1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Mangle.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/Basic/ABI.h" 23 24 using namespace clang; 25 26 namespace { 27 28 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 29 /// Microsoft Visual C++ ABI. 30 class MicrosoftCXXNameMangler { 31 MangleContext &Context; 32 llvm::raw_ostream &Out; 33 34 ASTContext &getASTContext() const { return Context.getASTContext(); } 35 36 public: 37 MicrosoftCXXNameMangler(MangleContext &C, llvm::raw_ostream &Out_) 38 : Context(C), Out(Out_) { } 39 40 void mangle(const NamedDecl *D, llvm::StringRef Prefix = "?"); 41 void mangleName(const NamedDecl *ND); 42 void mangleFunctionEncoding(const FunctionDecl *FD); 43 void mangleVariableEncoding(const VarDecl *VD); 44 void mangleNumber(int64_t Number); 45 void mangleType(QualType T); 46 47 private: 48 void mangleUnqualifiedName(const NamedDecl *ND) { 49 mangleUnqualifiedName(ND, ND->getDeclName()); 50 } 51 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); 52 void mangleSourceName(const IdentifierInfo *II); 53 void manglePostfix(const DeclContext *DC, bool NoFunction=false); 54 void mangleOperatorName(OverloadedOperatorKind OO); 55 void mangleQualifiers(Qualifiers Quals, bool IsMember); 56 57 void mangleObjCMethodName(const ObjCMethodDecl *MD); 58 59 // Declare manglers for every type class. 60 #define ABSTRACT_TYPE(CLASS, PARENT) 61 #define NON_CANONICAL_TYPE(CLASS, PARENT) 62 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 63 #include "clang/AST/TypeNodes.def" 64 65 void mangleType(const TagType*); 66 void mangleType(const FunctionType *T, const FunctionDecl *D, 67 bool IsStructor, bool IsInstMethod); 68 void mangleType(const ArrayType *T, bool IsGlobal); 69 void mangleExtraDimensions(QualType T); 70 void mangleFunctionClass(const FunctionDecl *FD); 71 void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false); 72 void mangleThrowSpecification(const FunctionProtoType *T); 73 74 }; 75 76 /// MicrosoftMangleContext - Overrides the default MangleContext for the 77 /// Microsoft Visual C++ ABI. 78 class MicrosoftMangleContext : public MangleContext { 79 public: 80 MicrosoftMangleContext(ASTContext &Context, 81 Diagnostic &Diags) : MangleContext(Context, Diags) { } 82 virtual bool shouldMangleDeclName(const NamedDecl *D); 83 virtual void mangleName(const NamedDecl *D, llvm::raw_ostream &Out); 84 virtual void mangleThunk(const CXXMethodDecl *MD, 85 const ThunkInfo &Thunk, 86 llvm::raw_ostream &); 87 virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 88 const ThisAdjustment &ThisAdjustment, 89 llvm::raw_ostream &); 90 virtual void mangleCXXVTable(const CXXRecordDecl *RD, 91 llvm::raw_ostream &); 92 virtual void mangleCXXVTT(const CXXRecordDecl *RD, 93 llvm::raw_ostream &); 94 virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 95 const CXXRecordDecl *Type, 96 llvm::raw_ostream &); 97 virtual void mangleCXXRTTI(QualType T, llvm::raw_ostream &); 98 virtual void mangleCXXRTTIName(QualType T, llvm::raw_ostream &); 99 virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, 100 llvm::raw_ostream &); 101 virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, 102 llvm::raw_ostream &); 103 virtual void mangleReferenceTemporary(const clang::VarDecl *, 104 llvm::raw_ostream &); 105 }; 106 107 } 108 109 static bool isInCLinkageSpecification(const Decl *D) { 110 D = D->getCanonicalDecl(); 111 for (const DeclContext *DC = D->getDeclContext(); 112 !DC->isTranslationUnit(); DC = DC->getParent()) { 113 if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) 114 return Linkage->getLanguage() == LinkageSpecDecl::lang_c; 115 } 116 117 return false; 118 } 119 120 bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) { 121 // In C, functions with no attributes never need to be mangled. Fastpath them. 122 if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs()) 123 return false; 124 125 // Any decl can be declared with __asm("foo") on it, and this takes precedence 126 // over all other naming in the .o file. 127 if (D->hasAttr<AsmLabelAttr>()) 128 return true; 129 130 // Clang's "overloadable" attribute extension to C/C++ implies name mangling 131 // (always) as does passing a C++ member function and a function 132 // whose name is not a simple identifier. 133 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 134 if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) || 135 !FD->getDeclName().isIdentifier())) 136 return true; 137 138 // Otherwise, no mangling is done outside C++ mode. 139 if (!getASTContext().getLangOptions().CPlusPlus) 140 return false; 141 142 // Variables at global scope with internal linkage are not mangled. 143 if (!FD) { 144 const DeclContext *DC = D->getDeclContext(); 145 if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage) 146 return false; 147 } 148 149 // C functions and "main" are not mangled. 150 if ((FD && FD->isMain()) || isInCLinkageSpecification(D)) 151 return false; 152 153 return true; 154 } 155 156 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, 157 llvm::StringRef Prefix) { 158 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 159 // Therefore it's really important that we don't decorate the 160 // name with leading underscores or leading/trailing at signs. So, emit a 161 // asm marker at the start so we get the name right. 162 Out << '\01'; // LLVM IR Marker for __asm("foo") 163 164 // Any decl can be declared with __asm("foo") on it, and this takes precedence 165 // over all other naming in the .o file. 166 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { 167 // If we have an asm name, then we use it as the mangling. 168 Out << ALA->getLabel(); 169 return; 170 } 171 172 // <mangled-name> ::= ? <name> <type-encoding> 173 Out << Prefix; 174 mangleName(D); 175 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 176 mangleFunctionEncoding(FD); 177 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 178 mangleVariableEncoding(VD); 179 // TODO: Fields? Can MSVC even mangle them? 180 } 181 182 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { 183 // <type-encoding> ::= <function-class> <function-type> 184 185 // Don't mangle in the type if this isn't a decl we should typically mangle. 186 if (!Context.shouldMangleDeclName(FD)) 187 return; 188 189 // We should never ever see a FunctionNoProtoType at this point. 190 // We don't even know how to mangle their types anyway :). 191 const FunctionProtoType *FT = cast<FunctionProtoType>(FD->getType()); 192 193 bool InStructor = false, InInstMethod = false; 194 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 195 if (MD) { 196 if (MD->isInstance()) 197 InInstMethod = true; 198 if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) 199 InStructor = true; 200 } 201 202 // First, the function class. 203 mangleFunctionClass(FD); 204 205 mangleType(FT, FD, InStructor, InInstMethod); 206 } 207 208 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 209 // <type-encoding> ::= <storage-class> <variable-type> 210 // <storage-class> ::= 0 # private static member 211 // ::= 1 # protected static member 212 // ::= 2 # public static member 213 // ::= 3 # global 214 // ::= 4 # static local 215 216 // The first character in the encoding (after the name) is the storage class. 217 if (VD->isStaticDataMember()) { 218 // If it's a static member, it also encodes the access level. 219 switch (VD->getAccess()) { 220 default: 221 case AS_private: Out << '0'; break; 222 case AS_protected: Out << '1'; break; 223 case AS_public: Out << '2'; break; 224 } 225 } 226 else if (!VD->isStaticLocal()) 227 Out << '3'; 228 else 229 Out << '4'; 230 // Now mangle the type. 231 // <variable-type> ::= <type> <cvr-qualifiers> 232 // ::= <type> A # pointers, references, arrays 233 // Pointers and references are odd. The type of 'int * const foo;' gets 234 // mangled as 'QAHA' instead of 'PAHB', for example. 235 QualType Ty = VD->getType(); 236 if (Ty->isPointerType() || Ty->isReferenceType()) { 237 mangleType(Ty); 238 Out << 'A'; 239 } else if (Ty->isArrayType()) { 240 // Global arrays are funny, too. 241 mangleType(cast<ArrayType>(Ty.getTypePtr()), true); 242 Out << 'A'; 243 } else { 244 mangleType(Ty.getLocalUnqualifiedType()); 245 mangleQualifiers(Ty.getLocalQualifiers(), false); 246 } 247 } 248 249 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { 250 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 251 const DeclContext *DC = ND->getDeclContext(); 252 253 // Always start with the unqualified name. 254 mangleUnqualifiedName(ND); 255 256 // If this is an extern variable declared locally, the relevant DeclContext 257 // is that of the containing namespace, or the translation unit. 258 if (isa<FunctionDecl>(DC) && ND->hasLinkage()) 259 while (!DC->isNamespace() && !DC->isTranslationUnit()) 260 DC = DC->getParent(); 261 262 manglePostfix(DC); 263 264 // Terminate the whole name with an '@'. 265 Out << '@'; 266 } 267 268 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 269 // <number> ::= [?] <decimal digit> # <= 9 270 // ::= [?] <hex digit>+ @ # > 9; A = 0, B = 1, etc... 271 if (Number < 0) { 272 Out << '?'; 273 Number = -Number; 274 } 275 if (Number >= 1 && Number <= 10) { 276 Out << Number-1; 277 } else { 278 // We have to build up the encoding in reverse order, so it will come 279 // out right when we write it out. 280 char Encoding[16]; 281 char *EndPtr = Encoding+sizeof(Encoding); 282 char *CurPtr = EndPtr; 283 while (Number) { 284 *--CurPtr = 'A' + (Number % 16); 285 Number /= 16; 286 } 287 Out.write(CurPtr, EndPtr-CurPtr); 288 Out << '@'; 289 } 290 } 291 292 void 293 MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 294 DeclarationName Name) { 295 // <unqualified-name> ::= <operator-name> 296 // ::= <ctor-dtor-name> 297 // ::= <source-name> 298 switch (Name.getNameKind()) { 299 case DeclarationName::Identifier: { 300 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 301 mangleSourceName(II); 302 break; 303 } 304 305 // Otherwise, an anonymous entity. We must have a declaration. 306 assert(ND && "mangling empty name without declaration"); 307 308 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 309 if (NS->isAnonymousNamespace()) { 310 Out << "?A"; 311 break; 312 } 313 } 314 315 // We must have an anonymous struct. 316 const TagDecl *TD = cast<TagDecl>(ND); 317 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 318 assert(TD->getDeclContext() == D->getDeclContext() && 319 "Typedef should not be in another decl context!"); 320 assert(D->getDeclName().getAsIdentifierInfo() && 321 "Typedef was not named!"); 322 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 323 break; 324 } 325 326 // When VC encounters an anonymous type with no tag and no typedef, 327 // it literally emits '<unnamed-tag>'. 328 Out << "<unnamed-tag>"; 329 break; 330 } 331 332 case DeclarationName::ObjCZeroArgSelector: 333 case DeclarationName::ObjCOneArgSelector: 334 case DeclarationName::ObjCMultiArgSelector: 335 assert(false && "Can't mangle Objective-C selector names here!"); 336 break; 337 338 case DeclarationName::CXXConstructorName: 339 assert(false && "Can't mangle constructors yet!"); 340 break; 341 342 case DeclarationName::CXXDestructorName: 343 assert(false && "Can't mangle destructors yet!"); 344 break; 345 346 case DeclarationName::CXXConversionFunctionName: 347 // <operator-name> ::= ?B # (cast) 348 // The target type is encoded as the return type. 349 Out << "?B"; 350 break; 351 352 case DeclarationName::CXXOperatorName: 353 mangleOperatorName(Name.getCXXOverloadedOperator()); 354 break; 355 356 case DeclarationName::CXXLiteralOperatorName: 357 // FIXME: Was this added in VS2010? Does MS even know how to mangle this? 358 assert(false && "Don't know how to mangle literal operators yet!"); 359 break; 360 361 case DeclarationName::CXXUsingDirective: 362 assert(false && "Can't mangle a using directive name!"); 363 break; 364 } 365 } 366 367 void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC, 368 bool NoFunction) { 369 // <postfix> ::= <unqualified-name> [<postfix>] 370 // ::= <template-postfix> <template-args> [<postfix>] 371 // ::= <template-param> 372 // ::= <substitution> [<postfix>] 373 374 if (!DC) return; 375 376 while (isa<LinkageSpecDecl>(DC)) 377 DC = DC->getParent(); 378 379 if (DC->isTranslationUnit()) 380 return; 381 382 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 383 Context.mangleBlock(BD, Out); 384 Out << '@'; 385 return manglePostfix(DC->getParent(), NoFunction); 386 } 387 388 if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC))) 389 return; 390 else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) 391 mangleObjCMethodName(Method); 392 else { 393 mangleUnqualifiedName(cast<NamedDecl>(DC)); 394 manglePostfix(DC->getParent(), NoFunction); 395 } 396 } 397 398 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO) { 399 switch (OO) { 400 // ?0 # constructor 401 // ?1 # destructor 402 // <operator-name> ::= ?2 # new 403 case OO_New: Out << "?2"; break; 404 // <operator-name> ::= ?3 # delete 405 case OO_Delete: Out << "?3"; break; 406 // <operator-name> ::= ?4 # = 407 case OO_Equal: Out << "?4"; break; 408 // <operator-name> ::= ?5 # >> 409 case OO_GreaterGreater: Out << "?5"; break; 410 // <operator-name> ::= ?6 # << 411 case OO_LessLess: Out << "?6"; break; 412 // <operator-name> ::= ?7 # ! 413 case OO_Exclaim: Out << "?7"; break; 414 // <operator-name> ::= ?8 # == 415 case OO_EqualEqual: Out << "?8"; break; 416 // <operator-name> ::= ?9 # != 417 case OO_ExclaimEqual: Out << "?9"; break; 418 // <operator-name> ::= ?A # [] 419 case OO_Subscript: Out << "?A"; break; 420 // ?B # conversion 421 // <operator-name> ::= ?C # -> 422 case OO_Arrow: Out << "?C"; break; 423 // <operator-name> ::= ?D # * 424 case OO_Star: Out << "?D"; break; 425 // <operator-name> ::= ?E # ++ 426 case OO_PlusPlus: Out << "?E"; break; 427 // <operator-name> ::= ?F # -- 428 case OO_MinusMinus: Out << "?F"; break; 429 // <operator-name> ::= ?G # - 430 case OO_Minus: Out << "?G"; break; 431 // <operator-name> ::= ?H # + 432 case OO_Plus: Out << "?H"; break; 433 // <operator-name> ::= ?I # & 434 case OO_Amp: Out << "?I"; break; 435 // <operator-name> ::= ?J # ->* 436 case OO_ArrowStar: Out << "?J"; break; 437 // <operator-name> ::= ?K # / 438 case OO_Slash: Out << "?K"; break; 439 // <operator-name> ::= ?L # % 440 case OO_Percent: Out << "?L"; break; 441 // <operator-name> ::= ?M # < 442 case OO_Less: Out << "?M"; break; 443 // <operator-name> ::= ?N # <= 444 case OO_LessEqual: Out << "?N"; break; 445 // <operator-name> ::= ?O # > 446 case OO_Greater: Out << "?O"; break; 447 // <operator-name> ::= ?P # >= 448 case OO_GreaterEqual: Out << "?P"; break; 449 // <operator-name> ::= ?Q # , 450 case OO_Comma: Out << "?Q"; break; 451 // <operator-name> ::= ?R # () 452 case OO_Call: Out << "?R"; break; 453 // <operator-name> ::= ?S # ~ 454 case OO_Tilde: Out << "?S"; break; 455 // <operator-name> ::= ?T # ^ 456 case OO_Caret: Out << "?T"; break; 457 // <operator-name> ::= ?U # | 458 case OO_Pipe: Out << "?U"; break; 459 // <operator-name> ::= ?V # && 460 case OO_AmpAmp: Out << "?V"; break; 461 // <operator-name> ::= ?W # || 462 case OO_PipePipe: Out << "?W"; break; 463 // <operator-name> ::= ?X # *= 464 case OO_StarEqual: Out << "?X"; break; 465 // <operator-name> ::= ?Y # += 466 case OO_PlusEqual: Out << "?Y"; break; 467 // <operator-name> ::= ?Z # -= 468 case OO_MinusEqual: Out << "?Z"; break; 469 // <operator-name> ::= ?_0 # /= 470 case OO_SlashEqual: Out << "?_0"; break; 471 // <operator-name> ::= ?_1 # %= 472 case OO_PercentEqual: Out << "?_1"; break; 473 // <operator-name> ::= ?_2 # >>= 474 case OO_GreaterGreaterEqual: Out << "?_2"; break; 475 // <operator-name> ::= ?_3 # <<= 476 case OO_LessLessEqual: Out << "?_3"; break; 477 // <operator-name> ::= ?_4 # &= 478 case OO_AmpEqual: Out << "?_4"; break; 479 // <operator-name> ::= ?_5 # |= 480 case OO_PipeEqual: Out << "?_5"; break; 481 // <operator-name> ::= ?_6 # ^= 482 case OO_CaretEqual: Out << "?_6"; break; 483 // ?_7 # vftable 484 // ?_8 # vbtable 485 // ?_9 # vcall 486 // ?_A # typeof 487 // ?_B # local static guard 488 // ?_C # string 489 // ?_D # vbase destructor 490 // ?_E # vector deleting destructor 491 // ?_F # default constructor closure 492 // ?_G # scalar deleting destructor 493 // ?_H # vector constructor iterator 494 // ?_I # vector destructor iterator 495 // ?_J # vector vbase constructor iterator 496 // ?_K # virtual displacement map 497 // ?_L # eh vector constructor iterator 498 // ?_M # eh vector destructor iterator 499 // ?_N # eh vector vbase constructor iterator 500 // ?_O # copy constructor closure 501 // ?_P<name> # udt returning <name> 502 // ?_Q # <unknown> 503 // ?_R0 # RTTI Type Descriptor 504 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 505 // ?_R2 # RTTI Base Class Array 506 // ?_R3 # RTTI Class Hierarchy Descriptor 507 // ?_R4 # RTTI Complete Object Locator 508 // ?_S # local vftable 509 // ?_T # local vftable constructor closure 510 // <operator-name> ::= ?_U # new[] 511 case OO_Array_New: Out << "?_U"; break; 512 // <operator-name> ::= ?_V # delete[] 513 case OO_Array_Delete: Out << "?_V"; break; 514 515 case OO_Conditional: 516 assert(false && "Don't know how to mangle ?:"); 517 break; 518 519 case OO_None: 520 case NUM_OVERLOADED_OPERATORS: 521 assert(false && "Not an overloaded operator"); 522 break; 523 } 524 } 525 526 void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 527 // <source name> ::= <identifier> @ 528 Out << II->getName() << '@'; 529 } 530 531 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 532 Context.mangleObjCMethodName(MD, Out); 533 } 534 535 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 536 bool IsMember) { 537 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 538 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 539 // 'I' means __restrict (32/64-bit). 540 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 541 // keyword! 542 // <base-cvr-qualifiers> ::= A # near 543 // ::= B # near const 544 // ::= C # near volatile 545 // ::= D # near const volatile 546 // ::= E # far (16-bit) 547 // ::= F # far const (16-bit) 548 // ::= G # far volatile (16-bit) 549 // ::= H # far const volatile (16-bit) 550 // ::= I # huge (16-bit) 551 // ::= J # huge const (16-bit) 552 // ::= K # huge volatile (16-bit) 553 // ::= L # huge const volatile (16-bit) 554 // ::= M <basis> # based 555 // ::= N <basis> # based const 556 // ::= O <basis> # based volatile 557 // ::= P <basis> # based const volatile 558 // ::= Q # near member 559 // ::= R # near const member 560 // ::= S # near volatile member 561 // ::= T # near const volatile member 562 // ::= U # far member (16-bit) 563 // ::= V # far const member (16-bit) 564 // ::= W # far volatile member (16-bit) 565 // ::= X # far const volatile member (16-bit) 566 // ::= Y # huge member (16-bit) 567 // ::= Z # huge const member (16-bit) 568 // ::= 0 # huge volatile member (16-bit) 569 // ::= 1 # huge const volatile member (16-bit) 570 // ::= 2 <basis> # based member 571 // ::= 3 <basis> # based const member 572 // ::= 4 <basis> # based volatile member 573 // ::= 5 <basis> # based const volatile member 574 // ::= 6 # near function (pointers only) 575 // ::= 7 # far function (pointers only) 576 // ::= 8 # near method (pointers only) 577 // ::= 9 # far method (pointers only) 578 // ::= _A <basis> # based function (pointers only) 579 // ::= _B <basis> # based function (far?) (pointers only) 580 // ::= _C <basis> # based method (pointers only) 581 // ::= _D <basis> # based method (far?) (pointers only) 582 // ::= _E # block (Clang) 583 // <basis> ::= 0 # __based(void) 584 // ::= 1 # __based(segment)? 585 // ::= 2 <name> # __based(name) 586 // ::= 3 # ? 587 // ::= 4 # ? 588 // ::= 5 # not really based 589 if (!IsMember) { 590 if (!Quals.hasVolatile()) { 591 if (!Quals.hasConst()) 592 Out << 'A'; 593 else 594 Out << 'B'; 595 } else { 596 if (!Quals.hasConst()) 597 Out << 'C'; 598 else 599 Out << 'D'; 600 } 601 } else { 602 if (!Quals.hasVolatile()) { 603 if (!Quals.hasConst()) 604 Out << 'Q'; 605 else 606 Out << 'R'; 607 } else { 608 if (!Quals.hasConst()) 609 Out << 'S'; 610 else 611 Out << 'T'; 612 } 613 } 614 615 // FIXME: For now, just drop all extension qualifiers on the floor. 616 } 617 618 void MicrosoftCXXNameMangler::mangleType(QualType T) { 619 // Only operate on the canonical type! 620 T = getASTContext().getCanonicalType(T); 621 622 Qualifiers Quals = T.getLocalQualifiers(); 623 if (Quals) { 624 // We have to mangle these now, while we still have enough information. 625 // <pointer-cvr-qualifiers> ::= P # pointer 626 // ::= Q # const pointer 627 // ::= R # volatile pointer 628 // ::= S # const volatile pointer 629 if (T->isAnyPointerType() || T->isMemberPointerType() || 630 T->isBlockPointerType()) { 631 if (!Quals.hasVolatile()) 632 Out << 'Q'; 633 else { 634 if (!Quals.hasConst()) 635 Out << 'R'; 636 else 637 Out << 'S'; 638 } 639 } else 640 // Just emit qualifiers like normal. 641 // NB: When we mangle a pointer/reference type, and the pointee 642 // type has no qualifiers, the lack of qualifier gets mangled 643 // in there. 644 mangleQualifiers(Quals, false); 645 } else if (T->isAnyPointerType() || T->isMemberPointerType() || 646 T->isBlockPointerType()) { 647 Out << 'P'; 648 } 649 switch (T->getTypeClass()) { 650 #define ABSTRACT_TYPE(CLASS, PARENT) 651 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 652 case Type::CLASS: \ 653 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 654 return; 655 #define TYPE(CLASS, PARENT) \ 656 case Type::CLASS: \ 657 mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \ 658 break; 659 #include "clang/AST/TypeNodes.def" 660 } 661 } 662 663 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T) { 664 // <type> ::= <builtin-type> 665 // <builtin-type> ::= X # void 666 // ::= C # signed char 667 // ::= D # char 668 // ::= E # unsigned char 669 // ::= F # short 670 // ::= G # unsigned short (or wchar_t if it's not a builtin) 671 // ::= H # int 672 // ::= I # unsigned int 673 // ::= J # long 674 // ::= K # unsigned long 675 // L # <none> 676 // ::= M # float 677 // ::= N # double 678 // ::= O # long double (__float80 is mangled differently) 679 // ::= _J # long long, __int64 680 // ::= _K # unsigned long long, __int64 681 // ::= _L # __int128 682 // ::= _M # unsigned __int128 683 // ::= _N # bool 684 // _O # <array in parameter> 685 // ::= _T # __float80 (Intel) 686 // ::= _W # wchar_t 687 // ::= _Z # __float80 (Digital Mars) 688 switch (T->getKind()) { 689 case BuiltinType::Void: Out << 'X'; break; 690 case BuiltinType::SChar: Out << 'C'; break; 691 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break; 692 case BuiltinType::UChar: Out << 'E'; break; 693 case BuiltinType::Short: Out << 'F'; break; 694 case BuiltinType::UShort: Out << 'G'; break; 695 case BuiltinType::Int: Out << 'H'; break; 696 case BuiltinType::UInt: Out << 'I'; break; 697 case BuiltinType::Long: Out << 'J'; break; 698 case BuiltinType::ULong: Out << 'K'; break; 699 case BuiltinType::Float: Out << 'M'; break; 700 case BuiltinType::Double: Out << 'N'; break; 701 // TODO: Determine size and mangle accordingly 702 case BuiltinType::LongDouble: Out << 'O'; break; 703 case BuiltinType::LongLong: Out << "_J"; break; 704 case BuiltinType::ULongLong: Out << "_K"; break; 705 case BuiltinType::Int128: Out << "_L"; break; 706 case BuiltinType::UInt128: Out << "_M"; break; 707 case BuiltinType::Bool: Out << "_N"; break; 708 case BuiltinType::WChar_S: 709 case BuiltinType::WChar_U: Out << "_W"; break; 710 711 case BuiltinType::Overload: 712 case BuiltinType::Dependent: 713 case BuiltinType::UnknownAny: 714 case BuiltinType::BoundMember: 715 assert(false && 716 "Overloaded and dependent types shouldn't get to name mangling"); 717 break; 718 case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break; 719 case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break; 720 case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break; 721 722 case BuiltinType::Char16: 723 case BuiltinType::Char32: 724 case BuiltinType::NullPtr: 725 assert(false && "Don't know how to mangle this type"); 726 break; 727 } 728 } 729 730 // <type> ::= <function-type> 731 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T) { 732 // Structors only appear in decls, so at this point we know it's not a 733 // structor type. 734 // I'll probably have mangleType(MemberPointerType) call the mangleType() 735 // method directly. 736 mangleType(T, NULL, false, false); 737 } 738 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T) { 739 llvm_unreachable("Can't mangle K&R function prototypes"); 740 } 741 742 void MicrosoftCXXNameMangler::mangleType(const FunctionType *T, 743 const FunctionDecl *D, 744 bool IsStructor, 745 bool IsInstMethod) { 746 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 747 // <return-type> <argument-list> <throw-spec> 748 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 749 750 // If this is a C++ instance method, mangle the CVR qualifiers for the 751 // this pointer. 752 if (IsInstMethod) 753 mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false); 754 755 mangleCallingConvention(T, IsInstMethod); 756 757 // <return-type> ::= <type> 758 // ::= @ # structors (they have no declared return type) 759 if (IsStructor) 760 Out << '@'; 761 else 762 mangleType(Proto->getResultType()); 763 764 // <argument-list> ::= X # void 765 // ::= <type>+ @ 766 // ::= <type>* Z # varargs 767 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) { 768 Out << 'X'; 769 } else { 770 if (D) { 771 // If we got a decl, use the "types-as-written" to make sure arrays 772 // get mangled right. 773 for (FunctionDecl::param_const_iterator Parm = D->param_begin(), 774 ParmEnd = D->param_end(); 775 Parm != ParmEnd; ++Parm) 776 mangleType((*Parm)->getTypeSourceInfo()->getType()); 777 } else { 778 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), 779 ArgEnd = Proto->arg_type_end(); 780 Arg != ArgEnd; ++Arg) 781 mangleType(*Arg); 782 } 783 // <builtin-type> ::= Z # ellipsis 784 if (Proto->isVariadic()) 785 Out << 'Z'; 786 else 787 Out << '@'; 788 } 789 790 mangleThrowSpecification(Proto); 791 } 792 793 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 794 // <function-class> ::= A # private: near 795 // ::= B # private: far 796 // ::= C # private: static near 797 // ::= D # private: static far 798 // ::= E # private: virtual near 799 // ::= F # private: virtual far 800 // ::= G # private: thunk near 801 // ::= H # private: thunk far 802 // ::= I # protected: near 803 // ::= J # protected: far 804 // ::= K # protected: static near 805 // ::= L # protected: static far 806 // ::= M # protected: virtual near 807 // ::= N # protected: virtual far 808 // ::= O # protected: thunk near 809 // ::= P # protected: thunk far 810 // ::= Q # public: near 811 // ::= R # public: far 812 // ::= S # public: static near 813 // ::= T # public: static far 814 // ::= U # public: virtual near 815 // ::= V # public: virtual far 816 // ::= W # public: thunk near 817 // ::= X # public: thunk far 818 // ::= Y # global near 819 // ::= Z # global far 820 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 821 switch (MD->getAccess()) { 822 default: 823 case AS_private: 824 if (MD->isStatic()) 825 Out << 'C'; 826 else if (MD->isVirtual()) 827 Out << 'E'; 828 else 829 Out << 'A'; 830 break; 831 case AS_protected: 832 if (MD->isStatic()) 833 Out << 'K'; 834 else if (MD->isVirtual()) 835 Out << 'M'; 836 else 837 Out << 'I'; 838 break; 839 case AS_public: 840 if (MD->isStatic()) 841 Out << 'S'; 842 else if (MD->isVirtual()) 843 Out << 'U'; 844 else 845 Out << 'Q'; 846 } 847 } else 848 Out << 'Y'; 849 } 850 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T, 851 bool IsInstMethod) { 852 // <calling-convention> ::= A # __cdecl 853 // ::= B # __export __cdecl 854 // ::= C # __pascal 855 // ::= D # __export __pascal 856 // ::= E # __thiscall 857 // ::= F # __export __thiscall 858 // ::= G # __stdcall 859 // ::= H # __export __stdcall 860 // ::= I # __fastcall 861 // ::= J # __export __fastcall 862 // The 'export' calling conventions are from a bygone era 863 // (*cough*Win16*cough*) when functions were declared for export with 864 // that keyword. (It didn't actually export them, it just made them so 865 // that they could be in a DLL and somebody from another module could call 866 // them.) 867 CallingConv CC = T->getCallConv(); 868 if (CC == CC_Default) 869 CC = IsInstMethod ? getASTContext().getDefaultMethodCallConv() : CC_C; 870 switch (CC) { 871 default: 872 assert(0 && "Unsupported CC for mangling"); 873 case CC_Default: 874 case CC_C: Out << 'A'; break; 875 case CC_X86Pascal: Out << 'C'; break; 876 case CC_X86ThisCall: Out << 'E'; break; 877 case CC_X86StdCall: Out << 'G'; break; 878 case CC_X86FastCall: Out << 'I'; break; 879 } 880 } 881 void MicrosoftCXXNameMangler::mangleThrowSpecification( 882 const FunctionProtoType *FT) { 883 // <throw-spec> ::= Z # throw(...) (default) 884 // ::= @ # throw() or __declspec/__attribute__((nothrow)) 885 // ::= <type>+ 886 // NOTE: Since the Microsoft compiler ignores throw specifications, they are 887 // all actually mangled as 'Z'. (They're ignored because their associated 888 // functionality isn't implemented, and probably never will be.) 889 Out << 'Z'; 890 } 891 892 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T) { 893 assert(false && "Don't know how to mangle UnresolvedUsingTypes yet!"); 894 } 895 896 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 897 // <union-type> ::= T <name> 898 // <struct-type> ::= U <name> 899 // <class-type> ::= V <name> 900 // <enum-type> ::= W <size> <name> 901 void MicrosoftCXXNameMangler::mangleType(const EnumType *T) { 902 mangleType(static_cast<const TagType*>(T)); 903 } 904 void MicrosoftCXXNameMangler::mangleType(const RecordType *T) { 905 mangleType(static_cast<const TagType*>(T)); 906 } 907 void MicrosoftCXXNameMangler::mangleType(const TagType *T) { 908 switch (T->getDecl()->getTagKind()) { 909 case TTK_Union: 910 Out << 'T'; 911 break; 912 case TTK_Struct: 913 Out << 'U'; 914 break; 915 case TTK_Class: 916 Out << 'V'; 917 break; 918 case TTK_Enum: 919 Out << 'W'; 920 Out << getASTContext().getTypeSizeInChars( 921 cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity(); 922 break; 923 } 924 mangleName(T->getDecl()); 925 } 926 927 // <type> ::= <array-type> 928 // <array-type> ::= P <cvr-qualifiers> [Y <dimension-count> <dimension>+] 929 // <element-type> # as global 930 // ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+] 931 // <element-type> # as param 932 // It's supposed to be the other way around, but for some strange reason, it 933 // isn't. Today this behavior is retained for the sole purpose of backwards 934 // compatibility. 935 void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) { 936 // This isn't a recursive mangling, so now we have to do it all in this 937 // one call. 938 if (IsGlobal) 939 Out << 'P'; 940 else 941 Out << 'Q'; 942 mangleExtraDimensions(T->getElementType()); 943 } 944 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T) { 945 mangleType(static_cast<const ArrayType *>(T), false); 946 } 947 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T) { 948 mangleType(static_cast<const ArrayType *>(T), false); 949 } 950 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T) { 951 mangleType(static_cast<const ArrayType *>(T), false); 952 } 953 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T) { 954 mangleType(static_cast<const ArrayType *>(T), false); 955 } 956 void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) { 957 llvm::SmallVector<llvm::APInt, 3> Dimensions; 958 for (;;) { 959 if (ElementTy->isConstantArrayType()) { 960 const ConstantArrayType *CAT = 961 static_cast<const ConstantArrayType *>(ElementTy.getTypePtr()); 962 Dimensions.push_back(CAT->getSize()); 963 ElementTy = CAT->getElementType(); 964 } else if (ElementTy->isVariableArrayType()) { 965 assert(false && "Don't know how to mangle VLAs!"); 966 } else if (ElementTy->isDependentSizedArrayType()) { 967 // The dependent expression has to be folded into a constant (TODO). 968 assert(false && "Don't know how to mangle dependent-sized arrays!"); 969 } else if (ElementTy->isIncompleteArrayType()) continue; 970 else break; 971 } 972 mangleQualifiers(ElementTy.getQualifiers(), false); 973 // If there are any additional dimensions, mangle them now. 974 if (Dimensions.size() > 0) { 975 Out << 'Y'; 976 // <dimension-count> ::= <number> # number of extra dimensions 977 mangleNumber(Dimensions.size()); 978 for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) { 979 mangleNumber(Dimensions[Dim].getLimitedValue()); 980 } 981 } 982 mangleType(ElementTy.getLocalUnqualifiedType()); 983 } 984 985 // <type> ::= <pointer-to-member-type> 986 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 987 // <class name> <type> 988 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T) { 989 QualType PointeeType = T->getPointeeType(); 990 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 991 Out << '8'; 992 mangleName(cast<RecordType>(T->getClass())->getDecl()); 993 mangleType(FPT, NULL, false, true); 994 } else { 995 mangleQualifiers(PointeeType.getQualifiers(), true); 996 mangleName(cast<RecordType>(T->getClass())->getDecl()); 997 mangleType(PointeeType.getLocalUnqualifiedType()); 998 } 999 } 1000 1001 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T) { 1002 assert(false && "Don't know how to mangle TemplateTypeParmTypes yet!"); 1003 } 1004 1005 void MicrosoftCXXNameMangler::mangleType( 1006 const SubstTemplateTypeParmPackType *T) { 1007 assert(false && 1008 "Don't know how to mangle SubstTemplateTypeParmPackTypes yet!"); 1009 } 1010 1011 // <type> ::= <pointer-type> 1012 // <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 1013 void MicrosoftCXXNameMangler::mangleType(const PointerType *T) { 1014 QualType PointeeTy = T->getPointeeType(); 1015 if (PointeeTy->isArrayType()) { 1016 // Pointers to arrays are mangled like arrays. 1017 mangleExtraDimensions(T->getPointeeType()); 1018 } else if (PointeeTy->isFunctionType()) { 1019 // Function pointers are special. 1020 Out << '6'; 1021 mangleType(static_cast<const FunctionType *>(PointeeTy.getTypePtr()), 1022 NULL, false, false); 1023 } else { 1024 if (!PointeeTy.hasQualifiers()) 1025 // Lack of qualifiers is mangled as 'A'. 1026 Out << 'A'; 1027 mangleType(PointeeTy); 1028 } 1029 } 1030 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 1031 // Object pointers never have qualifiers. 1032 Out << 'A'; 1033 mangleType(T->getPointeeType()); 1034 } 1035 1036 // <type> ::= <reference-type> 1037 // <reference-type> ::= A <cvr-qualifiers> <type> 1038 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T) { 1039 Out << 'A'; 1040 QualType PointeeTy = T->getPointeeType(); 1041 if (!PointeeTy.hasQualifiers()) 1042 // Lack of qualifiers is mangled as 'A'. 1043 Out << 'A'; 1044 mangleType(PointeeTy); 1045 } 1046 1047 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T) { 1048 assert(false && "Don't know how to mangle RValueReferenceTypes yet!"); 1049 } 1050 1051 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T) { 1052 assert(false && "Don't know how to mangle ComplexTypes yet!"); 1053 } 1054 1055 void MicrosoftCXXNameMangler::mangleType(const VectorType *T) { 1056 assert(false && "Don't know how to mangle VectorTypes yet!"); 1057 } 1058 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T) { 1059 assert(false && "Don't know how to mangle ExtVectorTypes yet!"); 1060 } 1061 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 1062 assert(false && "Don't know how to mangle DependentSizedExtVectorTypes yet!"); 1063 } 1064 1065 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T) { 1066 // ObjC interfaces have structs underlying them. 1067 Out << 'U'; 1068 mangleName(T->getDecl()); 1069 } 1070 1071 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T) { 1072 // We don't allow overloading by different protocol qualification, 1073 // so mangling them isn't necessary. 1074 mangleType(T->getBaseType()); 1075 } 1076 1077 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T) { 1078 Out << "_E"; 1079 mangleType(T->getPointeeType()); 1080 } 1081 1082 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T) { 1083 assert(false && "Don't know how to mangle InjectedClassNameTypes yet!"); 1084 } 1085 1086 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T) { 1087 assert(false && "Don't know how to mangle TemplateSpecializationTypes yet!"); 1088 } 1089 1090 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T) { 1091 assert(false && "Don't know how to mangle DependentNameTypes yet!"); 1092 } 1093 1094 void MicrosoftCXXNameMangler::mangleType( 1095 const DependentTemplateSpecializationType *T) { 1096 assert(false && 1097 "Don't know how to mangle DependentTemplateSpecializationTypes yet!"); 1098 } 1099 1100 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T) { 1101 assert(false && "Don't know how to mangle PackExpansionTypes yet!"); 1102 } 1103 1104 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T) { 1105 assert(false && "Don't know how to mangle TypeOfTypes yet!"); 1106 } 1107 1108 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T) { 1109 assert(false && "Don't know how to mangle TypeOfExprTypes yet!"); 1110 } 1111 1112 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T) { 1113 assert(false && "Don't know how to mangle DecltypeTypes yet!"); 1114 } 1115 1116 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T) { 1117 assert(false && "Don't know how to mangle UnaryTransformationTypes yet!"); 1118 } 1119 1120 void MicrosoftCXXNameMangler::mangleType(const AutoType *T) { 1121 assert(false && "Don't know how to mangle AutoTypes yet!"); 1122 } 1123 1124 void MicrosoftMangleContext::mangleName(const NamedDecl *D, 1125 llvm::raw_ostream &Out) { 1126 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && 1127 "Invalid mangleName() call, argument is not a variable or function!"); 1128 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && 1129 "Invalid mangleName() call on 'structor decl!"); 1130 1131 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 1132 getASTContext().getSourceManager(), 1133 "Mangling declaration"); 1134 1135 MicrosoftCXXNameMangler Mangler(*this, Out); 1136 return Mangler.mangle(D); 1137 } 1138 void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD, 1139 const ThunkInfo &Thunk, 1140 llvm::raw_ostream &) { 1141 assert(false && "Can't yet mangle thunks!"); 1142 } 1143 void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD, 1144 CXXDtorType Type, 1145 const ThisAdjustment &, 1146 llvm::raw_ostream &) { 1147 assert(false && "Can't yet mangle destructor thunks!"); 1148 } 1149 void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD, 1150 llvm::raw_ostream &) { 1151 assert(false && "Can't yet mangle virtual tables!"); 1152 } 1153 void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD, 1154 llvm::raw_ostream &) { 1155 llvm_unreachable("The MS C++ ABI does not have virtual table tables!"); 1156 } 1157 void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD, 1158 int64_t Offset, 1159 const CXXRecordDecl *Type, 1160 llvm::raw_ostream &) { 1161 llvm_unreachable("The MS C++ ABI does not have constructor vtables!"); 1162 } 1163 void MicrosoftMangleContext::mangleCXXRTTI(QualType T, 1164 llvm::raw_ostream &) { 1165 assert(false && "Can't yet mangle RTTI!"); 1166 } 1167 void MicrosoftMangleContext::mangleCXXRTTIName(QualType T, 1168 llvm::raw_ostream &) { 1169 assert(false && "Can't yet mangle RTTI names!"); 1170 } 1171 void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D, 1172 CXXCtorType Type, 1173 llvm::raw_ostream &) { 1174 assert(false && "Can't yet mangle constructors!"); 1175 } 1176 void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D, 1177 CXXDtorType Type, 1178 llvm::raw_ostream &) { 1179 assert(false && "Can't yet mangle destructors!"); 1180 } 1181 void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *, 1182 llvm::raw_ostream &) { 1183 assert(false && "Can't yet mangle reference temporaries!"); 1184 } 1185 1186 MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context, 1187 Diagnostic &Diags) { 1188 return new MicrosoftMangleContext(Context, Diags); 1189 } 1190