Home | History | Annotate | Download | only in AST
      1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Mangle.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CharUnits.h"
     17 #include "clang/AST/Decl.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/Basic/ABI.h"
     23 
     24 using namespace clang;
     25 
     26 namespace {
     27 
     28 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
     29 /// Microsoft Visual C++ ABI.
     30 class MicrosoftCXXNameMangler {
     31   MangleContext &Context;
     32   llvm::raw_ostream &Out;
     33 
     34   ASTContext &getASTContext() const { return Context.getASTContext(); }
     35 
     36 public:
     37   MicrosoftCXXNameMangler(MangleContext &C, llvm::raw_ostream &Out_)
     38   : Context(C), Out(Out_) { }
     39 
     40   void mangle(const NamedDecl *D, llvm::StringRef Prefix = "?");
     41   void mangleName(const NamedDecl *ND);
     42   void mangleFunctionEncoding(const FunctionDecl *FD);
     43   void mangleVariableEncoding(const VarDecl *VD);
     44   void mangleNumber(int64_t Number);
     45   void mangleType(QualType T);
     46 
     47 private:
     48   void mangleUnqualifiedName(const NamedDecl *ND) {
     49     mangleUnqualifiedName(ND, ND->getDeclName());
     50   }
     51   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
     52   void mangleSourceName(const IdentifierInfo *II);
     53   void manglePostfix(const DeclContext *DC, bool NoFunction=false);
     54   void mangleOperatorName(OverloadedOperatorKind OO);
     55   void mangleQualifiers(Qualifiers Quals, bool IsMember);
     56 
     57   void mangleObjCMethodName(const ObjCMethodDecl *MD);
     58 
     59   // Declare manglers for every type class.
     60 #define ABSTRACT_TYPE(CLASS, PARENT)
     61 #define NON_CANONICAL_TYPE(CLASS, PARENT)
     62 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
     63 #include "clang/AST/TypeNodes.def"
     64 
     65   void mangleType(const TagType*);
     66   void mangleType(const FunctionType *T, const FunctionDecl *D,
     67                   bool IsStructor, bool IsInstMethod);
     68   void mangleType(const ArrayType *T, bool IsGlobal);
     69   void mangleExtraDimensions(QualType T);
     70   void mangleFunctionClass(const FunctionDecl *FD);
     71   void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
     72   void mangleThrowSpecification(const FunctionProtoType *T);
     73 
     74 };
     75 
     76 /// MicrosoftMangleContext - Overrides the default MangleContext for the
     77 /// Microsoft Visual C++ ABI.
     78 class MicrosoftMangleContext : public MangleContext {
     79 public:
     80   MicrosoftMangleContext(ASTContext &Context,
     81                          Diagnostic &Diags) : MangleContext(Context, Diags) { }
     82   virtual bool shouldMangleDeclName(const NamedDecl *D);
     83   virtual void mangleName(const NamedDecl *D, llvm::raw_ostream &Out);
     84   virtual void mangleThunk(const CXXMethodDecl *MD,
     85                            const ThunkInfo &Thunk,
     86                            llvm::raw_ostream &);
     87   virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
     88                                   const ThisAdjustment &ThisAdjustment,
     89                                   llvm::raw_ostream &);
     90   virtual void mangleCXXVTable(const CXXRecordDecl *RD,
     91                                llvm::raw_ostream &);
     92   virtual void mangleCXXVTT(const CXXRecordDecl *RD,
     93                             llvm::raw_ostream &);
     94   virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
     95                                    const CXXRecordDecl *Type,
     96                                    llvm::raw_ostream &);
     97   virtual void mangleCXXRTTI(QualType T, llvm::raw_ostream &);
     98   virtual void mangleCXXRTTIName(QualType T, llvm::raw_ostream &);
     99   virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
    100                              llvm::raw_ostream &);
    101   virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
    102                              llvm::raw_ostream &);
    103   virtual void mangleReferenceTemporary(const clang::VarDecl *,
    104                                         llvm::raw_ostream &);
    105 };
    106 
    107 }
    108 
    109 static bool isInCLinkageSpecification(const Decl *D) {
    110   D = D->getCanonicalDecl();
    111   for (const DeclContext *DC = D->getDeclContext();
    112        !DC->isTranslationUnit(); DC = DC->getParent()) {
    113     if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
    114       return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
    115   }
    116 
    117   return false;
    118 }
    119 
    120 bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
    121   // In C, functions with no attributes never need to be mangled. Fastpath them.
    122   if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
    123     return false;
    124 
    125   // Any decl can be declared with __asm("foo") on it, and this takes precedence
    126   // over all other naming in the .o file.
    127   if (D->hasAttr<AsmLabelAttr>())
    128     return true;
    129 
    130   // Clang's "overloadable" attribute extension to C/C++ implies name mangling
    131   // (always) as does passing a C++ member function and a function
    132   // whose name is not a simple identifier.
    133   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    134   if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
    135              !FD->getDeclName().isIdentifier()))
    136     return true;
    137 
    138   // Otherwise, no mangling is done outside C++ mode.
    139   if (!getASTContext().getLangOptions().CPlusPlus)
    140     return false;
    141 
    142   // Variables at global scope with internal linkage are not mangled.
    143   if (!FD) {
    144     const DeclContext *DC = D->getDeclContext();
    145     if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
    146       return false;
    147   }
    148 
    149   // C functions and "main" are not mangled.
    150   if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
    151     return false;
    152 
    153   return true;
    154 }
    155 
    156 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
    157                                      llvm::StringRef Prefix) {
    158   // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
    159   // Therefore it's really important that we don't decorate the
    160   // name with leading underscores or leading/trailing at signs. So, emit a
    161   // asm marker at the start so we get the name right.
    162   Out << '\01';  // LLVM IR Marker for __asm("foo")
    163 
    164   // Any decl can be declared with __asm("foo") on it, and this takes precedence
    165   // over all other naming in the .o file.
    166   if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
    167     // If we have an asm name, then we use it as the mangling.
    168     Out << ALA->getLabel();
    169     return;
    170   }
    171 
    172   // <mangled-name> ::= ? <name> <type-encoding>
    173   Out << Prefix;
    174   mangleName(D);
    175   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    176     mangleFunctionEncoding(FD);
    177   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    178     mangleVariableEncoding(VD);
    179   // TODO: Fields? Can MSVC even mangle them?
    180 }
    181 
    182 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
    183   // <type-encoding> ::= <function-class> <function-type>
    184 
    185   // Don't mangle in the type if this isn't a decl we should typically mangle.
    186   if (!Context.shouldMangleDeclName(FD))
    187     return;
    188 
    189   // We should never ever see a FunctionNoProtoType at this point.
    190   // We don't even know how to mangle their types anyway :).
    191   const FunctionProtoType *FT = cast<FunctionProtoType>(FD->getType());
    192 
    193   bool InStructor = false, InInstMethod = false;
    194   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
    195   if (MD) {
    196     if (MD->isInstance())
    197       InInstMethod = true;
    198     if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
    199       InStructor = true;
    200   }
    201 
    202   // First, the function class.
    203   mangleFunctionClass(FD);
    204 
    205   mangleType(FT, FD, InStructor, InInstMethod);
    206 }
    207 
    208 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
    209   // <type-encoding> ::= <storage-class> <variable-type>
    210   // <storage-class> ::= 0  # private static member
    211   //                 ::= 1  # protected static member
    212   //                 ::= 2  # public static member
    213   //                 ::= 3  # global
    214   //                 ::= 4  # static local
    215 
    216   // The first character in the encoding (after the name) is the storage class.
    217   if (VD->isStaticDataMember()) {
    218     // If it's a static member, it also encodes the access level.
    219     switch (VD->getAccess()) {
    220       default:
    221       case AS_private: Out << '0'; break;
    222       case AS_protected: Out << '1'; break;
    223       case AS_public: Out << '2'; break;
    224     }
    225   }
    226   else if (!VD->isStaticLocal())
    227     Out << '3';
    228   else
    229     Out << '4';
    230   // Now mangle the type.
    231   // <variable-type> ::= <type> <cvr-qualifiers>
    232   //                 ::= <type> A # pointers, references, arrays
    233   // Pointers and references are odd. The type of 'int * const foo;' gets
    234   // mangled as 'QAHA' instead of 'PAHB', for example.
    235   QualType Ty = VD->getType();
    236   if (Ty->isPointerType() || Ty->isReferenceType()) {
    237     mangleType(Ty);
    238     Out << 'A';
    239   } else if (Ty->isArrayType()) {
    240     // Global arrays are funny, too.
    241     mangleType(cast<ArrayType>(Ty.getTypePtr()), true);
    242     Out << 'A';
    243   } else {
    244     mangleType(Ty.getLocalUnqualifiedType());
    245     mangleQualifiers(Ty.getLocalQualifiers(), false);
    246   }
    247 }
    248 
    249 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
    250   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
    251   const DeclContext *DC = ND->getDeclContext();
    252 
    253   // Always start with the unqualified name.
    254   mangleUnqualifiedName(ND);
    255 
    256   // If this is an extern variable declared locally, the relevant DeclContext
    257   // is that of the containing namespace, or the translation unit.
    258   if (isa<FunctionDecl>(DC) && ND->hasLinkage())
    259     while (!DC->isNamespace() && !DC->isTranslationUnit())
    260       DC = DC->getParent();
    261 
    262   manglePostfix(DC);
    263 
    264   // Terminate the whole name with an '@'.
    265   Out << '@';
    266 }
    267 
    268 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
    269   // <number> ::= [?] <decimal digit> # <= 9
    270   //          ::= [?] <hex digit>+ @ # > 9; A = 0, B = 1, etc...
    271   if (Number < 0) {
    272     Out << '?';
    273     Number = -Number;
    274   }
    275   if (Number >= 1 && Number <= 10) {
    276     Out << Number-1;
    277   } else {
    278     // We have to build up the encoding in reverse order, so it will come
    279     // out right when we write it out.
    280     char Encoding[16];
    281     char *EndPtr = Encoding+sizeof(Encoding);
    282     char *CurPtr = EndPtr;
    283     while (Number) {
    284       *--CurPtr = 'A' + (Number % 16);
    285       Number /= 16;
    286     }
    287     Out.write(CurPtr, EndPtr-CurPtr);
    288     Out << '@';
    289   }
    290 }
    291 
    292 void
    293 MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
    294                                                DeclarationName Name) {
    295   //  <unqualified-name> ::= <operator-name>
    296   //                     ::= <ctor-dtor-name>
    297   //                     ::= <source-name>
    298   switch (Name.getNameKind()) {
    299     case DeclarationName::Identifier: {
    300       if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
    301         mangleSourceName(II);
    302         break;
    303       }
    304 
    305       // Otherwise, an anonymous entity.  We must have a declaration.
    306       assert(ND && "mangling empty name without declaration");
    307 
    308       if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
    309         if (NS->isAnonymousNamespace()) {
    310           Out << "?A";
    311           break;
    312         }
    313       }
    314 
    315       // We must have an anonymous struct.
    316       const TagDecl *TD = cast<TagDecl>(ND);
    317       if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
    318         assert(TD->getDeclContext() == D->getDeclContext() &&
    319                "Typedef should not be in another decl context!");
    320         assert(D->getDeclName().getAsIdentifierInfo() &&
    321                "Typedef was not named!");
    322         mangleSourceName(D->getDeclName().getAsIdentifierInfo());
    323         break;
    324       }
    325 
    326       // When VC encounters an anonymous type with no tag and no typedef,
    327       // it literally emits '<unnamed-tag>'.
    328       Out << "<unnamed-tag>";
    329       break;
    330     }
    331 
    332     case DeclarationName::ObjCZeroArgSelector:
    333     case DeclarationName::ObjCOneArgSelector:
    334     case DeclarationName::ObjCMultiArgSelector:
    335       assert(false && "Can't mangle Objective-C selector names here!");
    336       break;
    337 
    338     case DeclarationName::CXXConstructorName:
    339       assert(false && "Can't mangle constructors yet!");
    340       break;
    341 
    342     case DeclarationName::CXXDestructorName:
    343       assert(false && "Can't mangle destructors yet!");
    344       break;
    345 
    346     case DeclarationName::CXXConversionFunctionName:
    347       // <operator-name> ::= ?B # (cast)
    348       // The target type is encoded as the return type.
    349       Out << "?B";
    350       break;
    351 
    352     case DeclarationName::CXXOperatorName:
    353       mangleOperatorName(Name.getCXXOverloadedOperator());
    354       break;
    355 
    356     case DeclarationName::CXXLiteralOperatorName:
    357       // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
    358       assert(false && "Don't know how to mangle literal operators yet!");
    359       break;
    360 
    361     case DeclarationName::CXXUsingDirective:
    362       assert(false && "Can't mangle a using directive name!");
    363       break;
    364   }
    365 }
    366 
    367 void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
    368                                             bool NoFunction) {
    369   // <postfix> ::= <unqualified-name> [<postfix>]
    370   //           ::= <template-postfix> <template-args> [<postfix>]
    371   //           ::= <template-param>
    372   //           ::= <substitution> [<postfix>]
    373 
    374   if (!DC) return;
    375 
    376   while (isa<LinkageSpecDecl>(DC))
    377     DC = DC->getParent();
    378 
    379   if (DC->isTranslationUnit())
    380     return;
    381 
    382   if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
    383     Context.mangleBlock(BD, Out);
    384     Out << '@';
    385     return manglePostfix(DC->getParent(), NoFunction);
    386   }
    387 
    388   if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
    389     return;
    390   else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
    391     mangleObjCMethodName(Method);
    392   else {
    393     mangleUnqualifiedName(cast<NamedDecl>(DC));
    394     manglePostfix(DC->getParent(), NoFunction);
    395   }
    396 }
    397 
    398 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO) {
    399   switch (OO) {
    400   //                     ?0 # constructor
    401   //                     ?1 # destructor
    402   // <operator-name> ::= ?2 # new
    403   case OO_New: Out << "?2"; break;
    404   // <operator-name> ::= ?3 # delete
    405   case OO_Delete: Out << "?3"; break;
    406   // <operator-name> ::= ?4 # =
    407   case OO_Equal: Out << "?4"; break;
    408   // <operator-name> ::= ?5 # >>
    409   case OO_GreaterGreater: Out << "?5"; break;
    410   // <operator-name> ::= ?6 # <<
    411   case OO_LessLess: Out << "?6"; break;
    412   // <operator-name> ::= ?7 # !
    413   case OO_Exclaim: Out << "?7"; break;
    414   // <operator-name> ::= ?8 # ==
    415   case OO_EqualEqual: Out << "?8"; break;
    416   // <operator-name> ::= ?9 # !=
    417   case OO_ExclaimEqual: Out << "?9"; break;
    418   // <operator-name> ::= ?A # []
    419   case OO_Subscript: Out << "?A"; break;
    420   //                     ?B # conversion
    421   // <operator-name> ::= ?C # ->
    422   case OO_Arrow: Out << "?C"; break;
    423   // <operator-name> ::= ?D # *
    424   case OO_Star: Out << "?D"; break;
    425   // <operator-name> ::= ?E # ++
    426   case OO_PlusPlus: Out << "?E"; break;
    427   // <operator-name> ::= ?F # --
    428   case OO_MinusMinus: Out << "?F"; break;
    429   // <operator-name> ::= ?G # -
    430   case OO_Minus: Out << "?G"; break;
    431   // <operator-name> ::= ?H # +
    432   case OO_Plus: Out << "?H"; break;
    433   // <operator-name> ::= ?I # &
    434   case OO_Amp: Out << "?I"; break;
    435   // <operator-name> ::= ?J # ->*
    436   case OO_ArrowStar: Out << "?J"; break;
    437   // <operator-name> ::= ?K # /
    438   case OO_Slash: Out << "?K"; break;
    439   // <operator-name> ::= ?L # %
    440   case OO_Percent: Out << "?L"; break;
    441   // <operator-name> ::= ?M # <
    442   case OO_Less: Out << "?M"; break;
    443   // <operator-name> ::= ?N # <=
    444   case OO_LessEqual: Out << "?N"; break;
    445   // <operator-name> ::= ?O # >
    446   case OO_Greater: Out << "?O"; break;
    447   // <operator-name> ::= ?P # >=
    448   case OO_GreaterEqual: Out << "?P"; break;
    449   // <operator-name> ::= ?Q # ,
    450   case OO_Comma: Out << "?Q"; break;
    451   // <operator-name> ::= ?R # ()
    452   case OO_Call: Out << "?R"; break;
    453   // <operator-name> ::= ?S # ~
    454   case OO_Tilde: Out << "?S"; break;
    455   // <operator-name> ::= ?T # ^
    456   case OO_Caret: Out << "?T"; break;
    457   // <operator-name> ::= ?U # |
    458   case OO_Pipe: Out << "?U"; break;
    459   // <operator-name> ::= ?V # &&
    460   case OO_AmpAmp: Out << "?V"; break;
    461   // <operator-name> ::= ?W # ||
    462   case OO_PipePipe: Out << "?W"; break;
    463   // <operator-name> ::= ?X # *=
    464   case OO_StarEqual: Out << "?X"; break;
    465   // <operator-name> ::= ?Y # +=
    466   case OO_PlusEqual: Out << "?Y"; break;
    467   // <operator-name> ::= ?Z # -=
    468   case OO_MinusEqual: Out << "?Z"; break;
    469   // <operator-name> ::= ?_0 # /=
    470   case OO_SlashEqual: Out << "?_0"; break;
    471   // <operator-name> ::= ?_1 # %=
    472   case OO_PercentEqual: Out << "?_1"; break;
    473   // <operator-name> ::= ?_2 # >>=
    474   case OO_GreaterGreaterEqual: Out << "?_2"; break;
    475   // <operator-name> ::= ?_3 # <<=
    476   case OO_LessLessEqual: Out << "?_3"; break;
    477   // <operator-name> ::= ?_4 # &=
    478   case OO_AmpEqual: Out << "?_4"; break;
    479   // <operator-name> ::= ?_5 # |=
    480   case OO_PipeEqual: Out << "?_5"; break;
    481   // <operator-name> ::= ?_6 # ^=
    482   case OO_CaretEqual: Out << "?_6"; break;
    483   //                     ?_7 # vftable
    484   //                     ?_8 # vbtable
    485   //                     ?_9 # vcall
    486   //                     ?_A # typeof
    487   //                     ?_B # local static guard
    488   //                     ?_C # string
    489   //                     ?_D # vbase destructor
    490   //                     ?_E # vector deleting destructor
    491   //                     ?_F # default constructor closure
    492   //                     ?_G # scalar deleting destructor
    493   //                     ?_H # vector constructor iterator
    494   //                     ?_I # vector destructor iterator
    495   //                     ?_J # vector vbase constructor iterator
    496   //                     ?_K # virtual displacement map
    497   //                     ?_L # eh vector constructor iterator
    498   //                     ?_M # eh vector destructor iterator
    499   //                     ?_N # eh vector vbase constructor iterator
    500   //                     ?_O # copy constructor closure
    501   //                     ?_P<name> # udt returning <name>
    502   //                     ?_Q # <unknown>
    503   //                     ?_R0 # RTTI Type Descriptor
    504   //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
    505   //                     ?_R2 # RTTI Base Class Array
    506   //                     ?_R3 # RTTI Class Hierarchy Descriptor
    507   //                     ?_R4 # RTTI Complete Object Locator
    508   //                     ?_S # local vftable
    509   //                     ?_T # local vftable constructor closure
    510   // <operator-name> ::= ?_U # new[]
    511   case OO_Array_New: Out << "?_U"; break;
    512   // <operator-name> ::= ?_V # delete[]
    513   case OO_Array_Delete: Out << "?_V"; break;
    514 
    515   case OO_Conditional:
    516     assert(false && "Don't know how to mangle ?:");
    517     break;
    518 
    519   case OO_None:
    520   case NUM_OVERLOADED_OPERATORS:
    521     assert(false && "Not an overloaded operator");
    522     break;
    523   }
    524 }
    525 
    526 void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
    527   // <source name> ::= <identifier> @
    528   Out << II->getName() << '@';
    529 }
    530 
    531 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
    532   Context.mangleObjCMethodName(MD, Out);
    533 }
    534 
    535 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
    536                                                bool IsMember) {
    537   // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
    538   // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
    539   // 'I' means __restrict (32/64-bit).
    540   // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
    541   // keyword!
    542   // <base-cvr-qualifiers> ::= A  # near
    543   //                       ::= B  # near const
    544   //                       ::= C  # near volatile
    545   //                       ::= D  # near const volatile
    546   //                       ::= E  # far (16-bit)
    547   //                       ::= F  # far const (16-bit)
    548   //                       ::= G  # far volatile (16-bit)
    549   //                       ::= H  # far const volatile (16-bit)
    550   //                       ::= I  # huge (16-bit)
    551   //                       ::= J  # huge const (16-bit)
    552   //                       ::= K  # huge volatile (16-bit)
    553   //                       ::= L  # huge const volatile (16-bit)
    554   //                       ::= M <basis> # based
    555   //                       ::= N <basis> # based const
    556   //                       ::= O <basis> # based volatile
    557   //                       ::= P <basis> # based const volatile
    558   //                       ::= Q  # near member
    559   //                       ::= R  # near const member
    560   //                       ::= S  # near volatile member
    561   //                       ::= T  # near const volatile member
    562   //                       ::= U  # far member (16-bit)
    563   //                       ::= V  # far const member (16-bit)
    564   //                       ::= W  # far volatile member (16-bit)
    565   //                       ::= X  # far const volatile member (16-bit)
    566   //                       ::= Y  # huge member (16-bit)
    567   //                       ::= Z  # huge const member (16-bit)
    568   //                       ::= 0  # huge volatile member (16-bit)
    569   //                       ::= 1  # huge const volatile member (16-bit)
    570   //                       ::= 2 <basis> # based member
    571   //                       ::= 3 <basis> # based const member
    572   //                       ::= 4 <basis> # based volatile member
    573   //                       ::= 5 <basis> # based const volatile member
    574   //                       ::= 6  # near function (pointers only)
    575   //                       ::= 7  # far function (pointers only)
    576   //                       ::= 8  # near method (pointers only)
    577   //                       ::= 9  # far method (pointers only)
    578   //                       ::= _A <basis> # based function (pointers only)
    579   //                       ::= _B <basis> # based function (far?) (pointers only)
    580   //                       ::= _C <basis> # based method (pointers only)
    581   //                       ::= _D <basis> # based method (far?) (pointers only)
    582   //                       ::= _E # block (Clang)
    583   // <basis> ::= 0 # __based(void)
    584   //         ::= 1 # __based(segment)?
    585   //         ::= 2 <name> # __based(name)
    586   //         ::= 3 # ?
    587   //         ::= 4 # ?
    588   //         ::= 5 # not really based
    589   if (!IsMember) {
    590     if (!Quals.hasVolatile()) {
    591       if (!Quals.hasConst())
    592         Out << 'A';
    593       else
    594         Out << 'B';
    595     } else {
    596       if (!Quals.hasConst())
    597         Out << 'C';
    598       else
    599         Out << 'D';
    600     }
    601   } else {
    602     if (!Quals.hasVolatile()) {
    603       if (!Quals.hasConst())
    604         Out << 'Q';
    605       else
    606         Out << 'R';
    607     } else {
    608       if (!Quals.hasConst())
    609         Out << 'S';
    610       else
    611         Out << 'T';
    612     }
    613   }
    614 
    615   // FIXME: For now, just drop all extension qualifiers on the floor.
    616 }
    617 
    618 void MicrosoftCXXNameMangler::mangleType(QualType T) {
    619   // Only operate on the canonical type!
    620   T = getASTContext().getCanonicalType(T);
    621 
    622   Qualifiers Quals = T.getLocalQualifiers();
    623   if (Quals) {
    624     // We have to mangle these now, while we still have enough information.
    625     // <pointer-cvr-qualifiers> ::= P  # pointer
    626     //                          ::= Q  # const pointer
    627     //                          ::= R  # volatile pointer
    628     //                          ::= S  # const volatile pointer
    629     if (T->isAnyPointerType() || T->isMemberPointerType() ||
    630         T->isBlockPointerType()) {
    631       if (!Quals.hasVolatile())
    632         Out << 'Q';
    633       else {
    634         if (!Quals.hasConst())
    635           Out << 'R';
    636         else
    637           Out << 'S';
    638       }
    639     } else
    640       // Just emit qualifiers like normal.
    641       // NB: When we mangle a pointer/reference type, and the pointee
    642       // type has no qualifiers, the lack of qualifier gets mangled
    643       // in there.
    644       mangleQualifiers(Quals, false);
    645   } else if (T->isAnyPointerType() || T->isMemberPointerType() ||
    646              T->isBlockPointerType()) {
    647     Out << 'P';
    648   }
    649   switch (T->getTypeClass()) {
    650 #define ABSTRACT_TYPE(CLASS, PARENT)
    651 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
    652 case Type::CLASS: \
    653 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
    654 return;
    655 #define TYPE(CLASS, PARENT) \
    656 case Type::CLASS: \
    657 mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
    658 break;
    659 #include "clang/AST/TypeNodes.def"
    660   }
    661 }
    662 
    663 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T) {
    664   //  <type>         ::= <builtin-type>
    665   //  <builtin-type> ::= X  # void
    666   //                 ::= C  # signed char
    667   //                 ::= D  # char
    668   //                 ::= E  # unsigned char
    669   //                 ::= F  # short
    670   //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
    671   //                 ::= H  # int
    672   //                 ::= I  # unsigned int
    673   //                 ::= J  # long
    674   //                 ::= K  # unsigned long
    675   //                     L  # <none>
    676   //                 ::= M  # float
    677   //                 ::= N  # double
    678   //                 ::= O  # long double (__float80 is mangled differently)
    679   //                 ::= _J # long long, __int64
    680   //                 ::= _K # unsigned long long, __int64
    681   //                 ::= _L # __int128
    682   //                 ::= _M # unsigned __int128
    683   //                 ::= _N # bool
    684   //                     _O # <array in parameter>
    685   //                 ::= _T # __float80 (Intel)
    686   //                 ::= _W # wchar_t
    687   //                 ::= _Z # __float80 (Digital Mars)
    688   switch (T->getKind()) {
    689   case BuiltinType::Void: Out << 'X'; break;
    690   case BuiltinType::SChar: Out << 'C'; break;
    691   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
    692   case BuiltinType::UChar: Out << 'E'; break;
    693   case BuiltinType::Short: Out << 'F'; break;
    694   case BuiltinType::UShort: Out << 'G'; break;
    695   case BuiltinType::Int: Out << 'H'; break;
    696   case BuiltinType::UInt: Out << 'I'; break;
    697   case BuiltinType::Long: Out << 'J'; break;
    698   case BuiltinType::ULong: Out << 'K'; break;
    699   case BuiltinType::Float: Out << 'M'; break;
    700   case BuiltinType::Double: Out << 'N'; break;
    701   // TODO: Determine size and mangle accordingly
    702   case BuiltinType::LongDouble: Out << 'O'; break;
    703   case BuiltinType::LongLong: Out << "_J"; break;
    704   case BuiltinType::ULongLong: Out << "_K"; break;
    705   case BuiltinType::Int128: Out << "_L"; break;
    706   case BuiltinType::UInt128: Out << "_M"; break;
    707   case BuiltinType::Bool: Out << "_N"; break;
    708   case BuiltinType::WChar_S:
    709   case BuiltinType::WChar_U: Out << "_W"; break;
    710 
    711   case BuiltinType::Overload:
    712   case BuiltinType::Dependent:
    713   case BuiltinType::UnknownAny:
    714   case BuiltinType::BoundMember:
    715     assert(false &&
    716            "Overloaded and dependent types shouldn't get to name mangling");
    717     break;
    718   case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
    719   case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
    720   case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
    721 
    722   case BuiltinType::Char16:
    723   case BuiltinType::Char32:
    724   case BuiltinType::NullPtr:
    725     assert(false && "Don't know how to mangle this type");
    726     break;
    727   }
    728 }
    729 
    730 // <type>          ::= <function-type>
    731 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T) {
    732   // Structors only appear in decls, so at this point we know it's not a
    733   // structor type.
    734   // I'll probably have mangleType(MemberPointerType) call the mangleType()
    735   // method directly.
    736   mangleType(T, NULL, false, false);
    737 }
    738 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T) {
    739   llvm_unreachable("Can't mangle K&R function prototypes");
    740 }
    741 
    742 void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
    743                                          const FunctionDecl *D,
    744                                          bool IsStructor,
    745                                          bool IsInstMethod) {
    746   // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
    747   //                     <return-type> <argument-list> <throw-spec>
    748   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
    749 
    750   // If this is a C++ instance method, mangle the CVR qualifiers for the
    751   // this pointer.
    752   if (IsInstMethod)
    753     mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
    754 
    755   mangleCallingConvention(T, IsInstMethod);
    756 
    757   // <return-type> ::= <type>
    758   //               ::= @ # structors (they have no declared return type)
    759   if (IsStructor)
    760     Out << '@';
    761   else
    762     mangleType(Proto->getResultType());
    763 
    764   // <argument-list> ::= X # void
    765   //                 ::= <type>+ @
    766   //                 ::= <type>* Z # varargs
    767   if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
    768     Out << 'X';
    769   } else {
    770     if (D) {
    771       // If we got a decl, use the "types-as-written" to make sure arrays
    772       // get mangled right.
    773       for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
    774            ParmEnd = D->param_end();
    775            Parm != ParmEnd; ++Parm)
    776         mangleType((*Parm)->getTypeSourceInfo()->getType());
    777     } else {
    778       for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
    779            ArgEnd = Proto->arg_type_end();
    780            Arg != ArgEnd; ++Arg)
    781         mangleType(*Arg);
    782     }
    783     // <builtin-type>      ::= Z  # ellipsis
    784     if (Proto->isVariadic())
    785       Out << 'Z';
    786     else
    787       Out << '@';
    788   }
    789 
    790   mangleThrowSpecification(Proto);
    791 }
    792 
    793 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
    794   // <function-class> ::= A # private: near
    795   //                  ::= B # private: far
    796   //                  ::= C # private: static near
    797   //                  ::= D # private: static far
    798   //                  ::= E # private: virtual near
    799   //                  ::= F # private: virtual far
    800   //                  ::= G # private: thunk near
    801   //                  ::= H # private: thunk far
    802   //                  ::= I # protected: near
    803   //                  ::= J # protected: far
    804   //                  ::= K # protected: static near
    805   //                  ::= L # protected: static far
    806   //                  ::= M # protected: virtual near
    807   //                  ::= N # protected: virtual far
    808   //                  ::= O # protected: thunk near
    809   //                  ::= P # protected: thunk far
    810   //                  ::= Q # public: near
    811   //                  ::= R # public: far
    812   //                  ::= S # public: static near
    813   //                  ::= T # public: static far
    814   //                  ::= U # public: virtual near
    815   //                  ::= V # public: virtual far
    816   //                  ::= W # public: thunk near
    817   //                  ::= X # public: thunk far
    818   //                  ::= Y # global near
    819   //                  ::= Z # global far
    820   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    821     switch (MD->getAccess()) {
    822       default:
    823       case AS_private:
    824         if (MD->isStatic())
    825           Out << 'C';
    826         else if (MD->isVirtual())
    827           Out << 'E';
    828         else
    829           Out << 'A';
    830         break;
    831       case AS_protected:
    832         if (MD->isStatic())
    833           Out << 'K';
    834         else if (MD->isVirtual())
    835           Out << 'M';
    836         else
    837           Out << 'I';
    838         break;
    839       case AS_public:
    840         if (MD->isStatic())
    841           Out << 'S';
    842         else if (MD->isVirtual())
    843           Out << 'U';
    844         else
    845           Out << 'Q';
    846     }
    847   } else
    848     Out << 'Y';
    849 }
    850 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
    851                                                       bool IsInstMethod) {
    852   // <calling-convention> ::= A # __cdecl
    853   //                      ::= B # __export __cdecl
    854   //                      ::= C # __pascal
    855   //                      ::= D # __export __pascal
    856   //                      ::= E # __thiscall
    857   //                      ::= F # __export __thiscall
    858   //                      ::= G # __stdcall
    859   //                      ::= H # __export __stdcall
    860   //                      ::= I # __fastcall
    861   //                      ::= J # __export __fastcall
    862   // The 'export' calling conventions are from a bygone era
    863   // (*cough*Win16*cough*) when functions were declared for export with
    864   // that keyword. (It didn't actually export them, it just made them so
    865   // that they could be in a DLL and somebody from another module could call
    866   // them.)
    867   CallingConv CC = T->getCallConv();
    868   if (CC == CC_Default)
    869     CC = IsInstMethod ? getASTContext().getDefaultMethodCallConv() : CC_C;
    870   switch (CC) {
    871     default:
    872       assert(0 && "Unsupported CC for mangling");
    873     case CC_Default:
    874     case CC_C: Out << 'A'; break;
    875     case CC_X86Pascal: Out << 'C'; break;
    876     case CC_X86ThisCall: Out << 'E'; break;
    877     case CC_X86StdCall: Out << 'G'; break;
    878     case CC_X86FastCall: Out << 'I'; break;
    879   }
    880 }
    881 void MicrosoftCXXNameMangler::mangleThrowSpecification(
    882                                                 const FunctionProtoType *FT) {
    883   // <throw-spec> ::= Z # throw(...) (default)
    884   //              ::= @ # throw() or __declspec/__attribute__((nothrow))
    885   //              ::= <type>+
    886   // NOTE: Since the Microsoft compiler ignores throw specifications, they are
    887   // all actually mangled as 'Z'. (They're ignored because their associated
    888   // functionality isn't implemented, and probably never will be.)
    889   Out << 'Z';
    890 }
    891 
    892 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T) {
    893   assert(false && "Don't know how to mangle UnresolvedUsingTypes yet!");
    894 }
    895 
    896 // <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
    897 // <union-type>  ::= T <name>
    898 // <struct-type> ::= U <name>
    899 // <class-type>  ::= V <name>
    900 // <enum-type>   ::= W <size> <name>
    901 void MicrosoftCXXNameMangler::mangleType(const EnumType *T) {
    902   mangleType(static_cast<const TagType*>(T));
    903 }
    904 void MicrosoftCXXNameMangler::mangleType(const RecordType *T) {
    905   mangleType(static_cast<const TagType*>(T));
    906 }
    907 void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
    908   switch (T->getDecl()->getTagKind()) {
    909     case TTK_Union:
    910       Out << 'T';
    911       break;
    912     case TTK_Struct:
    913       Out << 'U';
    914       break;
    915     case TTK_Class:
    916       Out << 'V';
    917       break;
    918     case TTK_Enum:
    919       Out << 'W';
    920       Out << getASTContext().getTypeSizeInChars(
    921                 cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
    922       break;
    923   }
    924   mangleName(T->getDecl());
    925 }
    926 
    927 // <type>       ::= <array-type>
    928 // <array-type> ::= P <cvr-qualifiers> [Y <dimension-count> <dimension>+]
    929 //                                                  <element-type> # as global
    930 //              ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
    931 //                                                  <element-type> # as param
    932 // It's supposed to be the other way around, but for some strange reason, it
    933 // isn't. Today this behavior is retained for the sole purpose of backwards
    934 // compatibility.
    935 void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
    936   // This isn't a recursive mangling, so now we have to do it all in this
    937   // one call.
    938   if (IsGlobal)
    939     Out << 'P';
    940   else
    941     Out << 'Q';
    942   mangleExtraDimensions(T->getElementType());
    943 }
    944 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T) {
    945   mangleType(static_cast<const ArrayType *>(T), false);
    946 }
    947 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T) {
    948   mangleType(static_cast<const ArrayType *>(T), false);
    949 }
    950 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T) {
    951   mangleType(static_cast<const ArrayType *>(T), false);
    952 }
    953 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T) {
    954   mangleType(static_cast<const ArrayType *>(T), false);
    955 }
    956 void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
    957   llvm::SmallVector<llvm::APInt, 3> Dimensions;
    958   for (;;) {
    959     if (ElementTy->isConstantArrayType()) {
    960       const ConstantArrayType *CAT =
    961       static_cast<const ConstantArrayType *>(ElementTy.getTypePtr());
    962       Dimensions.push_back(CAT->getSize());
    963       ElementTy = CAT->getElementType();
    964     } else if (ElementTy->isVariableArrayType()) {
    965       assert(false && "Don't know how to mangle VLAs!");
    966     } else if (ElementTy->isDependentSizedArrayType()) {
    967       // The dependent expression has to be folded into a constant (TODO).
    968       assert(false && "Don't know how to mangle dependent-sized arrays!");
    969     } else if (ElementTy->isIncompleteArrayType()) continue;
    970     else break;
    971   }
    972   mangleQualifiers(ElementTy.getQualifiers(), false);
    973   // If there are any additional dimensions, mangle them now.
    974   if (Dimensions.size() > 0) {
    975     Out << 'Y';
    976     // <dimension-count> ::= <number> # number of extra dimensions
    977     mangleNumber(Dimensions.size());
    978     for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
    979       mangleNumber(Dimensions[Dim].getLimitedValue());
    980     }
    981   }
    982   mangleType(ElementTy.getLocalUnqualifiedType());
    983 }
    984 
    985 // <type>                   ::= <pointer-to-member-type>
    986 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
    987 //                                                          <class name> <type>
    988 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T) {
    989   QualType PointeeType = T->getPointeeType();
    990   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
    991     Out << '8';
    992     mangleName(cast<RecordType>(T->getClass())->getDecl());
    993     mangleType(FPT, NULL, false, true);
    994   } else {
    995     mangleQualifiers(PointeeType.getQualifiers(), true);
    996     mangleName(cast<RecordType>(T->getClass())->getDecl());
    997     mangleType(PointeeType.getLocalUnqualifiedType());
    998   }
    999 }
   1000 
   1001 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T) {
   1002   assert(false && "Don't know how to mangle TemplateTypeParmTypes yet!");
   1003 }
   1004 
   1005 void MicrosoftCXXNameMangler::mangleType(
   1006                                        const SubstTemplateTypeParmPackType *T) {
   1007   assert(false &&
   1008          "Don't know how to mangle SubstTemplateTypeParmPackTypes yet!");
   1009 }
   1010 
   1011 // <type> ::= <pointer-type>
   1012 // <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
   1013 void MicrosoftCXXNameMangler::mangleType(const PointerType *T) {
   1014   QualType PointeeTy = T->getPointeeType();
   1015   if (PointeeTy->isArrayType()) {
   1016     // Pointers to arrays are mangled like arrays.
   1017     mangleExtraDimensions(T->getPointeeType());
   1018   } else if (PointeeTy->isFunctionType()) {
   1019     // Function pointers are special.
   1020     Out << '6';
   1021     mangleType(static_cast<const FunctionType *>(PointeeTy.getTypePtr()),
   1022                NULL, false, false);
   1023   } else {
   1024     if (!PointeeTy.hasQualifiers())
   1025       // Lack of qualifiers is mangled as 'A'.
   1026       Out << 'A';
   1027     mangleType(PointeeTy);
   1028   }
   1029 }
   1030 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
   1031   // Object pointers never have qualifiers.
   1032   Out << 'A';
   1033   mangleType(T->getPointeeType());
   1034 }
   1035 
   1036 // <type> ::= <reference-type>
   1037 // <reference-type> ::= A <cvr-qualifiers> <type>
   1038 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T) {
   1039   Out << 'A';
   1040   QualType PointeeTy = T->getPointeeType();
   1041   if (!PointeeTy.hasQualifiers())
   1042     // Lack of qualifiers is mangled as 'A'.
   1043     Out << 'A';
   1044   mangleType(PointeeTy);
   1045 }
   1046 
   1047 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T) {
   1048   assert(false && "Don't know how to mangle RValueReferenceTypes yet!");
   1049 }
   1050 
   1051 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T) {
   1052   assert(false && "Don't know how to mangle ComplexTypes yet!");
   1053 }
   1054 
   1055 void MicrosoftCXXNameMangler::mangleType(const VectorType *T) {
   1056   assert(false && "Don't know how to mangle VectorTypes yet!");
   1057 }
   1058 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T) {
   1059   assert(false && "Don't know how to mangle ExtVectorTypes yet!");
   1060 }
   1061 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
   1062   assert(false && "Don't know how to mangle DependentSizedExtVectorTypes yet!");
   1063 }
   1064 
   1065 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T) {
   1066   // ObjC interfaces have structs underlying them.
   1067   Out << 'U';
   1068   mangleName(T->getDecl());
   1069 }
   1070 
   1071 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T) {
   1072   // We don't allow overloading by different protocol qualification,
   1073   // so mangling them isn't necessary.
   1074   mangleType(T->getBaseType());
   1075 }
   1076 
   1077 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T) {
   1078   Out << "_E";
   1079   mangleType(T->getPointeeType());
   1080 }
   1081 
   1082 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T) {
   1083   assert(false && "Don't know how to mangle InjectedClassNameTypes yet!");
   1084 }
   1085 
   1086 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T) {
   1087   assert(false && "Don't know how to mangle TemplateSpecializationTypes yet!");
   1088 }
   1089 
   1090 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T) {
   1091   assert(false && "Don't know how to mangle DependentNameTypes yet!");
   1092 }
   1093 
   1094 void MicrosoftCXXNameMangler::mangleType(
   1095                                  const DependentTemplateSpecializationType *T) {
   1096   assert(false &&
   1097          "Don't know how to mangle DependentTemplateSpecializationTypes yet!");
   1098 }
   1099 
   1100 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T) {
   1101   assert(false && "Don't know how to mangle PackExpansionTypes yet!");
   1102 }
   1103 
   1104 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T) {
   1105   assert(false && "Don't know how to mangle TypeOfTypes yet!");
   1106 }
   1107 
   1108 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T) {
   1109   assert(false && "Don't know how to mangle TypeOfExprTypes yet!");
   1110 }
   1111 
   1112 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T) {
   1113   assert(false && "Don't know how to mangle DecltypeTypes yet!");
   1114 }
   1115 
   1116 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T) {
   1117   assert(false && "Don't know how to mangle UnaryTransformationTypes yet!");
   1118 }
   1119 
   1120 void MicrosoftCXXNameMangler::mangleType(const AutoType *T) {
   1121   assert(false && "Don't know how to mangle AutoTypes yet!");
   1122 }
   1123 
   1124 void MicrosoftMangleContext::mangleName(const NamedDecl *D,
   1125                                         llvm::raw_ostream &Out) {
   1126   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
   1127          "Invalid mangleName() call, argument is not a variable or function!");
   1128   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
   1129          "Invalid mangleName() call on 'structor decl!");
   1130 
   1131   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
   1132                                  getASTContext().getSourceManager(),
   1133                                  "Mangling declaration");
   1134 
   1135   MicrosoftCXXNameMangler Mangler(*this, Out);
   1136   return Mangler.mangle(D);
   1137 }
   1138 void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
   1139                                          const ThunkInfo &Thunk,
   1140                                          llvm::raw_ostream &) {
   1141   assert(false && "Can't yet mangle thunks!");
   1142 }
   1143 void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
   1144                                                 CXXDtorType Type,
   1145                                                 const ThisAdjustment &,
   1146                                                 llvm::raw_ostream &) {
   1147   assert(false && "Can't yet mangle destructor thunks!");
   1148 }
   1149 void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
   1150                                              llvm::raw_ostream &) {
   1151   assert(false && "Can't yet mangle virtual tables!");
   1152 }
   1153 void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
   1154                                           llvm::raw_ostream &) {
   1155   llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
   1156 }
   1157 void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
   1158                                                  int64_t Offset,
   1159                                                  const CXXRecordDecl *Type,
   1160                                                  llvm::raw_ostream &) {
   1161   llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
   1162 }
   1163 void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
   1164                                            llvm::raw_ostream &) {
   1165   assert(false && "Can't yet mangle RTTI!");
   1166 }
   1167 void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
   1168                                                llvm::raw_ostream &) {
   1169   assert(false && "Can't yet mangle RTTI names!");
   1170 }
   1171 void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
   1172                                            CXXCtorType Type,
   1173                                            llvm::raw_ostream &) {
   1174   assert(false && "Can't yet mangle constructors!");
   1175 }
   1176 void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
   1177                                            CXXDtorType Type,
   1178                                            llvm::raw_ostream &) {
   1179   assert(false && "Can't yet mangle destructors!");
   1180 }
   1181 void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *,
   1182                                                       llvm::raw_ostream &) {
   1183   assert(false && "Can't yet mangle reference temporaries!");
   1184 }
   1185 
   1186 MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context,
   1187                                                    Diagnostic &Diags) {
   1188   return new MicrosoftMangleContext(Context, Diags);
   1189 }
   1190