: // sth 1086 case 0x16: // stha 1087 case 0x04: // st 1088 case 0x14: // sta 1089 case 0x07: // std 1090 case 0x17: // stda 1091 case 0x0e: // stx 1092 case 0x1e: // stxa 1093 case 0x24: // stf 1094 case 0x34: // stfa 1095 case 0x27: // stdf 1096 case 0x37: // stdfa 1097 case 0x26: // stqf 1098 case 0x36: // stqfa 1099 case 0x25: // stfsr 1100 case 0x3c: // casa 1101 case 0x3e: // casxa 1102 is_write = 1; 1103 break; 1104 } 1105 } 1106 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1107 is_write, sigmask, NULL); 1108 } 1109 1110 #elif defined(__arm__) 1111 1112 int cpu_signal_handler(int host_signum, void *pinfo, 1113 void *puc) 1114 { 1115 siginfo_t *info = pinfo; 1116 struct ucontext *uc = puc; 1117 unsigned long pc; 1118 int is_write; 1119 1120 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) 1121 pc = uc->uc_mcontext.gregs[R15]; 1122 #else 1123 pc = uc->uc_mcontext.arm_pc; 1124 #endif 1125 /* XXX: compute is_write */ 1126 is_write = 0; 1127 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1128 is_write, 1129 &uc->uc_sigmask, puc); 1130 } 1131 1132 #elif defined(__mc68000) 1133 1134 int cpu_signal_handler(int host_signum, void *pinfo, 1135 void *puc) 1136 { 1137 siginfo_t *info = pinfo; 1138 struct ucontext *uc = puc; 1139 unsigned long pc; 1140 int is_write; 1141 1142 pc = uc->uc_mcontext.gregs[16]; 1143 /* XXX: compute is_write */ 1144 is_write = 0; 1145 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1146 is_write, 1147 &uc->uc_sigmask, puc); 1148 } 1149 1150 #elif defined(__ia64) 1151 1152 #ifndef __ISR_VALID 1153 /* This ought to be in <bits/siginfo.h>... */ 1154 # define __ISR_VALID 1 1155 #endif 1156 1157 int cpu_signal_handler(int host_signum, void *pinfo, void *puc) 1158 { 1159 siginfo_t *info = pinfo; 1160 struct ucontext *uc = puc; 1161 unsigned long ip; 1162 int is_write = 0; 1163 1164 ip = uc->uc_mcontext.sc_ip; 1165 switch (host_signum) { 1166 case SIGILL: 1167 case SIGFPE: 1168 case SIGSEGV: 1169 case SIGBUS: 1170 case SIGTRAP: 1171 if (info->si_code && (info->si_segvflags & __ISR_VALID)) 1172 /* ISR.W (write-access) is bit 33: */ 1173 is_write = (info->si_isr >> 33) & 1; 1174 break; 1175 1176 default: 1177 break; 1178 } 1179 return handle_cpu_signal(ip, (unsigned long)info->si_addr, 1180 is_write, 1181 (sigset_t *)&uc->uc_sigmask, puc); 1182 } 1183 1184 #elif defined(__s390__) 1185 1186 int cpu_signal_handler(int host_signum, void *pinfo, 1187 void *puc) 1188 { 1189 siginfo_t *info = pinfo; 1190 struct ucontext *uc = puc; 1191 unsigned long pc; 1192 uint16_t *pinsn; 1193 int is_write = 0; 1194 1195 pc = uc->uc_mcontext.psw.addr; 1196 1197 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead 1198 of the normal 2 arguments. The 3rd argument contains the "int_code" 1199 from the hardware which does in fact contain the is_write value. 1200 The rt signal handler, as far as I can tell, does not give this value 1201 at all. Not that we could get to it from here even if it were. */ 1202 /* ??? This is not even close to complete, since it ignores all 1203 of the read-modify-write instructions. */ 1204 pinsn = (uint16_t *)pc; 1205 switch (pinsn[0] >> 8) { 1206 case 0x50: /* ST */ 1207 case 0x42: /* STC */ 1208 case 0x40: /* STH */ 1209 is_write = 1; 1210 break; 1211 case 0xc4: /* RIL format insns */ 1212 switch (pinsn[0] & 0xf) { 1213 case 0xf: /* STRL */ 1214 case 0xb: /* STGRL */ 1215 case 0x7: /* STHRL */ 1216 is_write = 1; 1217 } 1218 break; 1219 case 0xe3: /* RXY format insns */ 1220 switch (pinsn[2] & 0xff) { 1221 case 0x50: /* STY */ 1222 case 0x24: /* STG */ 1223 case 0x72: /* STCY */ 1224 case 0x70: /* STHY */ 1225 case 0x8e: /* STPQ */ 1226 case 0x3f: /* STRVH */ 1227 case 0x3e: /* STRV */ 1228 case 0x2f: /* STRVG */ 1229 is_write = 1; 1230 } 1231 break; 1232 } 1233 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1234 is_write, &uc->uc_sigmask, puc); 1235 } 1236 1237 #elif defined(__mips__) 1238 1239 int cpu_signal_handler(int host_signum, void *pinfo, 1240 void *puc) 1241 { 1242 siginfo_t *info = pinfo; 1243 struct ucontext *uc = puc; 1244 greg_t pc = uc->uc_mcontext.pc; 1245 int is_write; 1246 1247 /* XXX: compute is_write */ 1248 is_write = 0; 1249 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1250 is_write, &uc->uc_sigmask, puc); 1251 } 1252 1253 #elif defined(__hppa__) 1254 1255 int cpu_signal_handler(int host_signum, void *pinfo, 1256 void *puc) 1257 { 1258 struct siginfo *info = pinfo; 1259 struct ucontext *uc = puc; 1260 unsigned long pc = uc->uc_mcontext.sc_iaoq[0]; 1261 uint32_t insn = *(uint32_t *)pc; 1262 int is_write = 0; 1263 1264 /* XXX: need kernel patch to get write flag faster. */ 1265 switch (insn >> 26) { 1266 case 0x1a: /* STW */ 1267 case 0x19: /* STH */ 1268 case 0x18: /* STB */ 1269 case 0x1b: /* STWM */ 1270 is_write = 1; 1271 break; 1272 1273 case 0x09: /* CSTWX, FSTWX, FSTWS */ 1274 case 0x0b: /* CSTDX, FSTDX, FSTDS */ 1275 /* Distinguish from coprocessor load ... */ 1276 is_write = (insn >> 9) & 1; 1277 break; 1278 1279 case 0x03: 1280 switch ((insn >> 6) & 15) { 1281 case 0xa: /* STWS */ 1282 case 0x9: /* STHS */ 1283 case 0x8: /* STBS */ 1284 case 0xe: /* STWAS */ 1285 case 0xc: /* STBYS */ 1286 is_write = 1; 1287 } 1288 break; 1289 } 1290 1291 return handle_cpu_signal(pc, (unsigned long)info->si_addr, 1292 is_write, &uc->uc_sigmask, puc); 1293 } 1294 1295 #else 1296 1297 #error host CPU specific signal handler needed 1298 1299 #endif 1300 1301 #endif /* !defined(CONFIG_SOFTMMU) */ 1302