Home | History | Annotate | Download | only in Scalar
      1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global value numbering to eliminate fully redundant
     11 // instructions.  It also performs simple dead load elimination.
     12 //
     13 // Note that this pass does the value numbering itself; it does not use the
     14 // ValueNumbering analysis passes.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "gvn"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/GlobalVariable.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/LLVMContext.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/ConstantFolding.h"
     25 #include "llvm/Analysis/Dominators.h"
     26 #include "llvm/Analysis/InstructionSimplify.h"
     27 #include "llvm/Analysis/Loads.h"
     28 #include "llvm/Analysis/MemoryBuiltins.h"
     29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     30 #include "llvm/Analysis/PHITransAddr.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/Assembly/Writer.h"
     33 #include "llvm/Target/TargetData.h"
     34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     35 #include "llvm/Transforms/Utils/SSAUpdater.h"
     36 #include "llvm/ADT/DenseMap.h"
     37 #include "llvm/ADT/DepthFirstIterator.h"
     38 #include "llvm/ADT/SmallPtrSet.h"
     39 #include "llvm/ADT/Statistic.h"
     40 #include "llvm/Support/Allocator.h"
     41 #include "llvm/Support/CommandLine.h"
     42 #include "llvm/Support/Debug.h"
     43 #include "llvm/Support/IRBuilder.h"
     44 using namespace llvm;
     45 
     46 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
     47 STATISTIC(NumGVNLoad,   "Number of loads deleted");
     48 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
     49 STATISTIC(NumGVNBlocks, "Number of blocks merged");
     50 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
     51 
     52 static cl::opt<bool> EnablePRE("enable-pre",
     53                                cl::init(true), cl::Hidden);
     54 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
     55 
     56 //===----------------------------------------------------------------------===//
     57 //                         ValueTable Class
     58 //===----------------------------------------------------------------------===//
     59 
     60 /// This class holds the mapping between values and value numbers.  It is used
     61 /// as an efficient mechanism to determine the expression-wise equivalence of
     62 /// two values.
     63 namespace {
     64   struct Expression {
     65     uint32_t opcode;
     66     Type *type;
     67     SmallVector<uint32_t, 4> varargs;
     68 
     69     Expression(uint32_t o = ~2U) : opcode(o) { }
     70 
     71     bool operator==(const Expression &other) const {
     72       if (opcode != other.opcode)
     73         return false;
     74       if (opcode == ~0U || opcode == ~1U)
     75         return true;
     76       if (type != other.type)
     77         return false;
     78       if (varargs != other.varargs)
     79         return false;
     80       return true;
     81     }
     82   };
     83 
     84   class ValueTable {
     85     DenseMap<Value*, uint32_t> valueNumbering;
     86     DenseMap<Expression, uint32_t> expressionNumbering;
     87     AliasAnalysis *AA;
     88     MemoryDependenceAnalysis *MD;
     89     DominatorTree *DT;
     90 
     91     uint32_t nextValueNumber;
     92 
     93     Expression create_expression(Instruction* I);
     94     Expression create_extractvalue_expression(ExtractValueInst* EI);
     95     uint32_t lookup_or_add_call(CallInst* C);
     96   public:
     97     ValueTable() : nextValueNumber(1) { }
     98     uint32_t lookup_or_add(Value *V);
     99     uint32_t lookup(Value *V) const;
    100     void add(Value *V, uint32_t num);
    101     void clear();
    102     void erase(Value *v);
    103     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
    104     AliasAnalysis *getAliasAnalysis() const { return AA; }
    105     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
    106     void setDomTree(DominatorTree* D) { DT = D; }
    107     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
    108     void verifyRemoved(const Value *) const;
    109   };
    110 }
    111 
    112 namespace llvm {
    113 template <> struct DenseMapInfo<Expression> {
    114   static inline Expression getEmptyKey() {
    115     return ~0U;
    116   }
    117 
    118   static inline Expression getTombstoneKey() {
    119     return ~1U;
    120   }
    121 
    122   static unsigned getHashValue(const Expression e) {
    123     unsigned hash = e.opcode;
    124 
    125     hash = ((unsigned)((uintptr_t)e.type >> 4) ^
    126             (unsigned)((uintptr_t)e.type >> 9));
    127 
    128     for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
    129          E = e.varargs.end(); I != E; ++I)
    130       hash = *I + hash * 37;
    131 
    132     return hash;
    133   }
    134   static bool isEqual(const Expression &LHS, const Expression &RHS) {
    135     return LHS == RHS;
    136   }
    137 };
    138 
    139 }
    140 
    141 //===----------------------------------------------------------------------===//
    142 //                     ValueTable Internal Functions
    143 //===----------------------------------------------------------------------===//
    144 
    145 Expression ValueTable::create_expression(Instruction *I) {
    146   Expression e;
    147   e.type = I->getType();
    148   e.opcode = I->getOpcode();
    149   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
    150        OI != OE; ++OI)
    151     e.varargs.push_back(lookup_or_add(*OI));
    152 
    153   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    154     e.opcode = (C->getOpcode() << 8) | C->getPredicate();
    155   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    156     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
    157          II != IE; ++II)
    158       e.varargs.push_back(*II);
    159   }
    160 
    161   return e;
    162 }
    163 
    164 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
    165   assert(EI != 0 && "Not an ExtractValueInst?");
    166   Expression e;
    167   e.type = EI->getType();
    168   e.opcode = 0;
    169 
    170   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    171   if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
    172     // EI might be an extract from one of our recognised intrinsics. If it
    173     // is we'll synthesize a semantically equivalent expression instead on
    174     // an extract value expression.
    175     switch (I->getIntrinsicID()) {
    176       case Intrinsic::sadd_with_overflow:
    177       case Intrinsic::uadd_with_overflow:
    178         e.opcode = Instruction::Add;
    179         break;
    180       case Intrinsic::ssub_with_overflow:
    181       case Intrinsic::usub_with_overflow:
    182         e.opcode = Instruction::Sub;
    183         break;
    184       case Intrinsic::smul_with_overflow:
    185       case Intrinsic::umul_with_overflow:
    186         e.opcode = Instruction::Mul;
    187         break;
    188       default:
    189         break;
    190     }
    191 
    192     if (e.opcode != 0) {
    193       // Intrinsic recognized. Grab its args to finish building the expression.
    194       assert(I->getNumArgOperands() == 2 &&
    195              "Expect two args for recognised intrinsics.");
    196       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
    197       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
    198       return e;
    199     }
    200   }
    201 
    202   // Not a recognised intrinsic. Fall back to producing an extract value
    203   // expression.
    204   e.opcode = EI->getOpcode();
    205   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
    206        OI != OE; ++OI)
    207     e.varargs.push_back(lookup_or_add(*OI));
    208 
    209   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
    210          II != IE; ++II)
    211     e.varargs.push_back(*II);
    212 
    213   return e;
    214 }
    215 
    216 //===----------------------------------------------------------------------===//
    217 //                     ValueTable External Functions
    218 //===----------------------------------------------------------------------===//
    219 
    220 /// add - Insert a value into the table with a specified value number.
    221 void ValueTable::add(Value *V, uint32_t num) {
    222   valueNumbering.insert(std::make_pair(V, num));
    223 }
    224 
    225 uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
    226   if (AA->doesNotAccessMemory(C)) {
    227     Expression exp = create_expression(C);
    228     uint32_t& e = expressionNumbering[exp];
    229     if (!e) e = nextValueNumber++;
    230     valueNumbering[C] = e;
    231     return e;
    232   } else if (AA->onlyReadsMemory(C)) {
    233     Expression exp = create_expression(C);
    234     uint32_t& e = expressionNumbering[exp];
    235     if (!e) {
    236       e = nextValueNumber++;
    237       valueNumbering[C] = e;
    238       return e;
    239     }
    240     if (!MD) {
    241       e = nextValueNumber++;
    242       valueNumbering[C] = e;
    243       return e;
    244     }
    245 
    246     MemDepResult local_dep = MD->getDependency(C);
    247 
    248     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
    249       valueNumbering[C] =  nextValueNumber;
    250       return nextValueNumber++;
    251     }
    252 
    253     if (local_dep.isDef()) {
    254       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
    255 
    256       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
    257         valueNumbering[C] = nextValueNumber;
    258         return nextValueNumber++;
    259       }
    260 
    261       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    262         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    263         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
    264         if (c_vn != cd_vn) {
    265           valueNumbering[C] = nextValueNumber;
    266           return nextValueNumber++;
    267         }
    268       }
    269 
    270       uint32_t v = lookup_or_add(local_cdep);
    271       valueNumbering[C] = v;
    272       return v;
    273     }
    274 
    275     // Non-local case.
    276     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
    277       MD->getNonLocalCallDependency(CallSite(C));
    278     // FIXME: Move the checking logic to MemDep!
    279     CallInst* cdep = 0;
    280 
    281     // Check to see if we have a single dominating call instruction that is
    282     // identical to C.
    283     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
    284       const NonLocalDepEntry *I = &deps[i];
    285       if (I->getResult().isNonLocal())
    286         continue;
    287 
    288       // We don't handle non-definitions.  If we already have a call, reject
    289       // instruction dependencies.
    290       if (!I->getResult().isDef() || cdep != 0) {
    291         cdep = 0;
    292         break;
    293       }
    294 
    295       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
    296       // FIXME: All duplicated with non-local case.
    297       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
    298         cdep = NonLocalDepCall;
    299         continue;
    300       }
    301 
    302       cdep = 0;
    303       break;
    304     }
    305 
    306     if (!cdep) {
    307       valueNumbering[C] = nextValueNumber;
    308       return nextValueNumber++;
    309     }
    310 
    311     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
    312       valueNumbering[C] = nextValueNumber;
    313       return nextValueNumber++;
    314     }
    315     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    316       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    317       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
    318       if (c_vn != cd_vn) {
    319         valueNumbering[C] = nextValueNumber;
    320         return nextValueNumber++;
    321       }
    322     }
    323 
    324     uint32_t v = lookup_or_add(cdep);
    325     valueNumbering[C] = v;
    326     return v;
    327 
    328   } else {
    329     valueNumbering[C] = nextValueNumber;
    330     return nextValueNumber++;
    331   }
    332 }
    333 
    334 /// lookup_or_add - Returns the value number for the specified value, assigning
    335 /// it a new number if it did not have one before.
    336 uint32_t ValueTable::lookup_or_add(Value *V) {
    337   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
    338   if (VI != valueNumbering.end())
    339     return VI->second;
    340 
    341   if (!isa<Instruction>(V)) {
    342     valueNumbering[V] = nextValueNumber;
    343     return nextValueNumber++;
    344   }
    345 
    346   Instruction* I = cast<Instruction>(V);
    347   Expression exp;
    348   switch (I->getOpcode()) {
    349     case Instruction::Call:
    350       return lookup_or_add_call(cast<CallInst>(I));
    351     case Instruction::Add:
    352     case Instruction::FAdd:
    353     case Instruction::Sub:
    354     case Instruction::FSub:
    355     case Instruction::Mul:
    356     case Instruction::FMul:
    357     case Instruction::UDiv:
    358     case Instruction::SDiv:
    359     case Instruction::FDiv:
    360     case Instruction::URem:
    361     case Instruction::SRem:
    362     case Instruction::FRem:
    363     case Instruction::Shl:
    364     case Instruction::LShr:
    365     case Instruction::AShr:
    366     case Instruction::And:
    367     case Instruction::Or :
    368     case Instruction::Xor:
    369     case Instruction::ICmp:
    370     case Instruction::FCmp:
    371     case Instruction::Trunc:
    372     case Instruction::ZExt:
    373     case Instruction::SExt:
    374     case Instruction::FPToUI:
    375     case Instruction::FPToSI:
    376     case Instruction::UIToFP:
    377     case Instruction::SIToFP:
    378     case Instruction::FPTrunc:
    379     case Instruction::FPExt:
    380     case Instruction::PtrToInt:
    381     case Instruction::IntToPtr:
    382     case Instruction::BitCast:
    383     case Instruction::Select:
    384     case Instruction::ExtractElement:
    385     case Instruction::InsertElement:
    386     case Instruction::ShuffleVector:
    387     case Instruction::InsertValue:
    388     case Instruction::GetElementPtr:
    389       exp = create_expression(I);
    390       break;
    391     case Instruction::ExtractValue:
    392       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
    393       break;
    394     default:
    395       valueNumbering[V] = nextValueNumber;
    396       return nextValueNumber++;
    397   }
    398 
    399   uint32_t& e = expressionNumbering[exp];
    400   if (!e) e = nextValueNumber++;
    401   valueNumbering[V] = e;
    402   return e;
    403 }
    404 
    405 /// lookup - Returns the value number of the specified value. Fails if
    406 /// the value has not yet been numbered.
    407 uint32_t ValueTable::lookup(Value *V) const {
    408   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
    409   assert(VI != valueNumbering.end() && "Value not numbered?");
    410   return VI->second;
    411 }
    412 
    413 /// clear - Remove all entries from the ValueTable.
    414 void ValueTable::clear() {
    415   valueNumbering.clear();
    416   expressionNumbering.clear();
    417   nextValueNumber = 1;
    418 }
    419 
    420 /// erase - Remove a value from the value numbering.
    421 void ValueTable::erase(Value *V) {
    422   valueNumbering.erase(V);
    423 }
    424 
    425 /// verifyRemoved - Verify that the value is removed from all internal data
    426 /// structures.
    427 void ValueTable::verifyRemoved(const Value *V) const {
    428   for (DenseMap<Value*, uint32_t>::const_iterator
    429          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    430     assert(I->first != V && "Inst still occurs in value numbering map!");
    431   }
    432 }
    433 
    434 //===----------------------------------------------------------------------===//
    435 //                                GVN Pass
    436 //===----------------------------------------------------------------------===//
    437 
    438 namespace {
    439 
    440   class GVN : public FunctionPass {
    441     bool NoLoads;
    442     MemoryDependenceAnalysis *MD;
    443     DominatorTree *DT;
    444     const TargetData *TD;
    445 
    446     ValueTable VN;
    447 
    448     /// LeaderTable - A mapping from value numbers to lists of Value*'s that
    449     /// have that value number.  Use findLeader to query it.
    450     struct LeaderTableEntry {
    451       Value *Val;
    452       BasicBlock *BB;
    453       LeaderTableEntry *Next;
    454     };
    455     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
    456     BumpPtrAllocator TableAllocator;
    457 
    458     SmallVector<Instruction*, 8> InstrsToErase;
    459   public:
    460     static char ID; // Pass identification, replacement for typeid
    461     explicit GVN(bool noloads = false)
    462         : FunctionPass(ID), NoLoads(noloads), MD(0) {
    463       initializeGVNPass(*PassRegistry::getPassRegistry());
    464     }
    465 
    466     bool runOnFunction(Function &F);
    467 
    468     /// markInstructionForDeletion - This removes the specified instruction from
    469     /// our various maps and marks it for deletion.
    470     void markInstructionForDeletion(Instruction *I) {
    471       VN.erase(I);
    472       InstrsToErase.push_back(I);
    473     }
    474 
    475     const TargetData *getTargetData() const { return TD; }
    476     DominatorTree &getDominatorTree() const { return *DT; }
    477     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
    478     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
    479   private:
    480     /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
    481     /// its value number.
    482     void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
    483       LeaderTableEntry &Curr = LeaderTable[N];
    484       if (!Curr.Val) {
    485         Curr.Val = V;
    486         Curr.BB = BB;
    487         return;
    488       }
    489 
    490       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
    491       Node->Val = V;
    492       Node->BB = BB;
    493       Node->Next = Curr.Next;
    494       Curr.Next = Node;
    495     }
    496 
    497     /// removeFromLeaderTable - Scan the list of values corresponding to a given
    498     /// value number, and remove the given value if encountered.
    499     void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
    500       LeaderTableEntry* Prev = 0;
    501       LeaderTableEntry* Curr = &LeaderTable[N];
    502 
    503       while (Curr->Val != V || Curr->BB != BB) {
    504         Prev = Curr;
    505         Curr = Curr->Next;
    506       }
    507 
    508       if (Prev) {
    509         Prev->Next = Curr->Next;
    510       } else {
    511         if (!Curr->Next) {
    512           Curr->Val = 0;
    513           Curr->BB = 0;
    514         } else {
    515           LeaderTableEntry* Next = Curr->Next;
    516           Curr->Val = Next->Val;
    517           Curr->BB = Next->BB;
    518           Curr->Next = Next->Next;
    519         }
    520       }
    521     }
    522 
    523     // List of critical edges to be split between iterations.
    524     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
    525 
    526     // This transformation requires dominator postdominator info
    527     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    528       AU.addRequired<DominatorTree>();
    529       if (!NoLoads)
    530         AU.addRequired<MemoryDependenceAnalysis>();
    531       AU.addRequired<AliasAnalysis>();
    532 
    533       AU.addPreserved<DominatorTree>();
    534       AU.addPreserved<AliasAnalysis>();
    535     }
    536 
    537 
    538     // Helper fuctions
    539     // FIXME: eliminate or document these better
    540     bool processLoad(LoadInst *L);
    541     bool processInstruction(Instruction *I);
    542     bool processNonLocalLoad(LoadInst *L);
    543     bool processBlock(BasicBlock *BB);
    544     void dump(DenseMap<uint32_t, Value*> &d);
    545     bool iterateOnFunction(Function &F);
    546     bool performPRE(Function &F);
    547     Value *findLeader(BasicBlock *BB, uint32_t num);
    548     void cleanupGlobalSets();
    549     void verifyRemoved(const Instruction *I) const;
    550     bool splitCriticalEdges();
    551   };
    552 
    553   char GVN::ID = 0;
    554 }
    555 
    556 // createGVNPass - The public interface to this file...
    557 FunctionPass *llvm::createGVNPass(bool NoLoads) {
    558   return new GVN(NoLoads);
    559 }
    560 
    561 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
    562 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    563 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    564 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    565 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
    566 
    567 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
    568   errs() << "{\n";
    569   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
    570        E = d.end(); I != E; ++I) {
    571       errs() << I->first << "\n";
    572       I->second->dump();
    573   }
    574   errs() << "}\n";
    575 }
    576 
    577 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
    578 /// we're analyzing is fully available in the specified block.  As we go, keep
    579 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
    580 /// map is actually a tri-state map with the following values:
    581 ///   0) we know the block *is not* fully available.
    582 ///   1) we know the block *is* fully available.
    583 ///   2) we do not know whether the block is fully available or not, but we are
    584 ///      currently speculating that it will be.
    585 ///   3) we are speculating for this block and have used that to speculate for
    586 ///      other blocks.
    587 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
    588                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
    589   // Optimistically assume that the block is fully available and check to see
    590   // if we already know about this block in one lookup.
    591   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
    592     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
    593 
    594   // If the entry already existed for this block, return the precomputed value.
    595   if (!IV.second) {
    596     // If this is a speculative "available" value, mark it as being used for
    597     // speculation of other blocks.
    598     if (IV.first->second == 2)
    599       IV.first->second = 3;
    600     return IV.first->second != 0;
    601   }
    602 
    603   // Otherwise, see if it is fully available in all predecessors.
    604   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    605 
    606   // If this block has no predecessors, it isn't live-in here.
    607   if (PI == PE)
    608     goto SpeculationFailure;
    609 
    610   for (; PI != PE; ++PI)
    611     // If the value isn't fully available in one of our predecessors, then it
    612     // isn't fully available in this block either.  Undo our previous
    613     // optimistic assumption and bail out.
    614     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
    615       goto SpeculationFailure;
    616 
    617   return true;
    618 
    619 // SpeculationFailure - If we get here, we found out that this is not, after
    620 // all, a fully-available block.  We have a problem if we speculated on this and
    621 // used the speculation to mark other blocks as available.
    622 SpeculationFailure:
    623   char &BBVal = FullyAvailableBlocks[BB];
    624 
    625   // If we didn't speculate on this, just return with it set to false.
    626   if (BBVal == 2) {
    627     BBVal = 0;
    628     return false;
    629   }
    630 
    631   // If we did speculate on this value, we could have blocks set to 1 that are
    632   // incorrect.  Walk the (transitive) successors of this block and mark them as
    633   // 0 if set to one.
    634   SmallVector<BasicBlock*, 32> BBWorklist;
    635   BBWorklist.push_back(BB);
    636 
    637   do {
    638     BasicBlock *Entry = BBWorklist.pop_back_val();
    639     // Note that this sets blocks to 0 (unavailable) if they happen to not
    640     // already be in FullyAvailableBlocks.  This is safe.
    641     char &EntryVal = FullyAvailableBlocks[Entry];
    642     if (EntryVal == 0) continue;  // Already unavailable.
    643 
    644     // Mark as unavailable.
    645     EntryVal = 0;
    646 
    647     for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
    648       BBWorklist.push_back(*I);
    649   } while (!BBWorklist.empty());
    650 
    651   return false;
    652 }
    653 
    654 
    655 /// CanCoerceMustAliasedValueToLoad - Return true if
    656 /// CoerceAvailableValueToLoadType will succeed.
    657 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
    658                                             Type *LoadTy,
    659                                             const TargetData &TD) {
    660   // If the loaded or stored value is an first class array or struct, don't try
    661   // to transform them.  We need to be able to bitcast to integer.
    662   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
    663       StoredVal->getType()->isStructTy() ||
    664       StoredVal->getType()->isArrayTy())
    665     return false;
    666 
    667   // The store has to be at least as big as the load.
    668   if (TD.getTypeSizeInBits(StoredVal->getType()) <
    669         TD.getTypeSizeInBits(LoadTy))
    670     return false;
    671 
    672   return true;
    673 }
    674 
    675 
    676 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
    677 /// then a load from a must-aliased pointer of a different type, try to coerce
    678 /// the stored value.  LoadedTy is the type of the load we want to replace and
    679 /// InsertPt is the place to insert new instructions.
    680 ///
    681 /// If we can't do it, return null.
    682 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
    683                                              Type *LoadedTy,
    684                                              Instruction *InsertPt,
    685                                              const TargetData &TD) {
    686   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
    687     return 0;
    688 
    689   // If this is already the right type, just return it.
    690   Type *StoredValTy = StoredVal->getType();
    691 
    692   uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
    693   uint64_t LoadSize = TD.getTypeStoreSizeInBits(LoadedTy);
    694 
    695   // If the store and reload are the same size, we can always reuse it.
    696   if (StoreSize == LoadSize) {
    697     // Pointer to Pointer -> use bitcast.
    698     if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
    699       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
    700 
    701     // Convert source pointers to integers, which can be bitcast.
    702     if (StoredValTy->isPointerTy()) {
    703       StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
    704       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    705     }
    706 
    707     Type *TypeToCastTo = LoadedTy;
    708     if (TypeToCastTo->isPointerTy())
    709       TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
    710 
    711     if (StoredValTy != TypeToCastTo)
    712       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
    713 
    714     // Cast to pointer if the load needs a pointer type.
    715     if (LoadedTy->isPointerTy())
    716       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
    717 
    718     return StoredVal;
    719   }
    720 
    721   // If the loaded value is smaller than the available value, then we can
    722   // extract out a piece from it.  If the available value is too small, then we
    723   // can't do anything.
    724   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
    725 
    726   // Convert source pointers to integers, which can be manipulated.
    727   if (StoredValTy->isPointerTy()) {
    728     StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
    729     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    730   }
    731 
    732   // Convert vectors and fp to integer, which can be manipulated.
    733   if (!StoredValTy->isIntegerTy()) {
    734     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
    735     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
    736   }
    737 
    738   // If this is a big-endian system, we need to shift the value down to the low
    739   // bits so that a truncate will work.
    740   if (TD.isBigEndian()) {
    741     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
    742     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
    743   }
    744 
    745   // Truncate the integer to the right size now.
    746   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
    747   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
    748 
    749   if (LoadedTy == NewIntTy)
    750     return StoredVal;
    751 
    752   // If the result is a pointer, inttoptr.
    753   if (LoadedTy->isPointerTy())
    754     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
    755 
    756   // Otherwise, bitcast.
    757   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
    758 }
    759 
    760 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
    761 /// memdep query of a load that ends up being a clobbering memory write (store,
    762 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
    763 /// by the load but we can't be sure because the pointers don't mustalias.
    764 ///
    765 /// Check this case to see if there is anything more we can do before we give
    766 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    767 /// value of the piece that feeds the load.
    768 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    769                                           Value *WritePtr,
    770                                           uint64_t WriteSizeInBits,
    771                                           const TargetData &TD) {
    772   // If the loaded or stored value is an first class array or struct, don't try
    773   // to transform them.  We need to be able to bitcast to integer.
    774   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    775     return -1;
    776 
    777   int64_t StoreOffset = 0, LoadOffset = 0;
    778   Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
    779   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
    780   if (StoreBase != LoadBase)
    781     return -1;
    782 
    783   // If the load and store are to the exact same address, they should have been
    784   // a must alias.  AA must have gotten confused.
    785   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    786   // to a load from the base of the memset.
    787 #if 0
    788   if (LoadOffset == StoreOffset) {
    789     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
    790     << "Base       = " << *StoreBase << "\n"
    791     << "Store Ptr  = " << *WritePtr << "\n"
    792     << "Store Offs = " << StoreOffset << "\n"
    793     << "Load Ptr   = " << *LoadPtr << "\n";
    794     abort();
    795   }
    796 #endif
    797 
    798   // If the load and store don't overlap at all, the store doesn't provide
    799   // anything to the load.  In this case, they really don't alias at all, AA
    800   // must have gotten confused.
    801   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
    802 
    803   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    804     return -1;
    805   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
    806   LoadSize >>= 3;
    807 
    808 
    809   bool isAAFailure = false;
    810   if (StoreOffset < LoadOffset)
    811     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
    812   else
    813     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
    814 
    815   if (isAAFailure) {
    816 #if 0
    817     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
    818     << "Base       = " << *StoreBase << "\n"
    819     << "Store Ptr  = " << *WritePtr << "\n"
    820     << "Store Offs = " << StoreOffset << "\n"
    821     << "Load Ptr   = " << *LoadPtr << "\n";
    822     abort();
    823 #endif
    824     return -1;
    825   }
    826 
    827   // If the Load isn't completely contained within the stored bits, we don't
    828   // have all the bits to feed it.  We could do something crazy in the future
    829   // (issue a smaller load then merge the bits in) but this seems unlikely to be
    830   // valuable.
    831   if (StoreOffset > LoadOffset ||
    832       StoreOffset+StoreSize < LoadOffset+LoadSize)
    833     return -1;
    834 
    835   // Okay, we can do this transformation.  Return the number of bytes into the
    836   // store that the load is.
    837   return LoadOffset-StoreOffset;
    838 }
    839 
    840 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
    841 /// memdep query of a load that ends up being a clobbering store.
    842 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
    843                                           StoreInst *DepSI,
    844                                           const TargetData &TD) {
    845   // Cannot handle reading from store of first-class aggregate yet.
    846   if (DepSI->getValueOperand()->getType()->isStructTy() ||
    847       DepSI->getValueOperand()->getType()->isArrayTy())
    848     return -1;
    849 
    850   Value *StorePtr = DepSI->getPointerOperand();
    851   uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
    852   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    853                                         StorePtr, StoreSize, TD);
    854 }
    855 
    856 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
    857 /// memdep query of a load that ends up being clobbered by another load.  See if
    858 /// the other load can feed into the second load.
    859 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
    860                                          LoadInst *DepLI, const TargetData &TD){
    861   // Cannot handle reading from store of first-class aggregate yet.
    862   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
    863     return -1;
    864 
    865   Value *DepPtr = DepLI->getPointerOperand();
    866   uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
    867   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
    868   if (R != -1) return R;
    869 
    870   // If we have a load/load clobber an DepLI can be widened to cover this load,
    871   // then we should widen it!
    872   int64_t LoadOffs = 0;
    873   const Value *LoadBase =
    874     GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
    875   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
    876 
    877   unsigned Size = MemoryDependenceAnalysis::
    878     getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
    879   if (Size == 0) return -1;
    880 
    881   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
    882 }
    883 
    884 
    885 
    886 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
    887                                             MemIntrinsic *MI,
    888                                             const TargetData &TD) {
    889   // If the mem operation is a non-constant size, we can't handle it.
    890   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
    891   if (SizeCst == 0) return -1;
    892   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
    893 
    894   // If this is memset, we just need to see if the offset is valid in the size
    895   // of the memset..
    896   if (MI->getIntrinsicID() == Intrinsic::memset)
    897     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
    898                                           MemSizeInBits, TD);
    899 
    900   // If we have a memcpy/memmove, the only case we can handle is if this is a
    901   // copy from constant memory.  In that case, we can read directly from the
    902   // constant memory.
    903   MemTransferInst *MTI = cast<MemTransferInst>(MI);
    904 
    905   Constant *Src = dyn_cast<Constant>(MTI->getSource());
    906   if (Src == 0) return -1;
    907 
    908   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
    909   if (GV == 0 || !GV->isConstant()) return -1;
    910 
    911   // See if the access is within the bounds of the transfer.
    912   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    913                                               MI->getDest(), MemSizeInBits, TD);
    914   if (Offset == -1)
    915     return Offset;
    916 
    917   // Otherwise, see if we can constant fold a load from the constant with the
    918   // offset applied as appropriate.
    919   Src = ConstantExpr::getBitCast(Src,
    920                                  llvm::Type::getInt8PtrTy(Src->getContext()));
    921   Constant *OffsetCst =
    922     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
    923   Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
    924   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
    925   if (ConstantFoldLoadFromConstPtr(Src, &TD))
    926     return Offset;
    927   return -1;
    928 }
    929 
    930 
    931 /// GetStoreValueForLoad - This function is called when we have a
    932 /// memdep query of a load that ends up being a clobbering store.  This means
    933 /// that the store provides bits used by the load but we the pointers don't
    934 /// mustalias.  Check this case to see if there is anything more we can do
    935 /// before we give up.
    936 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
    937                                    Type *LoadTy,
    938                                    Instruction *InsertPt, const TargetData &TD){
    939   LLVMContext &Ctx = SrcVal->getType()->getContext();
    940 
    941   uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
    942   uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
    943 
    944   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
    945 
    946   // Compute which bits of the stored value are being used by the load.  Convert
    947   // to an integer type to start with.
    948   if (SrcVal->getType()->isPointerTy())
    949     SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
    950   if (!SrcVal->getType()->isIntegerTy())
    951     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
    952                                    "tmp");
    953 
    954   // Shift the bits to the least significant depending on endianness.
    955   unsigned ShiftAmt;
    956   if (TD.isLittleEndian())
    957     ShiftAmt = Offset*8;
    958   else
    959     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
    960 
    961   if (ShiftAmt)
    962     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
    963 
    964   if (LoadSize != StoreSize)
    965     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
    966                                  "tmp");
    967 
    968   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
    969 }
    970 
    971 /// GetStoreValueForLoad - This function is called when we have a
    972 /// memdep query of a load that ends up being a clobbering load.  This means
    973 /// that the load *may* provide bits used by the load but we can't be sure
    974 /// because the pointers don't mustalias.  Check this case to see if there is
    975 /// anything more we can do before we give up.
    976 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
    977                                   Type *LoadTy, Instruction *InsertPt,
    978                                   GVN &gvn) {
    979   const TargetData &TD = *gvn.getTargetData();
    980   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
    981   // widen SrcVal out to a larger load.
    982   unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
    983   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
    984   if (Offset+LoadSize > SrcValSize) {
    985     assert(!SrcVal->isVolatile() && "Cannot widen volatile load!");
    986     assert(isa<IntegerType>(SrcVal->getType())&&"Can't widen non-integer load");
    987     // If we have a load/load clobber an DepLI can be widened to cover this
    988     // load, then we should widen it to the next power of 2 size big enough!
    989     unsigned NewLoadSize = Offset+LoadSize;
    990     if (!isPowerOf2_32(NewLoadSize))
    991       NewLoadSize = NextPowerOf2(NewLoadSize);
    992 
    993     Value *PtrVal = SrcVal->getPointerOperand();
    994 
    995     // Insert the new load after the old load.  This ensures that subsequent
    996     // memdep queries will find the new load.  We can't easily remove the old
    997     // load completely because it is already in the value numbering table.
    998     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
    999     Type *DestPTy =
   1000       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
   1001     DestPTy = PointerType::get(DestPTy,
   1002                        cast<PointerType>(PtrVal->getType())->getAddressSpace());
   1003     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
   1004     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
   1005     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
   1006     NewLoad->takeName(SrcVal);
   1007     NewLoad->setAlignment(SrcVal->getAlignment());
   1008 
   1009     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
   1010     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
   1011 
   1012     // Replace uses of the original load with the wider load.  On a big endian
   1013     // system, we need to shift down to get the relevant bits.
   1014     Value *RV = NewLoad;
   1015     if (TD.isBigEndian())
   1016       RV = Builder.CreateLShr(RV,
   1017                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
   1018     RV = Builder.CreateTrunc(RV, SrcVal->getType());
   1019     SrcVal->replaceAllUsesWith(RV);
   1020 
   1021     // We would like to use gvn.markInstructionForDeletion here, but we can't
   1022     // because the load is already memoized into the leader map table that GVN
   1023     // tracks.  It is potentially possible to remove the load from the table,
   1024     // but then there all of the operations based on it would need to be
   1025     // rehashed.  Just leave the dead load around.
   1026     gvn.getMemDep().removeInstruction(SrcVal);
   1027     SrcVal = NewLoad;
   1028   }
   1029 
   1030   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
   1031 }
   1032 
   1033 
   1034 /// GetMemInstValueForLoad - This function is called when we have a
   1035 /// memdep query of a load that ends up being a clobbering mem intrinsic.
   1036 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
   1037                                      Type *LoadTy, Instruction *InsertPt,
   1038                                      const TargetData &TD){
   1039   LLVMContext &Ctx = LoadTy->getContext();
   1040   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
   1041 
   1042   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1043 
   1044   // We know that this method is only called when the mem transfer fully
   1045   // provides the bits for the load.
   1046   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
   1047     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
   1048     // independently of what the offset is.
   1049     Value *Val = MSI->getValue();
   1050     if (LoadSize != 1)
   1051       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
   1052 
   1053     Value *OneElt = Val;
   1054 
   1055     // Splat the value out to the right number of bits.
   1056     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
   1057       // If we can double the number of bytes set, do it.
   1058       if (NumBytesSet*2 <= LoadSize) {
   1059         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
   1060         Val = Builder.CreateOr(Val, ShVal);
   1061         NumBytesSet <<= 1;
   1062         continue;
   1063       }
   1064 
   1065       // Otherwise insert one byte at a time.
   1066       Value *ShVal = Builder.CreateShl(Val, 1*8);
   1067       Val = Builder.CreateOr(OneElt, ShVal);
   1068       ++NumBytesSet;
   1069     }
   1070 
   1071     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
   1072   }
   1073 
   1074   // Otherwise, this is a memcpy/memmove from a constant global.
   1075   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
   1076   Constant *Src = cast<Constant>(MTI->getSource());
   1077 
   1078   // Otherwise, see if we can constant fold a load from the constant with the
   1079   // offset applied as appropriate.
   1080   Src = ConstantExpr::getBitCast(Src,
   1081                                  llvm::Type::getInt8PtrTy(Src->getContext()));
   1082   Constant *OffsetCst =
   1083   ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1084   Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
   1085   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
   1086   return ConstantFoldLoadFromConstPtr(Src, &TD);
   1087 }
   1088 
   1089 namespace {
   1090 
   1091 struct AvailableValueInBlock {
   1092   /// BB - The basic block in question.
   1093   BasicBlock *BB;
   1094   enum ValType {
   1095     SimpleVal,  // A simple offsetted value that is accessed.
   1096     LoadVal,    // A value produced by a load.
   1097     MemIntrin   // A memory intrinsic which is loaded from.
   1098   };
   1099 
   1100   /// V - The value that is live out of the block.
   1101   PointerIntPair<Value *, 2, ValType> Val;
   1102 
   1103   /// Offset - The byte offset in Val that is interesting for the load query.
   1104   unsigned Offset;
   1105 
   1106   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
   1107                                    unsigned Offset = 0) {
   1108     AvailableValueInBlock Res;
   1109     Res.BB = BB;
   1110     Res.Val.setPointer(V);
   1111     Res.Val.setInt(SimpleVal);
   1112     Res.Offset = Offset;
   1113     return Res;
   1114   }
   1115 
   1116   static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
   1117                                      unsigned Offset = 0) {
   1118     AvailableValueInBlock Res;
   1119     Res.BB = BB;
   1120     Res.Val.setPointer(MI);
   1121     Res.Val.setInt(MemIntrin);
   1122     Res.Offset = Offset;
   1123     return Res;
   1124   }
   1125 
   1126   static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
   1127                                        unsigned Offset = 0) {
   1128     AvailableValueInBlock Res;
   1129     Res.BB = BB;
   1130     Res.Val.setPointer(LI);
   1131     Res.Val.setInt(LoadVal);
   1132     Res.Offset = Offset;
   1133     return Res;
   1134   }
   1135 
   1136   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
   1137   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
   1138   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
   1139 
   1140   Value *getSimpleValue() const {
   1141     assert(isSimpleValue() && "Wrong accessor");
   1142     return Val.getPointer();
   1143   }
   1144 
   1145   LoadInst *getCoercedLoadValue() const {
   1146     assert(isCoercedLoadValue() && "Wrong accessor");
   1147     return cast<LoadInst>(Val.getPointer());
   1148   }
   1149 
   1150   MemIntrinsic *getMemIntrinValue() const {
   1151     assert(isMemIntrinValue() && "Wrong accessor");
   1152     return cast<MemIntrinsic>(Val.getPointer());
   1153   }
   1154 
   1155   /// MaterializeAdjustedValue - Emit code into this block to adjust the value
   1156   /// defined here to the specified type.  This handles various coercion cases.
   1157   Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
   1158     Value *Res;
   1159     if (isSimpleValue()) {
   1160       Res = getSimpleValue();
   1161       if (Res->getType() != LoadTy) {
   1162         const TargetData *TD = gvn.getTargetData();
   1163         assert(TD && "Need target data to handle type mismatch case");
   1164         Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
   1165                                    *TD);
   1166 
   1167         DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
   1168                      << *getSimpleValue() << '\n'
   1169                      << *Res << '\n' << "\n\n\n");
   1170       }
   1171     } else if (isCoercedLoadValue()) {
   1172       LoadInst *Load = getCoercedLoadValue();
   1173       if (Load->getType() == LoadTy && Offset == 0) {
   1174         Res = Load;
   1175       } else {
   1176         Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
   1177                                   gvn);
   1178 
   1179         DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
   1180                      << *getCoercedLoadValue() << '\n'
   1181                      << *Res << '\n' << "\n\n\n");
   1182       }
   1183     } else {
   1184       const TargetData *TD = gvn.getTargetData();
   1185       assert(TD && "Need target data to handle type mismatch case");
   1186       Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
   1187                                    LoadTy, BB->getTerminator(), *TD);
   1188       DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
   1189                    << "  " << *getMemIntrinValue() << '\n'
   1190                    << *Res << '\n' << "\n\n\n");
   1191     }
   1192     return Res;
   1193   }
   1194 };
   1195 
   1196 } // end anonymous namespace
   1197 
   1198 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
   1199 /// construct SSA form, allowing us to eliminate LI.  This returns the value
   1200 /// that should be used at LI's definition site.
   1201 static Value *ConstructSSAForLoadSet(LoadInst *LI,
   1202                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
   1203                                      GVN &gvn) {
   1204   // Check for the fully redundant, dominating load case.  In this case, we can
   1205   // just use the dominating value directly.
   1206   if (ValuesPerBlock.size() == 1 &&
   1207       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
   1208                                                LI->getParent()))
   1209     return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
   1210 
   1211   // Otherwise, we have to construct SSA form.
   1212   SmallVector<PHINode*, 8> NewPHIs;
   1213   SSAUpdater SSAUpdate(&NewPHIs);
   1214   SSAUpdate.Initialize(LI->getType(), LI->getName());
   1215 
   1216   Type *LoadTy = LI->getType();
   1217 
   1218   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1219     const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1220     BasicBlock *BB = AV.BB;
   1221 
   1222     if (SSAUpdate.HasValueForBlock(BB))
   1223       continue;
   1224 
   1225     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
   1226   }
   1227 
   1228   // Perform PHI construction.
   1229   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
   1230 
   1231   // If new PHI nodes were created, notify alias analysis.
   1232   if (V->getType()->isPointerTy()) {
   1233     AliasAnalysis *AA = gvn.getAliasAnalysis();
   1234 
   1235     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
   1236       AA->copyValue(LI, NewPHIs[i]);
   1237 
   1238     // Now that we've copied information to the new PHIs, scan through
   1239     // them again and inform alias analysis that we've added potentially
   1240     // escaping uses to any values that are operands to these PHIs.
   1241     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
   1242       PHINode *P = NewPHIs[i];
   1243       for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
   1244         unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   1245         AA->addEscapingUse(P->getOperandUse(jj));
   1246       }
   1247     }
   1248   }
   1249 
   1250   return V;
   1251 }
   1252 
   1253 static bool isLifetimeStart(const Instruction *Inst) {
   1254   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
   1255     return II->getIntrinsicID() == Intrinsic::lifetime_start;
   1256   return false;
   1257 }
   1258 
   1259 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
   1260 /// non-local by performing PHI construction.
   1261 bool GVN::processNonLocalLoad(LoadInst *LI) {
   1262   // Find the non-local dependencies of the load.
   1263   SmallVector<NonLocalDepResult, 64> Deps;
   1264   AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
   1265   MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
   1266   //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
   1267   //             << Deps.size() << *LI << '\n');
   1268 
   1269   // If we had to process more than one hundred blocks to find the
   1270   // dependencies, this load isn't worth worrying about.  Optimizing
   1271   // it will be too expensive.
   1272   if (Deps.size() > 100)
   1273     return false;
   1274 
   1275   // If we had a phi translation failure, we'll have a single entry which is a
   1276   // clobber in the current block.  Reject this early.
   1277   if (Deps.size() == 1 && Deps[0].getResult().isUnknown()) {
   1278     DEBUG(
   1279       dbgs() << "GVN: non-local load ";
   1280       WriteAsOperand(dbgs(), LI);
   1281       dbgs() << " has unknown dependencies\n";
   1282     );
   1283     return false;
   1284   }
   1285 
   1286   // Filter out useless results (non-locals, etc).  Keep track of the blocks
   1287   // where we have a value available in repl, also keep track of whether we see
   1288   // dependencies that produce an unknown value for the load (such as a call
   1289   // that could potentially clobber the load).
   1290   SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
   1291   SmallVector<BasicBlock*, 16> UnavailableBlocks;
   1292 
   1293   for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
   1294     BasicBlock *DepBB = Deps[i].getBB();
   1295     MemDepResult DepInfo = Deps[i].getResult();
   1296 
   1297     if (DepInfo.isUnknown()) {
   1298       UnavailableBlocks.push_back(DepBB);
   1299       continue;
   1300     }
   1301 
   1302     if (DepInfo.isClobber()) {
   1303       // The address being loaded in this non-local block may not be the same as
   1304       // the pointer operand of the load if PHI translation occurs.  Make sure
   1305       // to consider the right address.
   1306       Value *Address = Deps[i].getAddress();
   1307 
   1308       // If the dependence is to a store that writes to a superset of the bits
   1309       // read by the load, we can extract the bits we need for the load from the
   1310       // stored value.
   1311       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
   1312         if (TD && Address) {
   1313           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
   1314                                                       DepSI, *TD);
   1315           if (Offset != -1) {
   1316             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1317                                                        DepSI->getValueOperand(),
   1318                                                                 Offset));
   1319             continue;
   1320           }
   1321         }
   1322       }
   1323 
   1324       // Check to see if we have something like this:
   1325       //    load i32* P
   1326       //    load i8* (P+1)
   1327       // if we have this, replace the later with an extraction from the former.
   1328       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
   1329         // If this is a clobber and L is the first instruction in its block, then
   1330         // we have the first instruction in the entry block.
   1331         if (DepLI != LI && Address && TD) {
   1332           int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
   1333                                                      LI->getPointerOperand(),
   1334                                                      DepLI, *TD);
   1335 
   1336           if (Offset != -1) {
   1337             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
   1338                                                                     Offset));
   1339             continue;
   1340           }
   1341         }
   1342       }
   1343 
   1344       // If the clobbering value is a memset/memcpy/memmove, see if we can
   1345       // forward a value on from it.
   1346       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
   1347         if (TD && Address) {
   1348           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
   1349                                                         DepMI, *TD);
   1350           if (Offset != -1) {
   1351             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
   1352                                                                   Offset));
   1353             continue;
   1354           }
   1355         }
   1356       }
   1357 
   1358       UnavailableBlocks.push_back(DepBB);
   1359       continue;
   1360     }
   1361 
   1362     assert(DepInfo.isDef() && "Expecting def here");
   1363 
   1364     Instruction *DepInst = DepInfo.getInst();
   1365 
   1366     // Loading the allocation -> undef.
   1367     if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
   1368         // Loading immediately after lifetime begin -> undef.
   1369         isLifetimeStart(DepInst)) {
   1370       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1371                                              UndefValue::get(LI->getType())));
   1372       continue;
   1373     }
   1374 
   1375     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
   1376       // Reject loads and stores that are to the same address but are of
   1377       // different types if we have to.
   1378       if (S->getValueOperand()->getType() != LI->getType()) {
   1379         // If the stored value is larger or equal to the loaded value, we can
   1380         // reuse it.
   1381         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
   1382                                                         LI->getType(), *TD)) {
   1383           UnavailableBlocks.push_back(DepBB);
   1384           continue;
   1385         }
   1386       }
   1387 
   1388       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1389                                                          S->getValueOperand()));
   1390       continue;
   1391     }
   1392 
   1393     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
   1394       // If the types mismatch and we can't handle it, reject reuse of the load.
   1395       if (LD->getType() != LI->getType()) {
   1396         // If the stored value is larger or equal to the loaded value, we can
   1397         // reuse it.
   1398         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
   1399           UnavailableBlocks.push_back(DepBB);
   1400           continue;
   1401         }
   1402       }
   1403       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
   1404       continue;
   1405     }
   1406 
   1407     UnavailableBlocks.push_back(DepBB);
   1408     continue;
   1409   }
   1410 
   1411   // If we have no predecessors that produce a known value for this load, exit
   1412   // early.
   1413   if (ValuesPerBlock.empty()) return false;
   1414 
   1415   // If all of the instructions we depend on produce a known value for this
   1416   // load, then it is fully redundant and we can use PHI insertion to compute
   1417   // its value.  Insert PHIs and remove the fully redundant value now.
   1418   if (UnavailableBlocks.empty()) {
   1419     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
   1420 
   1421     // Perform PHI construction.
   1422     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1423     LI->replaceAllUsesWith(V);
   1424 
   1425     if (isa<PHINode>(V))
   1426       V->takeName(LI);
   1427     if (V->getType()->isPointerTy())
   1428       MD->invalidateCachedPointerInfo(V);
   1429     markInstructionForDeletion(LI);
   1430     ++NumGVNLoad;
   1431     return true;
   1432   }
   1433 
   1434   if (!EnablePRE || !EnableLoadPRE)
   1435     return false;
   1436 
   1437   // Okay, we have *some* definitions of the value.  This means that the value
   1438   // is available in some of our (transitive) predecessors.  Lets think about
   1439   // doing PRE of this load.  This will involve inserting a new load into the
   1440   // predecessor when it's not available.  We could do this in general, but
   1441   // prefer to not increase code size.  As such, we only do this when we know
   1442   // that we only have to insert *one* load (which means we're basically moving
   1443   // the load, not inserting a new one).
   1444 
   1445   SmallPtrSet<BasicBlock *, 4> Blockers;
   1446   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1447     Blockers.insert(UnavailableBlocks[i]);
   1448 
   1449   // Lets find first basic block with more than one predecessor.  Walk backwards
   1450   // through predecessors if needed.
   1451   BasicBlock *LoadBB = LI->getParent();
   1452   BasicBlock *TmpBB = LoadBB;
   1453 
   1454   bool isSinglePred = false;
   1455   bool allSingleSucc = true;
   1456   while (TmpBB->getSinglePredecessor()) {
   1457     isSinglePred = true;
   1458     TmpBB = TmpBB->getSinglePredecessor();
   1459     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
   1460       return false;
   1461     if (Blockers.count(TmpBB))
   1462       return false;
   1463 
   1464     // If any of these blocks has more than one successor (i.e. if the edge we
   1465     // just traversed was critical), then there are other paths through this
   1466     // block along which the load may not be anticipated.  Hoisting the load
   1467     // above this block would be adding the load to execution paths along
   1468     // which it was not previously executed.
   1469     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
   1470       return false;
   1471   }
   1472 
   1473   assert(TmpBB);
   1474   LoadBB = TmpBB;
   1475 
   1476   // FIXME: It is extremely unclear what this loop is doing, other than
   1477   // artificially restricting loadpre.
   1478   if (isSinglePred) {
   1479     bool isHot = false;
   1480     for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1481       const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1482       if (AV.isSimpleValue())
   1483         // "Hot" Instruction is in some loop (because it dominates its dep.
   1484         // instruction).
   1485         if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
   1486           if (DT->dominates(LI, I)) {
   1487             isHot = true;
   1488             break;
   1489           }
   1490     }
   1491 
   1492     // We are interested only in "hot" instructions. We don't want to do any
   1493     // mis-optimizations here.
   1494     if (!isHot)
   1495       return false;
   1496   }
   1497 
   1498   // Check to see how many predecessors have the loaded value fully
   1499   // available.
   1500   DenseMap<BasicBlock*, Value*> PredLoads;
   1501   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
   1502   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
   1503     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
   1504   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1505     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
   1506 
   1507   SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
   1508   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
   1509        PI != E; ++PI) {
   1510     BasicBlock *Pred = *PI;
   1511     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
   1512       continue;
   1513     }
   1514     PredLoads[Pred] = 0;
   1515 
   1516     if (Pred->getTerminator()->getNumSuccessors() != 1) {
   1517       if (isa<IndirectBrInst>(Pred->getTerminator())) {
   1518         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
   1519               << Pred->getName() << "': " << *LI << '\n');
   1520         return false;
   1521       }
   1522       unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
   1523       NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
   1524     }
   1525   }
   1526   if (!NeedToSplit.empty()) {
   1527     toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
   1528     return false;
   1529   }
   1530 
   1531   // Decide whether PRE is profitable for this load.
   1532   unsigned NumUnavailablePreds = PredLoads.size();
   1533   assert(NumUnavailablePreds != 0 &&
   1534          "Fully available value should be eliminated above!");
   1535 
   1536   // If this load is unavailable in multiple predecessors, reject it.
   1537   // FIXME: If we could restructure the CFG, we could make a common pred with
   1538   // all the preds that don't have an available LI and insert a new load into
   1539   // that one block.
   1540   if (NumUnavailablePreds != 1)
   1541       return false;
   1542 
   1543   // Check if the load can safely be moved to all the unavailable predecessors.
   1544   bool CanDoPRE = true;
   1545   SmallVector<Instruction*, 8> NewInsts;
   1546   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1547          E = PredLoads.end(); I != E; ++I) {
   1548     BasicBlock *UnavailablePred = I->first;
   1549 
   1550     // Do PHI translation to get its value in the predecessor if necessary.  The
   1551     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
   1552 
   1553     // If all preds have a single successor, then we know it is safe to insert
   1554     // the load on the pred (?!?), so we can insert code to materialize the
   1555     // pointer if it is not available.
   1556     PHITransAddr Address(LI->getPointerOperand(), TD);
   1557     Value *LoadPtr = 0;
   1558     if (allSingleSucc) {
   1559       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
   1560                                                   *DT, NewInsts);
   1561     } else {
   1562       Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
   1563       LoadPtr = Address.getAddr();
   1564     }
   1565 
   1566     // If we couldn't find or insert a computation of this phi translated value,
   1567     // we fail PRE.
   1568     if (LoadPtr == 0) {
   1569       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
   1570             << *LI->getPointerOperand() << "\n");
   1571       CanDoPRE = false;
   1572       break;
   1573     }
   1574 
   1575     // Make sure it is valid to move this load here.  We have to watch out for:
   1576     //  @1 = getelementptr (i8* p, ...
   1577     //  test p and branch if == 0
   1578     //  load @1
   1579     // It is valid to have the getelementptr before the test, even if p can
   1580     // be 0, as getelementptr only does address arithmetic.
   1581     // If we are not pushing the value through any multiple-successor blocks
   1582     // we do not have this case.  Otherwise, check that the load is safe to
   1583     // put anywhere; this can be improved, but should be conservatively safe.
   1584     if (!allSingleSucc &&
   1585         // FIXME: REEVALUTE THIS.
   1586         !isSafeToLoadUnconditionally(LoadPtr,
   1587                                      UnavailablePred->getTerminator(),
   1588                                      LI->getAlignment(), TD)) {
   1589       CanDoPRE = false;
   1590       break;
   1591     }
   1592 
   1593     I->second = LoadPtr;
   1594   }
   1595 
   1596   if (!CanDoPRE) {
   1597     while (!NewInsts.empty()) {
   1598       Instruction *I = NewInsts.pop_back_val();
   1599       if (MD) MD->removeInstruction(I);
   1600       I->eraseFromParent();
   1601     }
   1602     return false;
   1603   }
   1604 
   1605   // Okay, we can eliminate this load by inserting a reload in the predecessor
   1606   // and using PHI construction to get the value in the other predecessors, do
   1607   // it.
   1608   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
   1609   DEBUG(if (!NewInsts.empty())
   1610           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
   1611                  << *NewInsts.back() << '\n');
   1612 
   1613   // Assign value numbers to the new instructions.
   1614   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
   1615     // FIXME: We really _ought_ to insert these value numbers into their
   1616     // parent's availability map.  However, in doing so, we risk getting into
   1617     // ordering issues.  If a block hasn't been processed yet, we would be
   1618     // marking a value as AVAIL-IN, which isn't what we intend.
   1619     VN.lookup_or_add(NewInsts[i]);
   1620   }
   1621 
   1622   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1623          E = PredLoads.end(); I != E; ++I) {
   1624     BasicBlock *UnavailablePred = I->first;
   1625     Value *LoadPtr = I->second;
   1626 
   1627     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
   1628                                         LI->getAlignment(),
   1629                                         UnavailablePred->getTerminator());
   1630 
   1631     // Transfer the old load's TBAA tag to the new load.
   1632     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
   1633       NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1634 
   1635     // Transfer DebugLoc.
   1636     NewLoad->setDebugLoc(LI->getDebugLoc());
   1637 
   1638     // Add the newly created load.
   1639     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
   1640                                                         NewLoad));
   1641     MD->invalidateCachedPointerInfo(LoadPtr);
   1642     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
   1643   }
   1644 
   1645   // Perform PHI construction.
   1646   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1647   LI->replaceAllUsesWith(V);
   1648   if (isa<PHINode>(V))
   1649     V->takeName(LI);
   1650   if (V->getType()->isPointerTy())
   1651     MD->invalidateCachedPointerInfo(V);
   1652   markInstructionForDeletion(LI);
   1653   ++NumPRELoad;
   1654   return true;
   1655 }
   1656 
   1657 /// processLoad - Attempt to eliminate a load, first by eliminating it
   1658 /// locally, and then attempting non-local elimination if that fails.
   1659 bool GVN::processLoad(LoadInst *L) {
   1660   if (!MD)
   1661     return false;
   1662 
   1663   if (L->isVolatile())
   1664     return false;
   1665 
   1666   if (L->use_empty()) {
   1667     markInstructionForDeletion(L);
   1668     return true;
   1669   }
   1670 
   1671   // ... to a pointer that has been loaded from before...
   1672   MemDepResult Dep = MD->getDependency(L);
   1673 
   1674   // If we have a clobber and target data is around, see if this is a clobber
   1675   // that we can fix up through code synthesis.
   1676   if (Dep.isClobber() && TD) {
   1677     // Check to see if we have something like this:
   1678     //   store i32 123, i32* %P
   1679     //   %A = bitcast i32* %P to i8*
   1680     //   %B = gep i8* %A, i32 1
   1681     //   %C = load i8* %B
   1682     //
   1683     // We could do that by recognizing if the clobber instructions are obviously
   1684     // a common base + constant offset, and if the previous store (or memset)
   1685     // completely covers this load.  This sort of thing can happen in bitfield
   1686     // access code.
   1687     Value *AvailVal = 0;
   1688     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
   1689       int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
   1690                                                   L->getPointerOperand(),
   1691                                                   DepSI, *TD);
   1692       if (Offset != -1)
   1693         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
   1694                                         L->getType(), L, *TD);
   1695     }
   1696 
   1697     // Check to see if we have something like this:
   1698     //    load i32* P
   1699     //    load i8* (P+1)
   1700     // if we have this, replace the later with an extraction from the former.
   1701     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
   1702       // If this is a clobber and L is the first instruction in its block, then
   1703       // we have the first instruction in the entry block.
   1704       if (DepLI == L)
   1705         return false;
   1706 
   1707       int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
   1708                                                  L->getPointerOperand(),
   1709                                                  DepLI, *TD);
   1710       if (Offset != -1)
   1711         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
   1712     }
   1713 
   1714     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
   1715     // a value on from it.
   1716     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
   1717       int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
   1718                                                     L->getPointerOperand(),
   1719                                                     DepMI, *TD);
   1720       if (Offset != -1)
   1721         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
   1722     }
   1723 
   1724     if (AvailVal) {
   1725       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
   1726             << *AvailVal << '\n' << *L << "\n\n\n");
   1727 
   1728       // Replace the load!
   1729       L->replaceAllUsesWith(AvailVal);
   1730       if (AvailVal->getType()->isPointerTy())
   1731         MD->invalidateCachedPointerInfo(AvailVal);
   1732       markInstructionForDeletion(L);
   1733       ++NumGVNLoad;
   1734       return true;
   1735     }
   1736   }
   1737 
   1738   // If the value isn't available, don't do anything!
   1739   if (Dep.isClobber()) {
   1740     DEBUG(
   1741       // fast print dep, using operator<< on instruction is too slow.
   1742       dbgs() << "GVN: load ";
   1743       WriteAsOperand(dbgs(), L);
   1744       Instruction *I = Dep.getInst();
   1745       dbgs() << " is clobbered by " << *I << '\n';
   1746     );
   1747     return false;
   1748   }
   1749 
   1750   if (Dep.isUnknown()) {
   1751     DEBUG(
   1752       // fast print dep, using operator<< on instruction is too slow.
   1753       dbgs() << "GVN: load ";
   1754       WriteAsOperand(dbgs(), L);
   1755       dbgs() << " has unknown dependence\n";
   1756     );
   1757     return false;
   1758   }
   1759 
   1760   // If it is defined in another block, try harder.
   1761   if (Dep.isNonLocal())
   1762     return processNonLocalLoad(L);
   1763 
   1764   assert(Dep.isDef() && "Expecting def here");
   1765 
   1766   Instruction *DepInst = Dep.getInst();
   1767   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
   1768     Value *StoredVal = DepSI->getValueOperand();
   1769 
   1770     // The store and load are to a must-aliased pointer, but they may not
   1771     // actually have the same type.  See if we know how to reuse the stored
   1772     // value (depending on its type).
   1773     if (StoredVal->getType() != L->getType()) {
   1774       if (TD) {
   1775         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
   1776                                                    L, *TD);
   1777         if (StoredVal == 0)
   1778           return false;
   1779 
   1780         DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
   1781                      << '\n' << *L << "\n\n\n");
   1782       }
   1783       else
   1784         return false;
   1785     }
   1786 
   1787     // Remove it!
   1788     L->replaceAllUsesWith(StoredVal);
   1789     if (StoredVal->getType()->isPointerTy())
   1790       MD->invalidateCachedPointerInfo(StoredVal);
   1791     markInstructionForDeletion(L);
   1792     ++NumGVNLoad;
   1793     return true;
   1794   }
   1795 
   1796   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
   1797     Value *AvailableVal = DepLI;
   1798 
   1799     // The loads are of a must-aliased pointer, but they may not actually have
   1800     // the same type.  See if we know how to reuse the previously loaded value
   1801     // (depending on its type).
   1802     if (DepLI->getType() != L->getType()) {
   1803       if (TD) {
   1804         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
   1805                                                       L, *TD);
   1806         if (AvailableVal == 0)
   1807           return false;
   1808 
   1809         DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
   1810                      << "\n" << *L << "\n\n\n");
   1811       }
   1812       else
   1813         return false;
   1814     }
   1815 
   1816     // Remove it!
   1817     L->replaceAllUsesWith(AvailableVal);
   1818     if (DepLI->getType()->isPointerTy())
   1819       MD->invalidateCachedPointerInfo(DepLI);
   1820     markInstructionForDeletion(L);
   1821     ++NumGVNLoad;
   1822     return true;
   1823   }
   1824 
   1825   // If this load really doesn't depend on anything, then we must be loading an
   1826   // undef value.  This can happen when loading for a fresh allocation with no
   1827   // intervening stores, for example.
   1828   if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
   1829     L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1830     markInstructionForDeletion(L);
   1831     ++NumGVNLoad;
   1832     return true;
   1833   }
   1834 
   1835   // If this load occurs either right after a lifetime begin,
   1836   // then the loaded value is undefined.
   1837   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
   1838     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
   1839       L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1840       markInstructionForDeletion(L);
   1841       ++NumGVNLoad;
   1842       return true;
   1843     }
   1844   }
   1845 
   1846   return false;
   1847 }
   1848 
   1849 // findLeader - In order to find a leader for a given value number at a
   1850 // specific basic block, we first obtain the list of all Values for that number,
   1851 // and then scan the list to find one whose block dominates the block in
   1852 // question.  This is fast because dominator tree queries consist of only
   1853 // a few comparisons of DFS numbers.
   1854 Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
   1855   LeaderTableEntry Vals = LeaderTable[num];
   1856   if (!Vals.Val) return 0;
   1857 
   1858   Value *Val = 0;
   1859   if (DT->dominates(Vals.BB, BB)) {
   1860     Val = Vals.Val;
   1861     if (isa<Constant>(Val)) return Val;
   1862   }
   1863 
   1864   LeaderTableEntry* Next = Vals.Next;
   1865   while (Next) {
   1866     if (DT->dominates(Next->BB, BB)) {
   1867       if (isa<Constant>(Next->Val)) return Next->Val;
   1868       if (!Val) Val = Next->Val;
   1869     }
   1870 
   1871     Next = Next->Next;
   1872   }
   1873 
   1874   return Val;
   1875 }
   1876 
   1877 
   1878 /// processInstruction - When calculating availability, handle an instruction
   1879 /// by inserting it into the appropriate sets
   1880 bool GVN::processInstruction(Instruction *I) {
   1881   // Ignore dbg info intrinsics.
   1882   if (isa<DbgInfoIntrinsic>(I))
   1883     return false;
   1884 
   1885   // If the instruction can be easily simplified then do so now in preference
   1886   // to value numbering it.  Value numbering often exposes redundancies, for
   1887   // example if it determines that %y is equal to %x then the instruction
   1888   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
   1889   if (Value *V = SimplifyInstruction(I, TD, DT)) {
   1890     I->replaceAllUsesWith(V);
   1891     if (MD && V->getType()->isPointerTy())
   1892       MD->invalidateCachedPointerInfo(V);
   1893     markInstructionForDeletion(I);
   1894     return true;
   1895   }
   1896 
   1897   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1898     if (processLoad(LI))
   1899       return true;
   1900 
   1901     unsigned Num = VN.lookup_or_add(LI);
   1902     addToLeaderTable(Num, LI, LI->getParent());
   1903     return false;
   1904   }
   1905 
   1906   // For conditions branches, we can perform simple conditional propagation on
   1907   // the condition value itself.
   1908   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1909     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
   1910       return false;
   1911 
   1912     Value *BranchCond = BI->getCondition();
   1913     uint32_t CondVN = VN.lookup_or_add(BranchCond);
   1914 
   1915     BasicBlock *TrueSucc = BI->getSuccessor(0);
   1916     BasicBlock *FalseSucc = BI->getSuccessor(1);
   1917 
   1918     if (TrueSucc->getSinglePredecessor())
   1919       addToLeaderTable(CondVN,
   1920                    ConstantInt::getTrue(TrueSucc->getContext()),
   1921                    TrueSucc);
   1922     if (FalseSucc->getSinglePredecessor())
   1923       addToLeaderTable(CondVN,
   1924                    ConstantInt::getFalse(TrueSucc->getContext()),
   1925                    FalseSucc);
   1926 
   1927     return false;
   1928   }
   1929 
   1930   // Instructions with void type don't return a value, so there's
   1931   // no point in trying to find redudancies in them.
   1932   if (I->getType()->isVoidTy()) return false;
   1933 
   1934   uint32_t NextNum = VN.getNextUnusedValueNumber();
   1935   unsigned Num = VN.lookup_or_add(I);
   1936 
   1937   // Allocations are always uniquely numbered, so we can save time and memory
   1938   // by fast failing them.
   1939   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
   1940     addToLeaderTable(Num, I, I->getParent());
   1941     return false;
   1942   }
   1943 
   1944   // If the number we were assigned was a brand new VN, then we don't
   1945   // need to do a lookup to see if the number already exists
   1946   // somewhere in the domtree: it can't!
   1947   if (Num == NextNum) {
   1948     addToLeaderTable(Num, I, I->getParent());
   1949     return false;
   1950   }
   1951 
   1952   // Perform fast-path value-number based elimination of values inherited from
   1953   // dominators.
   1954   Value *repl = findLeader(I->getParent(), Num);
   1955   if (repl == 0) {
   1956     // Failure, just remember this instance for future use.
   1957     addToLeaderTable(Num, I, I->getParent());
   1958     return false;
   1959   }
   1960 
   1961   // Remove it!
   1962   I->replaceAllUsesWith(repl);
   1963   if (MD && repl->getType()->isPointerTy())
   1964     MD->invalidateCachedPointerInfo(repl);
   1965   markInstructionForDeletion(I);
   1966   return true;
   1967 }
   1968 
   1969 /// runOnFunction - This is the main transformation entry point for a function.
   1970 bool GVN::runOnFunction(Function& F) {
   1971   if (!NoLoads)
   1972     MD = &getAnalysis<MemoryDependenceAnalysis>();
   1973   DT = &getAnalysis<DominatorTree>();
   1974   TD = getAnalysisIfAvailable<TargetData>();
   1975   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
   1976   VN.setMemDep(MD);
   1977   VN.setDomTree(DT);
   1978 
   1979   bool Changed = false;
   1980   bool ShouldContinue = true;
   1981 
   1982   // Merge unconditional branches, allowing PRE to catch more
   1983   // optimization opportunities.
   1984   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
   1985     BasicBlock *BB = FI++;
   1986 
   1987     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
   1988     if (removedBlock) ++NumGVNBlocks;
   1989 
   1990     Changed |= removedBlock;
   1991   }
   1992 
   1993   unsigned Iteration = 0;
   1994   while (ShouldContinue) {
   1995     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
   1996     ShouldContinue = iterateOnFunction(F);
   1997     if (splitCriticalEdges())
   1998       ShouldContinue = true;
   1999     Changed |= ShouldContinue;
   2000     ++Iteration;
   2001   }
   2002 
   2003   if (EnablePRE) {
   2004     bool PREChanged = true;
   2005     while (PREChanged) {
   2006       PREChanged = performPRE(F);
   2007       Changed |= PREChanged;
   2008     }
   2009   }
   2010   // FIXME: Should perform GVN again after PRE does something.  PRE can move
   2011   // computations into blocks where they become fully redundant.  Note that
   2012   // we can't do this until PRE's critical edge splitting updates memdep.
   2013   // Actually, when this happens, we should just fully integrate PRE into GVN.
   2014 
   2015   cleanupGlobalSets();
   2016 
   2017   return Changed;
   2018 }
   2019 
   2020 
   2021 bool GVN::processBlock(BasicBlock *BB) {
   2022   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
   2023   // (and incrementing BI before processing an instruction).
   2024   assert(InstrsToErase.empty() &&
   2025          "We expect InstrsToErase to be empty across iterations");
   2026   bool ChangedFunction = false;
   2027 
   2028   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
   2029        BI != BE;) {
   2030     ChangedFunction |= processInstruction(BI);
   2031     if (InstrsToErase.empty()) {
   2032       ++BI;
   2033       continue;
   2034     }
   2035 
   2036     // If we need some instructions deleted, do it now.
   2037     NumGVNInstr += InstrsToErase.size();
   2038 
   2039     // Avoid iterator invalidation.
   2040     bool AtStart = BI == BB->begin();
   2041     if (!AtStart)
   2042       --BI;
   2043 
   2044     for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
   2045          E = InstrsToErase.end(); I != E; ++I) {
   2046       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
   2047       if (MD) MD->removeInstruction(*I);
   2048       (*I)->eraseFromParent();
   2049       DEBUG(verifyRemoved(*I));
   2050     }
   2051     InstrsToErase.clear();
   2052 
   2053     if (AtStart)
   2054       BI = BB->begin();
   2055     else
   2056       ++BI;
   2057   }
   2058 
   2059   return ChangedFunction;
   2060 }
   2061 
   2062 /// performPRE - Perform a purely local form of PRE that looks for diamond
   2063 /// control flow patterns and attempts to perform simple PRE at the join point.
   2064 bool GVN::performPRE(Function &F) {
   2065   bool Changed = false;
   2066   DenseMap<BasicBlock*, Value*> predMap;
   2067   for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
   2068        DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
   2069     BasicBlock *CurrentBlock = *DI;
   2070 
   2071     // Nothing to PRE in the entry block.
   2072     if (CurrentBlock == &F.getEntryBlock()) continue;
   2073 
   2074     for (BasicBlock::iterator BI = CurrentBlock->begin(),
   2075          BE = CurrentBlock->end(); BI != BE; ) {
   2076       Instruction *CurInst = BI++;
   2077 
   2078       if (isa<AllocaInst>(CurInst) ||
   2079           isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
   2080           CurInst->getType()->isVoidTy() ||
   2081           CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
   2082           isa<DbgInfoIntrinsic>(CurInst))
   2083         continue;
   2084 
   2085       // We don't currently value number ANY inline asm calls.
   2086       if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
   2087         if (CallI->isInlineAsm())
   2088           continue;
   2089 
   2090       uint32_t ValNo = VN.lookup(CurInst);
   2091 
   2092       // Look for the predecessors for PRE opportunities.  We're
   2093       // only trying to solve the basic diamond case, where
   2094       // a value is computed in the successor and one predecessor,
   2095       // but not the other.  We also explicitly disallow cases
   2096       // where the successor is its own predecessor, because they're
   2097       // more complicated to get right.
   2098       unsigned NumWith = 0;
   2099       unsigned NumWithout = 0;
   2100       BasicBlock *PREPred = 0;
   2101       predMap.clear();
   2102 
   2103       for (pred_iterator PI = pred_begin(CurrentBlock),
   2104            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
   2105         BasicBlock *P = *PI;
   2106         // We're not interested in PRE where the block is its
   2107         // own predecessor, or in blocks with predecessors
   2108         // that are not reachable.
   2109         if (P == CurrentBlock) {
   2110           NumWithout = 2;
   2111           break;
   2112         } else if (!DT->dominates(&F.getEntryBlock(), P))  {
   2113           NumWithout = 2;
   2114           break;
   2115         }
   2116 
   2117         Value* predV = findLeader(P, ValNo);
   2118         if (predV == 0) {
   2119           PREPred = P;
   2120           ++NumWithout;
   2121         } else if (predV == CurInst) {
   2122           NumWithout = 2;
   2123         } else {
   2124           predMap[P] = predV;
   2125           ++NumWith;
   2126         }
   2127       }
   2128 
   2129       // Don't do PRE when it might increase code size, i.e. when
   2130       // we would need to insert instructions in more than one pred.
   2131       if (NumWithout != 1 || NumWith == 0)
   2132         continue;
   2133 
   2134       // Don't do PRE across indirect branch.
   2135       if (isa<IndirectBrInst>(PREPred->getTerminator()))
   2136         continue;
   2137 
   2138       // We can't do PRE safely on a critical edge, so instead we schedule
   2139       // the edge to be split and perform the PRE the next time we iterate
   2140       // on the function.
   2141       unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
   2142       if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
   2143         toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
   2144         continue;
   2145       }
   2146 
   2147       // Instantiate the expression in the predecessor that lacked it.
   2148       // Because we are going top-down through the block, all value numbers
   2149       // will be available in the predecessor by the time we need them.  Any
   2150       // that weren't originally present will have been instantiated earlier
   2151       // in this loop.
   2152       Instruction *PREInstr = CurInst->clone();
   2153       bool success = true;
   2154       for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
   2155         Value *Op = PREInstr->getOperand(i);
   2156         if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
   2157           continue;
   2158 
   2159         if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
   2160           PREInstr->setOperand(i, V);
   2161         } else {
   2162           success = false;
   2163           break;
   2164         }
   2165       }
   2166 
   2167       // Fail out if we encounter an operand that is not available in
   2168       // the PRE predecessor.  This is typically because of loads which
   2169       // are not value numbered precisely.
   2170       if (!success) {
   2171         delete PREInstr;
   2172         DEBUG(verifyRemoved(PREInstr));
   2173         continue;
   2174       }
   2175 
   2176       PREInstr->insertBefore(PREPred->getTerminator());
   2177       PREInstr->setName(CurInst->getName() + ".pre");
   2178       PREInstr->setDebugLoc(CurInst->getDebugLoc());
   2179       predMap[PREPred] = PREInstr;
   2180       VN.add(PREInstr, ValNo);
   2181       ++NumGVNPRE;
   2182 
   2183       // Update the availability map to include the new instruction.
   2184       addToLeaderTable(ValNo, PREInstr, PREPred);
   2185 
   2186       // Create a PHI to make the value available in this block.
   2187       pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
   2188       PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
   2189                                      CurInst->getName() + ".pre-phi",
   2190                                      CurrentBlock->begin());
   2191       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2192         BasicBlock *P = *PI;
   2193         Phi->addIncoming(predMap[P], P);
   2194       }
   2195 
   2196       VN.add(Phi, ValNo);
   2197       addToLeaderTable(ValNo, Phi, CurrentBlock);
   2198       Phi->setDebugLoc(CurInst->getDebugLoc());
   2199       CurInst->replaceAllUsesWith(Phi);
   2200       if (Phi->getType()->isPointerTy()) {
   2201         // Because we have added a PHI-use of the pointer value, it has now
   2202         // "escaped" from alias analysis' perspective.  We need to inform
   2203         // AA of this.
   2204         for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
   2205              ++ii) {
   2206           unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   2207           VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
   2208         }
   2209 
   2210         if (MD)
   2211           MD->invalidateCachedPointerInfo(Phi);
   2212       }
   2213       VN.erase(CurInst);
   2214       removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
   2215 
   2216       DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
   2217       if (MD) MD->removeInstruction(CurInst);
   2218       CurInst->eraseFromParent();
   2219       DEBUG(verifyRemoved(CurInst));
   2220       Changed = true;
   2221     }
   2222   }
   2223 
   2224   if (splitCriticalEdges())
   2225     Changed = true;
   2226 
   2227   return Changed;
   2228 }
   2229 
   2230 /// splitCriticalEdges - Split critical edges found during the previous
   2231 /// iteration that may enable further optimization.
   2232 bool GVN::splitCriticalEdges() {
   2233   if (toSplit.empty())
   2234     return false;
   2235   do {
   2236     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
   2237     SplitCriticalEdge(Edge.first, Edge.second, this);
   2238   } while (!toSplit.empty());
   2239   if (MD) MD->invalidateCachedPredecessors();
   2240   return true;
   2241 }
   2242 
   2243 /// iterateOnFunction - Executes one iteration of GVN
   2244 bool GVN::iterateOnFunction(Function &F) {
   2245   cleanupGlobalSets();
   2246 
   2247   // Top-down walk of the dominator tree
   2248   bool Changed = false;
   2249 #if 0
   2250   // Needed for value numbering with phi construction to work.
   2251   ReversePostOrderTraversal<Function*> RPOT(&F);
   2252   for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
   2253        RE = RPOT.end(); RI != RE; ++RI)
   2254     Changed |= processBlock(*RI);
   2255 #else
   2256   for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
   2257        DE = df_end(DT->getRootNode()); DI != DE; ++DI)
   2258     Changed |= processBlock(DI->getBlock());
   2259 #endif
   2260 
   2261   return Changed;
   2262 }
   2263 
   2264 void GVN::cleanupGlobalSets() {
   2265   VN.clear();
   2266   LeaderTable.clear();
   2267   TableAllocator.Reset();
   2268 }
   2269 
   2270 /// verifyRemoved - Verify that the specified instruction does not occur in our
   2271 /// internal data structures.
   2272 void GVN::verifyRemoved(const Instruction *Inst) const {
   2273   VN.verifyRemoved(Inst);
   2274 
   2275   // Walk through the value number scope to make sure the instruction isn't
   2276   // ferreted away in it.
   2277   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
   2278        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
   2279     const LeaderTableEntry *Node = &I->second;
   2280     assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2281 
   2282     while (Node->Next) {
   2283       Node = Node->Next;
   2284       assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2285     }
   2286   }
   2287 }
   2288