1 //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a simple pass that applies a variety of small 11 // optimizations for calls to specific well-known function calls (e.g. runtime 12 // library functions). Any optimization that takes the very simple form 13 // "replace call to library function with simpler code that provides the same 14 // result" belongs in this file. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "simplify-libcalls" 19 #include "llvm/Transforms/Scalar.h" 20 #include "llvm/Transforms/Utils/BuildLibCalls.h" 21 #include "llvm/Intrinsics.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Module.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/IRBuilder.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Target/TargetLibraryInfo.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/StringMap.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Config/config.h" // FIXME: Shouldn't depend on host! 36 using namespace llvm; 37 38 STATISTIC(NumSimplified, "Number of library calls simplified"); 39 STATISTIC(NumAnnotated, "Number of attributes added to library functions"); 40 41 //===----------------------------------------------------------------------===// 42 // Optimizer Base Class 43 //===----------------------------------------------------------------------===// 44 45 /// This class is the abstract base class for the set of optimizations that 46 /// corresponds to one library call. 47 namespace { 48 class LibCallOptimization { 49 protected: 50 Function *Caller; 51 const TargetData *TD; 52 const TargetLibraryInfo *TLI; 53 LLVMContext* Context; 54 public: 55 LibCallOptimization() { } 56 virtual ~LibCallOptimization() {} 57 58 /// CallOptimizer - This pure virtual method is implemented by base classes to 59 /// do various optimizations. If this returns null then no transformation was 60 /// performed. If it returns CI, then it transformed the call and CI is to be 61 /// deleted. If it returns something else, replace CI with the new value and 62 /// delete CI. 63 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) 64 =0; 65 66 Value *OptimizeCall(CallInst *CI, const TargetData *TD, 67 const TargetLibraryInfo *TLI, IRBuilder<> &B) { 68 Caller = CI->getParent()->getParent(); 69 this->TD = TD; 70 this->TLI = TLI; 71 if (CI->getCalledFunction()) 72 Context = &CI->getCalledFunction()->getContext(); 73 74 // We never change the calling convention. 75 if (CI->getCallingConv() != llvm::CallingConv::C) 76 return NULL; 77 78 return CallOptimizer(CI->getCalledFunction(), CI, B); 79 } 80 }; 81 } // End anonymous namespace. 82 83 84 //===----------------------------------------------------------------------===// 85 // Helper Functions 86 //===----------------------------------------------------------------------===// 87 88 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 89 /// value is equal or not-equal to zero. 90 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) { 91 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 92 UI != E; ++UI) { 93 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 94 if (IC->isEquality()) 95 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 96 if (C->isNullValue()) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool CallHasFloatingPointArgument(const CallInst *CI) { 105 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); 106 it != e; ++it) { 107 if ((*it)->getType()->isFloatingPointTy()) 108 return true; 109 } 110 return false; 111 } 112 113 /// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality 114 /// comparisons with With. 115 static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) { 116 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 117 UI != E; ++UI) { 118 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 119 if (IC->isEquality() && IC->getOperand(1) == With) 120 continue; 121 // Unknown instruction. 122 return false; 123 } 124 return true; 125 } 126 127 //===----------------------------------------------------------------------===// 128 // String and Memory LibCall Optimizations 129 //===----------------------------------------------------------------------===// 130 131 //===---------------------------------------===// 132 // 'strcat' Optimizations 133 namespace { 134 struct StrCatOpt : public LibCallOptimization { 135 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 136 // Verify the "strcat" function prototype. 137 FunctionType *FT = Callee->getFunctionType(); 138 if (FT->getNumParams() != 2 || 139 FT->getReturnType() != B.getInt8PtrTy() || 140 FT->getParamType(0) != FT->getReturnType() || 141 FT->getParamType(1) != FT->getReturnType()) 142 return 0; 143 144 // Extract some information from the instruction 145 Value *Dst = CI->getArgOperand(0); 146 Value *Src = CI->getArgOperand(1); 147 148 // See if we can get the length of the input string. 149 uint64_t Len = GetStringLength(Src); 150 if (Len == 0) return 0; 151 --Len; // Unbias length. 152 153 // Handle the simple, do-nothing case: strcat(x, "") -> x 154 if (Len == 0) 155 return Dst; 156 157 // These optimizations require TargetData. 158 if (!TD) return 0; 159 160 EmitStrLenMemCpy(Src, Dst, Len, B); 161 return Dst; 162 } 163 164 void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) { 165 // We need to find the end of the destination string. That's where the 166 // memory is to be moved to. We just generate a call to strlen. 167 Value *DstLen = EmitStrLen(Dst, B, TD); 168 169 // Now that we have the destination's length, we must index into the 170 // destination's pointer to get the actual memcpy destination (end of 171 // the string .. we're concatenating). 172 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); 173 174 // We have enough information to now generate the memcpy call to do the 175 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 176 B.CreateMemCpy(CpyDst, Src, 177 ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1); 178 } 179 }; 180 181 //===---------------------------------------===// 182 // 'strncat' Optimizations 183 184 struct StrNCatOpt : public StrCatOpt { 185 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 186 // Verify the "strncat" function prototype. 187 FunctionType *FT = Callee->getFunctionType(); 188 if (FT->getNumParams() != 3 || 189 FT->getReturnType() != B.getInt8PtrTy() || 190 FT->getParamType(0) != FT->getReturnType() || 191 FT->getParamType(1) != FT->getReturnType() || 192 !FT->getParamType(2)->isIntegerTy()) 193 return 0; 194 195 // Extract some information from the instruction 196 Value *Dst = CI->getArgOperand(0); 197 Value *Src = CI->getArgOperand(1); 198 uint64_t Len; 199 200 // We don't do anything if length is not constant 201 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 202 Len = LengthArg->getZExtValue(); 203 else 204 return 0; 205 206 // See if we can get the length of the input string. 207 uint64_t SrcLen = GetStringLength(Src); 208 if (SrcLen == 0) return 0; 209 --SrcLen; // Unbias length. 210 211 // Handle the simple, do-nothing cases: 212 // strncat(x, "", c) -> x 213 // strncat(x, c, 0) -> x 214 if (SrcLen == 0 || Len == 0) return Dst; 215 216 // These optimizations require TargetData. 217 if (!TD) return 0; 218 219 // We don't optimize this case 220 if (Len < SrcLen) return 0; 221 222 // strncat(x, s, c) -> strcat(x, s) 223 // s is constant so the strcat can be optimized further 224 EmitStrLenMemCpy(Src, Dst, SrcLen, B); 225 return Dst; 226 } 227 }; 228 229 //===---------------------------------------===// 230 // 'strchr' Optimizations 231 232 struct StrChrOpt : public LibCallOptimization { 233 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 234 // Verify the "strchr" function prototype. 235 FunctionType *FT = Callee->getFunctionType(); 236 if (FT->getNumParams() != 2 || 237 FT->getReturnType() != B.getInt8PtrTy() || 238 FT->getParamType(0) != FT->getReturnType() || 239 !FT->getParamType(1)->isIntegerTy(32)) 240 return 0; 241 242 Value *SrcStr = CI->getArgOperand(0); 243 244 // If the second operand is non-constant, see if we can compute the length 245 // of the input string and turn this into memchr. 246 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 247 if (CharC == 0) { 248 // These optimizations require TargetData. 249 if (!TD) return 0; 250 251 uint64_t Len = GetStringLength(SrcStr); 252 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. 253 return 0; 254 255 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 256 ConstantInt::get(TD->getIntPtrType(*Context), Len), 257 B, TD); 258 } 259 260 // Otherwise, the character is a constant, see if the first argument is 261 // a string literal. If so, we can constant fold. 262 std::string Str; 263 if (!GetConstantStringInfo(SrcStr, Str)) 264 return 0; 265 266 // strchr can find the nul character. 267 Str += '\0'; 268 269 // Compute the offset. 270 size_t I = Str.find(CharC->getSExtValue()); 271 if (I == std::string::npos) // Didn't find the char. strchr returns null. 272 return Constant::getNullValue(CI->getType()); 273 274 // strchr(s+n,c) -> gep(s+n+i,c) 275 return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); 276 } 277 }; 278 279 //===---------------------------------------===// 280 // 'strrchr' Optimizations 281 282 struct StrRChrOpt : public LibCallOptimization { 283 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 284 // Verify the "strrchr" function prototype. 285 FunctionType *FT = Callee->getFunctionType(); 286 if (FT->getNumParams() != 2 || 287 FT->getReturnType() != B.getInt8PtrTy() || 288 FT->getParamType(0) != FT->getReturnType() || 289 !FT->getParamType(1)->isIntegerTy(32)) 290 return 0; 291 292 Value *SrcStr = CI->getArgOperand(0); 293 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 294 295 // Cannot fold anything if we're not looking for a constant. 296 if (!CharC) 297 return 0; 298 299 std::string Str; 300 if (!GetConstantStringInfo(SrcStr, Str)) { 301 // strrchr(s, 0) -> strchr(s, 0) 302 if (TD && CharC->isZero()) 303 return EmitStrChr(SrcStr, '\0', B, TD); 304 return 0; 305 } 306 307 // strrchr can find the nul character. 308 Str += '\0'; 309 310 // Compute the offset. 311 size_t I = Str.rfind(CharC->getSExtValue()); 312 if (I == std::string::npos) // Didn't find the char. Return null. 313 return Constant::getNullValue(CI->getType()); 314 315 // strrchr(s+n,c) -> gep(s+n+i,c) 316 return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); 317 } 318 }; 319 320 //===---------------------------------------===// 321 // 'strcmp' Optimizations 322 323 struct StrCmpOpt : public LibCallOptimization { 324 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 325 // Verify the "strcmp" function prototype. 326 FunctionType *FT = Callee->getFunctionType(); 327 if (FT->getNumParams() != 2 || 328 !FT->getReturnType()->isIntegerTy(32) || 329 FT->getParamType(0) != FT->getParamType(1) || 330 FT->getParamType(0) != B.getInt8PtrTy()) 331 return 0; 332 333 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 334 if (Str1P == Str2P) // strcmp(x,x) -> 0 335 return ConstantInt::get(CI->getType(), 0); 336 337 std::string Str1, Str2; 338 bool HasStr1 = GetConstantStringInfo(Str1P, Str1); 339 bool HasStr2 = GetConstantStringInfo(Str2P, Str2); 340 341 if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x 342 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()); 343 344 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 345 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 346 347 // strcmp(x, y) -> cnst (if both x and y are constant strings) 348 if (HasStr1 && HasStr2) 349 return ConstantInt::get(CI->getType(), 350 strcmp(Str1.c_str(),Str2.c_str())); 351 352 // strcmp(P, "x") -> memcmp(P, "x", 2) 353 uint64_t Len1 = GetStringLength(Str1P); 354 uint64_t Len2 = GetStringLength(Str2P); 355 if (Len1 && Len2) { 356 // These optimizations require TargetData. 357 if (!TD) return 0; 358 359 return EmitMemCmp(Str1P, Str2P, 360 ConstantInt::get(TD->getIntPtrType(*Context), 361 std::min(Len1, Len2)), B, TD); 362 } 363 364 return 0; 365 } 366 }; 367 368 //===---------------------------------------===// 369 // 'strncmp' Optimizations 370 371 struct StrNCmpOpt : public LibCallOptimization { 372 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 373 // Verify the "strncmp" function prototype. 374 FunctionType *FT = Callee->getFunctionType(); 375 if (FT->getNumParams() != 3 || 376 !FT->getReturnType()->isIntegerTy(32) || 377 FT->getParamType(0) != FT->getParamType(1) || 378 FT->getParamType(0) != B.getInt8PtrTy() || 379 !FT->getParamType(2)->isIntegerTy()) 380 return 0; 381 382 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 383 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 384 return ConstantInt::get(CI->getType(), 0); 385 386 // Get the length argument if it is constant. 387 uint64_t Length; 388 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 389 Length = LengthArg->getZExtValue(); 390 else 391 return 0; 392 393 if (Length == 0) // strncmp(x,y,0) -> 0 394 return ConstantInt::get(CI->getType(), 0); 395 396 if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 397 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD); 398 399 std::string Str1, Str2; 400 bool HasStr1 = GetConstantStringInfo(Str1P, Str1); 401 bool HasStr2 = GetConstantStringInfo(Str2P, Str2); 402 403 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x 404 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()); 405 406 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 407 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 408 409 // strncmp(x, y) -> cnst (if both x and y are constant strings) 410 if (HasStr1 && HasStr2) 411 return ConstantInt::get(CI->getType(), 412 strncmp(Str1.c_str(), Str2.c_str(), Length)); 413 return 0; 414 } 415 }; 416 417 418 //===---------------------------------------===// 419 // 'strcpy' Optimizations 420 421 struct StrCpyOpt : public LibCallOptimization { 422 bool OptChkCall; // True if it's optimizing a __strcpy_chk libcall. 423 424 StrCpyOpt(bool c) : OptChkCall(c) {} 425 426 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 427 // Verify the "strcpy" function prototype. 428 unsigned NumParams = OptChkCall ? 3 : 2; 429 FunctionType *FT = Callee->getFunctionType(); 430 if (FT->getNumParams() != NumParams || 431 FT->getReturnType() != FT->getParamType(0) || 432 FT->getParamType(0) != FT->getParamType(1) || 433 FT->getParamType(0) != B.getInt8PtrTy()) 434 return 0; 435 436 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 437 if (Dst == Src) // strcpy(x,x) -> x 438 return Src; 439 440 // These optimizations require TargetData. 441 if (!TD) return 0; 442 443 // See if we can get the length of the input string. 444 uint64_t Len = GetStringLength(Src); 445 if (Len == 0) return 0; 446 447 // We have enough information to now generate the memcpy call to do the 448 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 449 if (OptChkCall) 450 EmitMemCpyChk(Dst, Src, 451 ConstantInt::get(TD->getIntPtrType(*Context), Len), 452 CI->getArgOperand(2), B, TD); 453 else 454 B.CreateMemCpy(Dst, Src, 455 ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); 456 return Dst; 457 } 458 }; 459 460 //===---------------------------------------===// 461 // 'strncpy' Optimizations 462 463 struct StrNCpyOpt : public LibCallOptimization { 464 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 465 FunctionType *FT = Callee->getFunctionType(); 466 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 467 FT->getParamType(0) != FT->getParamType(1) || 468 FT->getParamType(0) != B.getInt8PtrTy() || 469 !FT->getParamType(2)->isIntegerTy()) 470 return 0; 471 472 Value *Dst = CI->getArgOperand(0); 473 Value *Src = CI->getArgOperand(1); 474 Value *LenOp = CI->getArgOperand(2); 475 476 // See if we can get the length of the input string. 477 uint64_t SrcLen = GetStringLength(Src); 478 if (SrcLen == 0) return 0; 479 --SrcLen; 480 481 if (SrcLen == 0) { 482 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 483 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 484 return Dst; 485 } 486 487 uint64_t Len; 488 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 489 Len = LengthArg->getZExtValue(); 490 else 491 return 0; 492 493 if (Len == 0) return Dst; // strncpy(x, y, 0) -> x 494 495 // These optimizations require TargetData. 496 if (!TD) return 0; 497 498 // Let strncpy handle the zero padding 499 if (Len > SrcLen+1) return 0; 500 501 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 502 B.CreateMemCpy(Dst, Src, 503 ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); 504 505 return Dst; 506 } 507 }; 508 509 //===---------------------------------------===// 510 // 'strlen' Optimizations 511 512 struct StrLenOpt : public LibCallOptimization { 513 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 514 FunctionType *FT = Callee->getFunctionType(); 515 if (FT->getNumParams() != 1 || 516 FT->getParamType(0) != B.getInt8PtrTy() || 517 !FT->getReturnType()->isIntegerTy()) 518 return 0; 519 520 Value *Src = CI->getArgOperand(0); 521 522 // Constant folding: strlen("xyz") -> 3 523 if (uint64_t Len = GetStringLength(Src)) 524 return ConstantInt::get(CI->getType(), Len-1); 525 526 // strlen(x) != 0 --> *x != 0 527 // strlen(x) == 0 --> *x == 0 528 if (IsOnlyUsedInZeroEqualityComparison(CI)) 529 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 530 return 0; 531 } 532 }; 533 534 535 //===---------------------------------------===// 536 // 'strpbrk' Optimizations 537 538 struct StrPBrkOpt : public LibCallOptimization { 539 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 540 FunctionType *FT = Callee->getFunctionType(); 541 if (FT->getNumParams() != 2 || 542 FT->getParamType(0) != B.getInt8PtrTy() || 543 FT->getParamType(1) != FT->getParamType(0) || 544 FT->getReturnType() != FT->getParamType(0)) 545 return 0; 546 547 std::string S1, S2; 548 bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); 549 bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); 550 551 // strpbrk(s, "") -> NULL 552 // strpbrk("", s) -> NULL 553 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 554 return Constant::getNullValue(CI->getType()); 555 556 // Constant folding. 557 if (HasS1 && HasS2) { 558 size_t I = S1.find_first_of(S2); 559 if (I == std::string::npos) // No match. 560 return Constant::getNullValue(CI->getType()); 561 562 return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 563 } 564 565 // strpbrk(s, "a") -> strchr(s, 'a') 566 if (TD && HasS2 && S2.size() == 1) 567 return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD); 568 569 return 0; 570 } 571 }; 572 573 //===---------------------------------------===// 574 // 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc. 575 576 struct StrToOpt : public LibCallOptimization { 577 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 578 FunctionType *FT = Callee->getFunctionType(); 579 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 580 !FT->getParamType(0)->isPointerTy() || 581 !FT->getParamType(1)->isPointerTy()) 582 return 0; 583 584 Value *EndPtr = CI->getArgOperand(1); 585 if (isa<ConstantPointerNull>(EndPtr)) { 586 // With a null EndPtr, this function won't capture the main argument. 587 // It would be readonly too, except that it still may write to errno. 588 CI->addAttribute(1, Attribute::NoCapture); 589 } 590 591 return 0; 592 } 593 }; 594 595 //===---------------------------------------===// 596 // 'strspn' Optimizations 597 598 struct StrSpnOpt : public LibCallOptimization { 599 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 600 FunctionType *FT = Callee->getFunctionType(); 601 if (FT->getNumParams() != 2 || 602 FT->getParamType(0) != B.getInt8PtrTy() || 603 FT->getParamType(1) != FT->getParamType(0) || 604 !FT->getReturnType()->isIntegerTy()) 605 return 0; 606 607 std::string S1, S2; 608 bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); 609 bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); 610 611 // strspn(s, "") -> 0 612 // strspn("", s) -> 0 613 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 614 return Constant::getNullValue(CI->getType()); 615 616 // Constant folding. 617 if (HasS1 && HasS2) 618 return ConstantInt::get(CI->getType(), strspn(S1.c_str(), S2.c_str())); 619 620 return 0; 621 } 622 }; 623 624 //===---------------------------------------===// 625 // 'strcspn' Optimizations 626 627 struct StrCSpnOpt : public LibCallOptimization { 628 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 629 FunctionType *FT = Callee->getFunctionType(); 630 if (FT->getNumParams() != 2 || 631 FT->getParamType(0) != B.getInt8PtrTy() || 632 FT->getParamType(1) != FT->getParamType(0) || 633 !FT->getReturnType()->isIntegerTy()) 634 return 0; 635 636 std::string S1, S2; 637 bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); 638 bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); 639 640 // strcspn("", s) -> 0 641 if (HasS1 && S1.empty()) 642 return Constant::getNullValue(CI->getType()); 643 644 // Constant folding. 645 if (HasS1 && HasS2) 646 return ConstantInt::get(CI->getType(), strcspn(S1.c_str(), S2.c_str())); 647 648 // strcspn(s, "") -> strlen(s) 649 if (TD && HasS2 && S2.empty()) 650 return EmitStrLen(CI->getArgOperand(0), B, TD); 651 652 return 0; 653 } 654 }; 655 656 //===---------------------------------------===// 657 // 'strstr' Optimizations 658 659 struct StrStrOpt : public LibCallOptimization { 660 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 661 FunctionType *FT = Callee->getFunctionType(); 662 if (FT->getNumParams() != 2 || 663 !FT->getParamType(0)->isPointerTy() || 664 !FT->getParamType(1)->isPointerTy() || 665 !FT->getReturnType()->isPointerTy()) 666 return 0; 667 668 // fold strstr(x, x) -> x. 669 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 670 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 671 672 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 673 if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 674 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD); 675 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 676 StrLen, B, TD); 677 for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end(); 678 UI != UE; ) { 679 ICmpInst *Old = cast<ICmpInst>(*UI++); 680 Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, 681 ConstantInt::getNullValue(StrNCmp->getType()), 682 "cmp"); 683 Old->replaceAllUsesWith(Cmp); 684 Old->eraseFromParent(); 685 } 686 return CI; 687 } 688 689 // See if either input string is a constant string. 690 std::string SearchStr, ToFindStr; 691 bool HasStr1 = GetConstantStringInfo(CI->getArgOperand(0), SearchStr); 692 bool HasStr2 = GetConstantStringInfo(CI->getArgOperand(1), ToFindStr); 693 694 // fold strstr(x, "") -> x. 695 if (HasStr2 && ToFindStr.empty()) 696 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 697 698 // If both strings are known, constant fold it. 699 if (HasStr1 && HasStr2) { 700 std::string::size_type Offset = SearchStr.find(ToFindStr); 701 702 if (Offset == std::string::npos) // strstr("foo", "bar") -> null 703 return Constant::getNullValue(CI->getType()); 704 705 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 706 Value *Result = CastToCStr(CI->getArgOperand(0), B); 707 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 708 return B.CreateBitCast(Result, CI->getType()); 709 } 710 711 // fold strstr(x, "y") -> strchr(x, 'y'). 712 if (HasStr2 && ToFindStr.size() == 1) 713 return B.CreateBitCast(EmitStrChr(CI->getArgOperand(0), 714 ToFindStr[0], B, TD), CI->getType()); 715 return 0; 716 } 717 }; 718 719 720 //===---------------------------------------===// 721 // 'memcmp' Optimizations 722 723 struct MemCmpOpt : public LibCallOptimization { 724 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 725 FunctionType *FT = Callee->getFunctionType(); 726 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 727 !FT->getParamType(1)->isPointerTy() || 728 !FT->getReturnType()->isIntegerTy(32)) 729 return 0; 730 731 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 732 733 if (LHS == RHS) // memcmp(s,s,x) -> 0 734 return Constant::getNullValue(CI->getType()); 735 736 // Make sure we have a constant length. 737 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 738 if (!LenC) return 0; 739 uint64_t Len = LenC->getZExtValue(); 740 741 if (Len == 0) // memcmp(s1,s2,0) -> 0 742 return Constant::getNullValue(CI->getType()); 743 744 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 745 if (Len == 1) { 746 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 747 CI->getType(), "lhsv"); 748 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 749 CI->getType(), "rhsv"); 750 return B.CreateSub(LHSV, RHSV, "chardiff"); 751 } 752 753 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 754 std::string LHSStr, RHSStr; 755 if (GetConstantStringInfo(LHS, LHSStr) && 756 GetConstantStringInfo(RHS, RHSStr)) { 757 // Make sure we're not reading out-of-bounds memory. 758 if (Len > LHSStr.length() || Len > RHSStr.length()) 759 return 0; 760 uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len); 761 return ConstantInt::get(CI->getType(), Ret); 762 } 763 764 return 0; 765 } 766 }; 767 768 //===---------------------------------------===// 769 // 'memcpy' Optimizations 770 771 struct MemCpyOpt : public LibCallOptimization { 772 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 773 // These optimizations require TargetData. 774 if (!TD) return 0; 775 776 FunctionType *FT = Callee->getFunctionType(); 777 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 778 !FT->getParamType(0)->isPointerTy() || 779 !FT->getParamType(1)->isPointerTy() || 780 FT->getParamType(2) != TD->getIntPtrType(*Context)) 781 return 0; 782 783 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 784 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 785 CI->getArgOperand(2), 1); 786 return CI->getArgOperand(0); 787 } 788 }; 789 790 //===---------------------------------------===// 791 // 'memmove' Optimizations 792 793 struct MemMoveOpt : public LibCallOptimization { 794 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 795 // These optimizations require TargetData. 796 if (!TD) return 0; 797 798 FunctionType *FT = Callee->getFunctionType(); 799 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 800 !FT->getParamType(0)->isPointerTy() || 801 !FT->getParamType(1)->isPointerTy() || 802 FT->getParamType(2) != TD->getIntPtrType(*Context)) 803 return 0; 804 805 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 806 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 807 CI->getArgOperand(2), 1); 808 return CI->getArgOperand(0); 809 } 810 }; 811 812 //===---------------------------------------===// 813 // 'memset' Optimizations 814 815 struct MemSetOpt : public LibCallOptimization { 816 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 817 // These optimizations require TargetData. 818 if (!TD) return 0; 819 820 FunctionType *FT = Callee->getFunctionType(); 821 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 822 !FT->getParamType(0)->isPointerTy() || 823 !FT->getParamType(1)->isIntegerTy() || 824 FT->getParamType(2) != TD->getIntPtrType(*Context)) 825 return 0; 826 827 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 828 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 829 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 830 return CI->getArgOperand(0); 831 } 832 }; 833 834 //===----------------------------------------------------------------------===// 835 // Math Library Optimizations 836 //===----------------------------------------------------------------------===// 837 838 //===---------------------------------------===// 839 // 'pow*' Optimizations 840 841 struct PowOpt : public LibCallOptimization { 842 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 843 FunctionType *FT = Callee->getFunctionType(); 844 // Just make sure this has 2 arguments of the same FP type, which match the 845 // result type. 846 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 847 FT->getParamType(0) != FT->getParamType(1) || 848 !FT->getParamType(0)->isFloatingPointTy()) 849 return 0; 850 851 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 852 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 853 if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0 854 return Op1C; 855 if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x) 856 return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); 857 } 858 859 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 860 if (Op2C == 0) return 0; 861 862 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 863 return ConstantFP::get(CI->getType(), 1.0); 864 865 if (Op2C->isExactlyValue(0.5)) { 866 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 867 // This is faster than calling pow, and still handles negative zero 868 // and negative infinite correctly. 869 // TODO: In fast-math mode, this could be just sqrt(x). 870 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 871 Value *Inf = ConstantFP::getInfinity(CI->getType()); 872 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 873 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, 874 Callee->getAttributes()); 875 Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, 876 Callee->getAttributes()); 877 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf, "tmp"); 878 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs, "tmp"); 879 return Sel; 880 } 881 882 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 883 return Op1; 884 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 885 return B.CreateFMul(Op1, Op1, "pow2"); 886 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 887 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), 888 Op1, "powrecip"); 889 return 0; 890 } 891 }; 892 893 //===---------------------------------------===// 894 // 'exp2' Optimizations 895 896 struct Exp2Opt : public LibCallOptimization { 897 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 898 FunctionType *FT = Callee->getFunctionType(); 899 // Just make sure this has 1 argument of FP type, which matches the 900 // result type. 901 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 902 !FT->getParamType(0)->isFloatingPointTy()) 903 return 0; 904 905 Value *Op = CI->getArgOperand(0); 906 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 907 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 908 Value *LdExpArg = 0; 909 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 910 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 911 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty(), "tmp"); 912 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 913 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 914 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty(), "tmp"); 915 } 916 917 if (LdExpArg) { 918 const char *Name; 919 if (Op->getType()->isFloatTy()) 920 Name = "ldexpf"; 921 else if (Op->getType()->isDoubleTy()) 922 Name = "ldexp"; 923 else 924 Name = "ldexpl"; 925 926 Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); 927 if (!Op->getType()->isFloatTy()) 928 One = ConstantExpr::getFPExtend(One, Op->getType()); 929 930 Module *M = Caller->getParent(); 931 Value *Callee = M->getOrInsertFunction(Name, Op->getType(), 932 Op->getType(), 933 B.getInt32Ty(), NULL); 934 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); 935 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 936 CI->setCallingConv(F->getCallingConv()); 937 938 return CI; 939 } 940 return 0; 941 } 942 }; 943 944 //===---------------------------------------===// 945 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 946 947 struct UnaryDoubleFPOpt : public LibCallOptimization { 948 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 949 FunctionType *FT = Callee->getFunctionType(); 950 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 951 !FT->getParamType(0)->isDoubleTy()) 952 return 0; 953 954 // If this is something like 'floor((double)floatval)', convert to floorf. 955 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0)); 956 if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy()) 957 return 0; 958 959 // floor((double)floatval) -> (double)floorf(floatval) 960 Value *V = Cast->getOperand(0); 961 V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B, 962 Callee->getAttributes()); 963 return B.CreateFPExt(V, B.getDoubleTy()); 964 } 965 }; 966 967 //===----------------------------------------------------------------------===// 968 // Integer Optimizations 969 //===----------------------------------------------------------------------===// 970 971 //===---------------------------------------===// 972 // 'ffs*' Optimizations 973 974 struct FFSOpt : public LibCallOptimization { 975 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 976 FunctionType *FT = Callee->getFunctionType(); 977 // Just make sure this has 2 arguments of the same FP type, which match the 978 // result type. 979 if (FT->getNumParams() != 1 || 980 !FT->getReturnType()->isIntegerTy(32) || 981 !FT->getParamType(0)->isIntegerTy()) 982 return 0; 983 984 Value *Op = CI->getArgOperand(0); 985 986 // Constant fold. 987 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 988 if (CI->getValue() == 0) // ffs(0) -> 0. 989 return Constant::getNullValue(CI->getType()); 990 // ffs(c) -> cttz(c)+1 991 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 992 } 993 994 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 995 Type *ArgType = Op->getType(); 996 Value *F = Intrinsic::getDeclaration(Callee->getParent(), 997 Intrinsic::cttz, ArgType); 998 Value *V = B.CreateCall(F, Op, "cttz"); 999 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp"); 1000 V = B.CreateIntCast(V, B.getInt32Ty(), false, "tmp"); 1001 1002 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp"); 1003 return B.CreateSelect(Cond, V, B.getInt32(0)); 1004 } 1005 }; 1006 1007 //===---------------------------------------===// 1008 // 'isdigit' Optimizations 1009 1010 struct IsDigitOpt : public LibCallOptimization { 1011 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1012 FunctionType *FT = Callee->getFunctionType(); 1013 // We require integer(i32) 1014 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1015 !FT->getParamType(0)->isIntegerTy(32)) 1016 return 0; 1017 1018 // isdigit(c) -> (c-'0') <u 10 1019 Value *Op = CI->getArgOperand(0); 1020 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1021 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1022 return B.CreateZExt(Op, CI->getType()); 1023 } 1024 }; 1025 1026 //===---------------------------------------===// 1027 // 'isascii' Optimizations 1028 1029 struct IsAsciiOpt : public LibCallOptimization { 1030 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1031 FunctionType *FT = Callee->getFunctionType(); 1032 // We require integer(i32) 1033 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1034 !FT->getParamType(0)->isIntegerTy(32)) 1035 return 0; 1036 1037 // isascii(c) -> c <u 128 1038 Value *Op = CI->getArgOperand(0); 1039 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1040 return B.CreateZExt(Op, CI->getType()); 1041 } 1042 }; 1043 1044 //===---------------------------------------===// 1045 // 'abs', 'labs', 'llabs' Optimizations 1046 1047 struct AbsOpt : public LibCallOptimization { 1048 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1049 FunctionType *FT = Callee->getFunctionType(); 1050 // We require integer(integer) where the types agree. 1051 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1052 FT->getParamType(0) != FT->getReturnType()) 1053 return 0; 1054 1055 // abs(x) -> x >s -1 ? x : -x 1056 Value *Op = CI->getArgOperand(0); 1057 Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), 1058 "ispos"); 1059 Value *Neg = B.CreateNeg(Op, "neg"); 1060 return B.CreateSelect(Pos, Op, Neg); 1061 } 1062 }; 1063 1064 1065 //===---------------------------------------===// 1066 // 'toascii' Optimizations 1067 1068 struct ToAsciiOpt : public LibCallOptimization { 1069 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1070 FunctionType *FT = Callee->getFunctionType(); 1071 // We require i32(i32) 1072 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1073 !FT->getParamType(0)->isIntegerTy(32)) 1074 return 0; 1075 1076 // isascii(c) -> c & 0x7f 1077 return B.CreateAnd(CI->getArgOperand(0), 1078 ConstantInt::get(CI->getType(),0x7F)); 1079 } 1080 }; 1081 1082 //===----------------------------------------------------------------------===// 1083 // Formatting and IO Optimizations 1084 //===----------------------------------------------------------------------===// 1085 1086 //===---------------------------------------===// 1087 // 'printf' Optimizations 1088 1089 struct PrintFOpt : public LibCallOptimization { 1090 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, 1091 IRBuilder<> &B) { 1092 // Check for a fixed format string. 1093 std::string FormatStr; 1094 if (!GetConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1095 return 0; 1096 1097 // Empty format string -> noop. 1098 if (FormatStr.empty()) // Tolerate printf's declared void. 1099 return CI->use_empty() ? (Value*)CI : 1100 ConstantInt::get(CI->getType(), 0); 1101 1102 // Do not do any of the following transformations if the printf return value 1103 // is used, in general the printf return value is not compatible with either 1104 // putchar() or puts(). 1105 if (!CI->use_empty()) 1106 return 0; 1107 1108 // printf("x") -> putchar('x'), even for '%'. 1109 if (FormatStr.size() == 1) { 1110 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD); 1111 if (CI->use_empty()) return CI; 1112 return B.CreateIntCast(Res, CI->getType(), true); 1113 } 1114 1115 // printf("foo\n") --> puts("foo") 1116 if (FormatStr[FormatStr.size()-1] == '\n' && 1117 FormatStr.find('%') == std::string::npos) { // no format characters. 1118 // Create a string literal with no \n on it. We expect the constant merge 1119 // pass to be run after this pass, to merge duplicate strings. 1120 FormatStr.erase(FormatStr.end()-1); 1121 Constant *C = ConstantArray::get(*Context, FormatStr, true); 1122 C = new GlobalVariable(*Callee->getParent(), C->getType(), true, 1123 GlobalVariable::InternalLinkage, C, "str"); 1124 EmitPutS(C, B, TD); 1125 return CI->use_empty() ? (Value*)CI : 1126 ConstantInt::get(CI->getType(), FormatStr.size()+1); 1127 } 1128 1129 // Optimize specific format strings. 1130 // printf("%c", chr) --> putchar(chr) 1131 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1132 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1133 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD); 1134 1135 if (CI->use_empty()) return CI; 1136 return B.CreateIntCast(Res, CI->getType(), true); 1137 } 1138 1139 // printf("%s\n", str) --> puts(str) 1140 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1141 CI->getArgOperand(1)->getType()->isPointerTy()) { 1142 EmitPutS(CI->getArgOperand(1), B, TD); 1143 return CI; 1144 } 1145 return 0; 1146 } 1147 1148 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1149 // Require one fixed pointer argument and an integer/void result. 1150 FunctionType *FT = Callee->getFunctionType(); 1151 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1152 !(FT->getReturnType()->isIntegerTy() || 1153 FT->getReturnType()->isVoidTy())) 1154 return 0; 1155 1156 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { 1157 return V; 1158 } 1159 1160 // printf(format, ...) -> iprintf(format, ...) if no floating point 1161 // arguments. 1162 if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) { 1163 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1164 Constant *IPrintFFn = 1165 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1166 CallInst *New = cast<CallInst>(CI->clone()); 1167 New->setCalledFunction(IPrintFFn); 1168 B.Insert(New); 1169 return New; 1170 } 1171 return 0; 1172 } 1173 }; 1174 1175 //===---------------------------------------===// 1176 // 'sprintf' Optimizations 1177 1178 struct SPrintFOpt : public LibCallOptimization { 1179 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, 1180 IRBuilder<> &B) { 1181 // Check for a fixed format string. 1182 std::string FormatStr; 1183 if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1184 return 0; 1185 1186 // If we just have a format string (nothing else crazy) transform it. 1187 if (CI->getNumArgOperands() == 2) { 1188 // Make sure there's no % in the constant array. We could try to handle 1189 // %% -> % in the future if we cared. 1190 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1191 if (FormatStr[i] == '%') 1192 return 0; // we found a format specifier, bail out. 1193 1194 // These optimizations require TargetData. 1195 if (!TD) return 0; 1196 1197 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1198 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1199 ConstantInt::get(TD->getIntPtrType(*Context), // Copy the 1200 FormatStr.size() + 1), 1); // nul byte. 1201 return ConstantInt::get(CI->getType(), FormatStr.size()); 1202 } 1203 1204 // The remaining optimizations require the format string to be "%s" or "%c" 1205 // and have an extra operand. 1206 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1207 CI->getNumArgOperands() < 3) 1208 return 0; 1209 1210 // Decode the second character of the format string. 1211 if (FormatStr[1] == 'c') { 1212 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1213 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; 1214 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1215 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1216 B.CreateStore(V, Ptr); 1217 Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); 1218 B.CreateStore(B.getInt8(0), Ptr); 1219 1220 return ConstantInt::get(CI->getType(), 1); 1221 } 1222 1223 if (FormatStr[1] == 's') { 1224 // These optimizations require TargetData. 1225 if (!TD) return 0; 1226 1227 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1228 if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0; 1229 1230 Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD); 1231 Value *IncLen = B.CreateAdd(Len, 1232 ConstantInt::get(Len->getType(), 1), 1233 "leninc"); 1234 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1235 1236 // The sprintf result is the unincremented number of bytes in the string. 1237 return B.CreateIntCast(Len, CI->getType(), false); 1238 } 1239 return 0; 1240 } 1241 1242 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1243 // Require two fixed pointer arguments and an integer result. 1244 FunctionType *FT = Callee->getFunctionType(); 1245 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1246 !FT->getParamType(1)->isPointerTy() || 1247 !FT->getReturnType()->isIntegerTy()) 1248 return 0; 1249 1250 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { 1251 return V; 1252 } 1253 1254 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1255 // point arguments. 1256 if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) { 1257 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1258 Constant *SIPrintFFn = 1259 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1260 CallInst *New = cast<CallInst>(CI->clone()); 1261 New->setCalledFunction(SIPrintFFn); 1262 B.Insert(New); 1263 return New; 1264 } 1265 return 0; 1266 } 1267 }; 1268 1269 //===---------------------------------------===// 1270 // 'fwrite' Optimizations 1271 1272 struct FWriteOpt : public LibCallOptimization { 1273 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1274 // Require a pointer, an integer, an integer, a pointer, returning integer. 1275 FunctionType *FT = Callee->getFunctionType(); 1276 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 1277 !FT->getParamType(1)->isIntegerTy() || 1278 !FT->getParamType(2)->isIntegerTy() || 1279 !FT->getParamType(3)->isPointerTy() || 1280 !FT->getReturnType()->isIntegerTy()) 1281 return 0; 1282 1283 // Get the element size and count. 1284 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1285 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1286 if (!SizeC || !CountC) return 0; 1287 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); 1288 1289 // If this is writing zero records, remove the call (it's a noop). 1290 if (Bytes == 0) 1291 return ConstantInt::get(CI->getType(), 0); 1292 1293 // If this is writing one byte, turn it into fputc. 1294 if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1295 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 1296 EmitFPutC(Char, CI->getArgOperand(3), B, TD); 1297 return ConstantInt::get(CI->getType(), 1); 1298 } 1299 1300 return 0; 1301 } 1302 }; 1303 1304 //===---------------------------------------===// 1305 // 'fputs' Optimizations 1306 1307 struct FPutsOpt : public LibCallOptimization { 1308 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1309 // These optimizations require TargetData. 1310 if (!TD) return 0; 1311 1312 // Require two pointers. Also, we can't optimize if return value is used. 1313 FunctionType *FT = Callee->getFunctionType(); 1314 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1315 !FT->getParamType(1)->isPointerTy() || 1316 !CI->use_empty()) 1317 return 0; 1318 1319 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1320 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1321 if (!Len) return 0; 1322 EmitFWrite(CI->getArgOperand(0), 1323 ConstantInt::get(TD->getIntPtrType(*Context), Len-1), 1324 CI->getArgOperand(1), B, TD); 1325 return CI; // Known to have no uses (see above). 1326 } 1327 }; 1328 1329 //===---------------------------------------===// 1330 // 'fprintf' Optimizations 1331 1332 struct FPrintFOpt : public LibCallOptimization { 1333 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, 1334 IRBuilder<> &B) { 1335 // All the optimizations depend on the format string. 1336 std::string FormatStr; 1337 if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1338 return 0; 1339 1340 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1341 if (CI->getNumArgOperands() == 2) { 1342 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1343 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1344 return 0; // We found a format specifier. 1345 1346 // These optimizations require TargetData. 1347 if (!TD) return 0; 1348 1349 EmitFWrite(CI->getArgOperand(1), 1350 ConstantInt::get(TD->getIntPtrType(*Context), 1351 FormatStr.size()), 1352 CI->getArgOperand(0), B, TD); 1353 return ConstantInt::get(CI->getType(), FormatStr.size()); 1354 } 1355 1356 // The remaining optimizations require the format string to be "%s" or "%c" 1357 // and have an extra operand. 1358 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1359 CI->getNumArgOperands() < 3) 1360 return 0; 1361 1362 // Decode the second character of the format string. 1363 if (FormatStr[1] == 'c') { 1364 // fprintf(F, "%c", chr) --> fputc(chr, F) 1365 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; 1366 EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD); 1367 return ConstantInt::get(CI->getType(), 1); 1368 } 1369 1370 if (FormatStr[1] == 's') { 1371 // fprintf(F, "%s", str) --> fputs(str, F) 1372 if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty()) 1373 return 0; 1374 EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD); 1375 return CI; 1376 } 1377 return 0; 1378 } 1379 1380 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1381 // Require two fixed paramters as pointers and integer result. 1382 FunctionType *FT = Callee->getFunctionType(); 1383 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1384 !FT->getParamType(1)->isPointerTy() || 1385 !FT->getReturnType()->isIntegerTy()) 1386 return 0; 1387 1388 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { 1389 return V; 1390 } 1391 1392 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1393 // floating point arguments. 1394 if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) { 1395 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1396 Constant *FIPrintFFn = 1397 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1398 CallInst *New = cast<CallInst>(CI->clone()); 1399 New->setCalledFunction(FIPrintFFn); 1400 B.Insert(New); 1401 return New; 1402 } 1403 return 0; 1404 } 1405 }; 1406 1407 //===---------------------------------------===// 1408 // 'puts' Optimizations 1409 1410 struct PutsOpt : public LibCallOptimization { 1411 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1412 // Require one fixed pointer argument and an integer/void result. 1413 FunctionType *FT = Callee->getFunctionType(); 1414 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1415 !(FT->getReturnType()->isIntegerTy() || 1416 FT->getReturnType()->isVoidTy())) 1417 return 0; 1418 1419 // Check for a constant string. 1420 std::string Str; 1421 if (!GetConstantStringInfo(CI->getArgOperand(0), Str)) 1422 return 0; 1423 1424 if (Str.empty() && CI->use_empty()) { 1425 // puts("") -> putchar('\n') 1426 Value *Res = EmitPutChar(B.getInt32('\n'), B, TD); 1427 if (CI->use_empty()) return CI; 1428 return B.CreateIntCast(Res, CI->getType(), true); 1429 } 1430 1431 return 0; 1432 } 1433 }; 1434 1435 } // end anonymous namespace. 1436 1437 //===----------------------------------------------------------------------===// 1438 // SimplifyLibCalls Pass Implementation 1439 //===----------------------------------------------------------------------===// 1440 1441 namespace { 1442 /// This pass optimizes well known library functions from libc and libm. 1443 /// 1444 class SimplifyLibCalls : public FunctionPass { 1445 TargetLibraryInfo *TLI; 1446 1447 StringMap<LibCallOptimization*> Optimizations; 1448 // String and Memory LibCall Optimizations 1449 StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrRChrOpt StrRChr; 1450 StrCmpOpt StrCmp; StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrCpyOpt StrCpyChk; 1451 StrNCpyOpt StrNCpy; StrLenOpt StrLen; StrPBrkOpt StrPBrk; 1452 StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr; 1453 MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet; 1454 // Math Library Optimizations 1455 PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP; 1456 // Integer Optimizations 1457 FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; 1458 ToAsciiOpt ToAscii; 1459 // Formatting and IO Optimizations 1460 SPrintFOpt SPrintF; PrintFOpt PrintF; 1461 FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF; 1462 PutsOpt Puts; 1463 1464 bool Modified; // This is only used by doInitialization. 1465 public: 1466 static char ID; // Pass identification 1467 SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true) { 1468 initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 1469 } 1470 void InitOptimizations(); 1471 bool runOnFunction(Function &F); 1472 1473 void setDoesNotAccessMemory(Function &F); 1474 void setOnlyReadsMemory(Function &F); 1475 void setDoesNotThrow(Function &F); 1476 void setDoesNotCapture(Function &F, unsigned n); 1477 void setDoesNotAlias(Function &F, unsigned n); 1478 bool doInitialization(Module &M); 1479 1480 void inferPrototypeAttributes(Function &F); 1481 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1482 AU.addRequired<TargetLibraryInfo>(); 1483 } 1484 }; 1485 } // end anonymous namespace. 1486 1487 char SimplifyLibCalls::ID = 0; 1488 1489 INITIALIZE_PASS_BEGIN(SimplifyLibCalls, "simplify-libcalls", 1490 "Simplify well-known library calls", false, false) 1491 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 1492 INITIALIZE_PASS_END(SimplifyLibCalls, "simplify-libcalls", 1493 "Simplify well-known library calls", false, false) 1494 1495 // Public interface to the Simplify LibCalls pass. 1496 FunctionPass *llvm::createSimplifyLibCallsPass() { 1497 return new SimplifyLibCalls(); 1498 } 1499 1500 /// Optimizations - Populate the Optimizations map with all the optimizations 1501 /// we know. 1502 void SimplifyLibCalls::InitOptimizations() { 1503 // String and Memory LibCall Optimizations 1504 Optimizations["strcat"] = &StrCat; 1505 Optimizations["strncat"] = &StrNCat; 1506 Optimizations["strchr"] = &StrChr; 1507 Optimizations["strrchr"] = &StrRChr; 1508 Optimizations["strcmp"] = &StrCmp; 1509 Optimizations["strncmp"] = &StrNCmp; 1510 Optimizations["strcpy"] = &StrCpy; 1511 Optimizations["strncpy"] = &StrNCpy; 1512 Optimizations["strlen"] = &StrLen; 1513 Optimizations["strpbrk"] = &StrPBrk; 1514 Optimizations["strtol"] = &StrTo; 1515 Optimizations["strtod"] = &StrTo; 1516 Optimizations["strtof"] = &StrTo; 1517 Optimizations["strtoul"] = &StrTo; 1518 Optimizations["strtoll"] = &StrTo; 1519 Optimizations["strtold"] = &StrTo; 1520 Optimizations["strtoull"] = &StrTo; 1521 Optimizations["strspn"] = &StrSpn; 1522 Optimizations["strcspn"] = &StrCSpn; 1523 Optimizations["strstr"] = &StrStr; 1524 Optimizations["memcmp"] = &MemCmp; 1525 if (TLI->has(LibFunc::memcpy)) Optimizations["memcpy"] = &MemCpy; 1526 Optimizations["memmove"] = &MemMove; 1527 if (TLI->has(LibFunc::memset)) Optimizations["memset"] = &MemSet; 1528 1529 // _chk variants of String and Memory LibCall Optimizations. 1530 Optimizations["__strcpy_chk"] = &StrCpyChk; 1531 1532 // Math Library Optimizations 1533 Optimizations["powf"] = &Pow; 1534 Optimizations["pow"] = &Pow; 1535 Optimizations["powl"] = &Pow; 1536 Optimizations["llvm.pow.f32"] = &Pow; 1537 Optimizations["llvm.pow.f64"] = &Pow; 1538 Optimizations["llvm.pow.f80"] = &Pow; 1539 Optimizations["llvm.pow.f128"] = &Pow; 1540 Optimizations["llvm.pow.ppcf128"] = &Pow; 1541 Optimizations["exp2l"] = &Exp2; 1542 Optimizations["exp2"] = &Exp2; 1543 Optimizations["exp2f"] = &Exp2; 1544 Optimizations["llvm.exp2.ppcf128"] = &Exp2; 1545 Optimizations["llvm.exp2.f128"] = &Exp2; 1546 Optimizations["llvm.exp2.f80"] = &Exp2; 1547 Optimizations["llvm.exp2.f64"] = &Exp2; 1548 Optimizations["llvm.exp2.f32"] = &Exp2; 1549 1550 #ifdef HAVE_FLOORF 1551 Optimizations["floor"] = &UnaryDoubleFP; 1552 #endif 1553 #ifdef HAVE_CEILF 1554 Optimizations["ceil"] = &UnaryDoubleFP; 1555 #endif 1556 #ifdef HAVE_ROUNDF 1557 Optimizations["round"] = &UnaryDoubleFP; 1558 #endif 1559 #ifdef HAVE_RINTF 1560 Optimizations["rint"] = &UnaryDoubleFP; 1561 #endif 1562 #ifdef HAVE_NEARBYINTF 1563 Optimizations["nearbyint"] = &UnaryDoubleFP; 1564 #endif 1565 1566 // Integer Optimizations 1567 Optimizations["ffs"] = &FFS; 1568 Optimizations["ffsl"] = &FFS; 1569 Optimizations["ffsll"] = &FFS; 1570 Optimizations["abs"] = &Abs; 1571 Optimizations["labs"] = &Abs; 1572 Optimizations["llabs"] = &Abs; 1573 Optimizations["isdigit"] = &IsDigit; 1574 Optimizations["isascii"] = &IsAscii; 1575 Optimizations["toascii"] = &ToAscii; 1576 1577 // Formatting and IO Optimizations 1578 Optimizations["sprintf"] = &SPrintF; 1579 Optimizations["printf"] = &PrintF; 1580 Optimizations["fwrite"] = &FWrite; 1581 Optimizations["fputs"] = &FPuts; 1582 Optimizations["fprintf"] = &FPrintF; 1583 Optimizations["puts"] = &Puts; 1584 } 1585 1586 1587 /// runOnFunction - Top level algorithm. 1588 /// 1589 bool SimplifyLibCalls::runOnFunction(Function &F) { 1590 TLI = &getAnalysis<TargetLibraryInfo>(); 1591 1592 if (Optimizations.empty()) 1593 InitOptimizations(); 1594 1595 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1596 1597 IRBuilder<> Builder(F.getContext()); 1598 1599 bool Changed = false; 1600 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1601 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 1602 // Ignore non-calls. 1603 CallInst *CI = dyn_cast<CallInst>(I++); 1604 if (!CI) continue; 1605 1606 // Ignore indirect calls and calls to non-external functions. 1607 Function *Callee = CI->getCalledFunction(); 1608 if (Callee == 0 || !Callee->isDeclaration() || 1609 !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage())) 1610 continue; 1611 1612 // Ignore unknown calls. 1613 LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); 1614 if (!LCO) continue; 1615 1616 // Set the builder to the instruction after the call. 1617 Builder.SetInsertPoint(BB, I); 1618 1619 // Use debug location of CI for all new instructions. 1620 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1621 1622 // Try to optimize this call. 1623 Value *Result = LCO->OptimizeCall(CI, TD, TLI, Builder); 1624 if (Result == 0) continue; 1625 1626 DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI; 1627 dbgs() << " into: " << *Result << "\n"); 1628 1629 // Something changed! 1630 Changed = true; 1631 ++NumSimplified; 1632 1633 // Inspect the instruction after the call (which was potentially just 1634 // added) next. 1635 I = CI; ++I; 1636 1637 if (CI != Result && !CI->use_empty()) { 1638 CI->replaceAllUsesWith(Result); 1639 if (!Result->hasName()) 1640 Result->takeName(CI); 1641 } 1642 CI->eraseFromParent(); 1643 } 1644 } 1645 return Changed; 1646 } 1647 1648 // Utility methods for doInitialization. 1649 1650 void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) { 1651 if (!F.doesNotAccessMemory()) { 1652 F.setDoesNotAccessMemory(); 1653 ++NumAnnotated; 1654 Modified = true; 1655 } 1656 } 1657 void SimplifyLibCalls::setOnlyReadsMemory(Function &F) { 1658 if (!F.onlyReadsMemory()) { 1659 F.setOnlyReadsMemory(); 1660 ++NumAnnotated; 1661 Modified = true; 1662 } 1663 } 1664 void SimplifyLibCalls::setDoesNotThrow(Function &F) { 1665 if (!F.doesNotThrow()) { 1666 F.setDoesNotThrow(); 1667 ++NumAnnotated; 1668 Modified = true; 1669 } 1670 } 1671 void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) { 1672 if (!F.doesNotCapture(n)) { 1673 F.setDoesNotCapture(n); 1674 ++NumAnnotated; 1675 Modified = true; 1676 } 1677 } 1678 void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) { 1679 if (!F.doesNotAlias(n)) { 1680 F.setDoesNotAlias(n); 1681 ++NumAnnotated; 1682 Modified = true; 1683 } 1684 } 1685 1686 1687 void SimplifyLibCalls::inferPrototypeAttributes(Function &F) { 1688 FunctionType *FTy = F.getFunctionType(); 1689 1690 StringRef Name = F.getName(); 1691 switch (Name[0]) { 1692 case 's': 1693 if (Name == "strlen") { 1694 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 1695 return; 1696 setOnlyReadsMemory(F); 1697 setDoesNotThrow(F); 1698 setDoesNotCapture(F, 1); 1699 } else if (Name == "strchr" || 1700 Name == "strrchr") { 1701 if (FTy->getNumParams() != 2 || 1702 !FTy->getParamType(0)->isPointerTy() || 1703 !FTy->getParamType(1)->isIntegerTy()) 1704 return; 1705 setOnlyReadsMemory(F); 1706 setDoesNotThrow(F); 1707 } else if (Name == "strcpy" || 1708 Name == "stpcpy" || 1709 Name == "strcat" || 1710 Name == "strtol" || 1711 Name == "strtod" || 1712 Name == "strtof" || 1713 Name == "strtoul" || 1714 Name == "strtoll" || 1715 Name == "strtold" || 1716 Name == "strncat" || 1717 Name == "strncpy" || 1718 Name == "strtoull") { 1719 if (FTy->getNumParams() < 2 || 1720 !FTy->getParamType(1)->isPointerTy()) 1721 return; 1722 setDoesNotThrow(F); 1723 setDoesNotCapture(F, 2); 1724 } else if (Name == "strxfrm") { 1725 if (FTy->getNumParams() != 3 || 1726 !FTy->getParamType(0)->isPointerTy() || 1727 !FTy->getParamType(1)->isPointerTy()) 1728 return; 1729 setDoesNotThrow(F); 1730 setDoesNotCapture(F, 1); 1731 setDoesNotCapture(F, 2); 1732 } else if (Name == "strcmp" || 1733 Name == "strspn" || 1734 Name == "strncmp" || 1735 Name == "strcspn" || 1736 Name == "strcoll" || 1737 Name == "strcasecmp" || 1738 Name == "strncasecmp") { 1739 if (FTy->getNumParams() < 2 || 1740 !FTy->getParamType(0)->isPointerTy() || 1741 !FTy->getParamType(1)->isPointerTy()) 1742 return; 1743 setOnlyReadsMemory(F); 1744 setDoesNotThrow(F); 1745 setDoesNotCapture(F, 1); 1746 setDoesNotCapture(F, 2); 1747 } else if (Name == "strstr" || 1748 Name == "strpbrk") { 1749 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 1750 return; 1751 setOnlyReadsMemory(F); 1752 setDoesNotThrow(F); 1753 setDoesNotCapture(F, 2); 1754 } else if (Name == "strtok" || 1755 Name == "strtok_r") { 1756 if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy()) 1757 return; 1758 setDoesNotThrow(F); 1759 setDoesNotCapture(F, 2); 1760 } else if (Name == "scanf" || 1761 Name == "setbuf" || 1762 Name == "setvbuf") { 1763 if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy()) 1764 return; 1765 setDoesNotThrow(F); 1766 setDoesNotCapture(F, 1); 1767 } else if (Name == "strdup" || 1768 Name == "strndup") { 1769 if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() || 1770 !FTy->getParamType(0)->isPointerTy()) 1771 return; 1772 setDoesNotThrow(F); 1773 setDoesNotAlias(F, 0); 1774 setDoesNotCapture(F, 1); 1775 } else if (Name == "stat" || 1776 Name == "sscanf" || 1777 Name == "sprintf" || 1778 Name == "statvfs") { 1779 if (FTy->getNumParams() < 2 || 1780 !FTy->getParamType(0)->isPointerTy() || 1781 !FTy->getParamType(1)->isPointerTy()) 1782 return; 1783 setDoesNotThrow(F); 1784 setDoesNotCapture(F, 1); 1785 setDoesNotCapture(F, 2); 1786 } else if (Name == "snprintf") { 1787 if (FTy->getNumParams() != 3 || 1788 !FTy->getParamType(0)->isPointerTy() || 1789 !FTy->getParamType(2)->isPointerTy()) 1790 return; 1791 setDoesNotThrow(F); 1792 setDoesNotCapture(F, 1); 1793 setDoesNotCapture(F, 3); 1794 } else if (Name == "setitimer") { 1795 if (FTy->getNumParams() != 3 || 1796 !FTy->getParamType(1)->isPointerTy() || 1797 !FTy->getParamType(2)->isPointerTy()) 1798 return; 1799 setDoesNotThrow(F); 1800 setDoesNotCapture(F, 2); 1801 setDoesNotCapture(F, 3); 1802 } else if (Name == "system") { 1803 if (FTy->getNumParams() != 1 || 1804 !FTy->getParamType(0)->isPointerTy()) 1805 return; 1806 // May throw; "system" is a valid pthread cancellation point. 1807 setDoesNotCapture(F, 1); 1808 } 1809 break; 1810 case 'm': 1811 if (Name == "malloc") { 1812 if (FTy->getNumParams() != 1 || 1813 !FTy->getReturnType()->isPointerTy()) 1814 return; 1815 setDoesNotThrow(F); 1816 setDoesNotAlias(F, 0); 1817 } else if (Name == "memcmp") { 1818 if (FTy->getNumParams() != 3 || 1819 !FTy->getParamType(0)->isPointerTy() || 1820 !FTy->getParamType(1)->isPointerTy()) 1821 return; 1822 setOnlyReadsMemory(F); 1823 setDoesNotThrow(F); 1824 setDoesNotCapture(F, 1); 1825 setDoesNotCapture(F, 2); 1826 } else if (Name == "memchr" || 1827 Name == "memrchr") { 1828 if (FTy->getNumParams() != 3) 1829 return; 1830 setOnlyReadsMemory(F); 1831 setDoesNotThrow(F); 1832 } else if (Name == "modf" || 1833 Name == "modff" || 1834 Name == "modfl" || 1835 Name == "memcpy" || 1836 Name == "memccpy" || 1837 Name == "memmove") { 1838 if (FTy->getNumParams() < 2 || 1839 !FTy->getParamType(1)->isPointerTy()) 1840 return; 1841 setDoesNotThrow(F); 1842 setDoesNotCapture(F, 2); 1843 } else if (Name == "memalign") { 1844 if (!FTy->getReturnType()->isPointerTy()) 1845 return; 1846 setDoesNotAlias(F, 0); 1847 } else if (Name == "mkdir" || 1848 Name == "mktime") { 1849 if (FTy->getNumParams() == 0 || 1850 !FTy->getParamType(0)->isPointerTy()) 1851 return; 1852 setDoesNotThrow(F); 1853 setDoesNotCapture(F, 1); 1854 } 1855 break; 1856 case 'r': 1857 if (Name == "realloc") { 1858 if (FTy->getNumParams() != 2 || 1859 !FTy->getParamType(0)->isPointerTy() || 1860 !FTy->getReturnType()->isPointerTy()) 1861 return; 1862 setDoesNotThrow(F); 1863 setDoesNotAlias(F, 0); 1864 setDoesNotCapture(F, 1); 1865 } else if (Name == "read") { 1866 if (FTy->getNumParams() != 3 || 1867 !FTy->getParamType(1)->isPointerTy()) 1868 return; 1869 // May throw; "read" is a valid pthread cancellation point. 1870 setDoesNotCapture(F, 2); 1871 } else if (Name == "rmdir" || 1872 Name == "rewind" || 1873 Name == "remove" || 1874 Name == "realpath") { 1875 if (FTy->getNumParams() < 1 || 1876 !FTy->getParamType(0)->isPointerTy()) 1877 return; 1878 setDoesNotThrow(F); 1879 setDoesNotCapture(F, 1); 1880 } else if (Name == "rename" || 1881 Name == "readlink") { 1882 if (FTy->getNumParams() < 2 || 1883 !FTy->getParamType(0)->isPointerTy() || 1884 !FTy->getParamType(1)->isPointerTy()) 1885 return; 1886 setDoesNotThrow(F); 1887 setDoesNotCapture(F, 1); 1888 setDoesNotCapture(F, 2); 1889 } 1890 break; 1891 case 'w': 1892 if (Name == "write") { 1893 if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy()) 1894 return; 1895 // May throw; "write" is a valid pthread cancellation point. 1896 setDoesNotCapture(F, 2); 1897 } 1898 break; 1899 case 'b': 1900 if (Name == "bcopy") { 1901 if (FTy->getNumParams() != 3 || 1902 !FTy->getParamType(0)->isPointerTy() || 1903 !FTy->getParamType(1)->isPointerTy()) 1904 return; 1905 setDoesNotThrow(F); 1906 setDoesNotCapture(F, 1); 1907 setDoesNotCapture(F, 2); 1908 } else if (Name == "bcmp") { 1909 if (FTy->getNumParams() != 3 || 1910 !FTy->getParamType(0)->isPointerTy() || 1911 !FTy->getParamType(1)->isPointerTy()) 1912 return; 1913 setDoesNotThrow(F); 1914 setOnlyReadsMemory(F); 1915 setDoesNotCapture(F, 1); 1916 setDoesNotCapture(F, 2); 1917 } else if (Name == "bzero") { 1918 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) 1919 return; 1920 setDoesNotThrow(F); 1921 setDoesNotCapture(F, 1); 1922 } 1923 break; 1924 case 'c': 1925 if (Name == "calloc") { 1926 if (FTy->getNumParams() != 2 || 1927 !FTy->getReturnType()->isPointerTy()) 1928 return; 1929 setDoesNotThrow(F); 1930 setDoesNotAlias(F, 0); 1931 } else if (Name == "chmod" || 1932 Name == "chown" || 1933 Name == "ctermid" || 1934 Name == "clearerr" || 1935 Name == "closedir") { 1936 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) 1937 return; 1938 setDoesNotThrow(F); 1939 setDoesNotCapture(F, 1); 1940 } 1941 break; 1942 case 'a': 1943 if (Name == "atoi" || 1944 Name == "atol" || 1945 Name == "atof" || 1946 Name == "atoll") { 1947 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 1948 return; 1949 setDoesNotThrow(F); 1950 setOnlyReadsMemory(F); 1951 setDoesNotCapture(F, 1); 1952 } else if (Name == "access") { 1953 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) 1954 return; 1955 setDoesNotThrow(F); 1956 setDoesNotCapture(F, 1); 1957 } 1958 break; 1959 case 'f': 1960 if (Name == "fopen") { 1961 if (FTy->getNumParams() != 2 || 1962 !FTy->getReturnType()->isPointerTy() || 1963 !FTy->getParamType(0)->isPointerTy() || 1964 !FTy->getParamType(1)->isPointerTy()) 1965 return; 1966 setDoesNotThrow(F); 1967 setDoesNotAlias(F, 0); 1968 setDoesNotCapture(F, 1); 1969 setDoesNotCapture(F, 2); 1970 } else if (Name == "fdopen") { 1971 if (FTy->getNumParams() != 2 || 1972 !FTy->getReturnType()->isPointerTy() || 1973 !FTy->getParamType(1)->isPointerTy()) 1974 return; 1975 setDoesNotThrow(F); 1976 setDoesNotAlias(F, 0); 1977 setDoesNotCapture(F, 2); 1978 } else if (Name == "feof" || 1979 Name == "free" || 1980 Name == "fseek" || 1981 Name == "ftell" || 1982 Name == "fgetc" || 1983 Name == "fseeko" || 1984 Name == "ftello" || 1985 Name == "fileno" || 1986 Name == "fflush" || 1987 Name == "fclose" || 1988 Name == "fsetpos" || 1989 Name == "flockfile" || 1990 Name == "funlockfile" || 1991 Name == "ftrylockfile") { 1992 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) 1993 return; 1994 setDoesNotThrow(F); 1995 setDoesNotCapture(F, 1); 1996 } else if (Name == "ferror") { 1997 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 1998 return; 1999 setDoesNotThrow(F); 2000 setDoesNotCapture(F, 1); 2001 setOnlyReadsMemory(F); 2002 } else if (Name == "fputc" || 2003 Name == "fstat" || 2004 Name == "frexp" || 2005 Name == "frexpf" || 2006 Name == "frexpl" || 2007 Name == "fstatvfs") { 2008 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2009 return; 2010 setDoesNotThrow(F); 2011 setDoesNotCapture(F, 2); 2012 } else if (Name == "fgets") { 2013 if (FTy->getNumParams() != 3 || 2014 !FTy->getParamType(0)->isPointerTy() || 2015 !FTy->getParamType(2)->isPointerTy()) 2016 return; 2017 setDoesNotThrow(F); 2018 setDoesNotCapture(F, 3); 2019 } else if (Name == "fread" || 2020 Name == "fwrite") { 2021 if (FTy->getNumParams() != 4 || 2022 !FTy->getParamType(0)->isPointerTy() || 2023 !FTy->getParamType(3)->isPointerTy()) 2024 return; 2025 setDoesNotThrow(F); 2026 setDoesNotCapture(F, 1); 2027 setDoesNotCapture(F, 4); 2028 } else if (Name == "fputs" || 2029 Name == "fscanf" || 2030 Name == "fprintf" || 2031 Name == "fgetpos") { 2032 if (FTy->getNumParams() < 2 || 2033 !FTy->getParamType(0)->isPointerTy() || 2034 !FTy->getParamType(1)->isPointerTy()) 2035 return; 2036 setDoesNotThrow(F); 2037 setDoesNotCapture(F, 1); 2038 setDoesNotCapture(F, 2); 2039 } 2040 break; 2041 case 'g': 2042 if (Name == "getc" || 2043 Name == "getlogin_r" || 2044 Name == "getc_unlocked") { 2045 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) 2046 return; 2047 setDoesNotThrow(F); 2048 setDoesNotCapture(F, 1); 2049 } else if (Name == "getenv") { 2050 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2051 return; 2052 setDoesNotThrow(F); 2053 setOnlyReadsMemory(F); 2054 setDoesNotCapture(F, 1); 2055 } else if (Name == "gets" || 2056 Name == "getchar") { 2057 setDoesNotThrow(F); 2058 } else if (Name == "getitimer") { 2059 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2060 return; 2061 setDoesNotThrow(F); 2062 setDoesNotCapture(F, 2); 2063 } else if (Name == "getpwnam") { 2064 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2065 return; 2066 setDoesNotThrow(F); 2067 setDoesNotCapture(F, 1); 2068 } 2069 break; 2070 case 'u': 2071 if (Name == "ungetc") { 2072 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2073 return; 2074 setDoesNotThrow(F); 2075 setDoesNotCapture(F, 2); 2076 } else if (Name == "uname" || 2077 Name == "unlink" || 2078 Name == "unsetenv") { 2079 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2080 return; 2081 setDoesNotThrow(F); 2082 setDoesNotCapture(F, 1); 2083 } else if (Name == "utime" || 2084 Name == "utimes") { 2085 if (FTy->getNumParams() != 2 || 2086 !FTy->getParamType(0)->isPointerTy() || 2087 !FTy->getParamType(1)->isPointerTy()) 2088 return; 2089 setDoesNotThrow(F); 2090 setDoesNotCapture(F, 1); 2091 setDoesNotCapture(F, 2); 2092 } 2093 break; 2094 case 'p': 2095 if (Name == "putc") { 2096 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2097 return; 2098 setDoesNotThrow(F); 2099 setDoesNotCapture(F, 2); 2100 } else if (Name == "puts" || 2101 Name == "printf" || 2102 Name == "perror") { 2103 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2104 return; 2105 setDoesNotThrow(F); 2106 setDoesNotCapture(F, 1); 2107 } else if (Name == "pread" || 2108 Name == "pwrite") { 2109 if (FTy->getNumParams() != 4 || !FTy->getParamType(1)->isPointerTy()) 2110 return; 2111 // May throw; these are valid pthread cancellation points. 2112 setDoesNotCapture(F, 2); 2113 } else if (Name == "putchar") { 2114 setDoesNotThrow(F); 2115 } else if (Name == "popen") { 2116 if (FTy->getNumParams() != 2 || 2117 !FTy->getReturnType()->isPointerTy() || 2118 !FTy->getParamType(0)->isPointerTy() || 2119 !FTy->getParamType(1)->isPointerTy()) 2120 return; 2121 setDoesNotThrow(F); 2122 setDoesNotAlias(F, 0); 2123 setDoesNotCapture(F, 1); 2124 setDoesNotCapture(F, 2); 2125 } else if (Name == "pclose") { 2126 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2127 return; 2128 setDoesNotThrow(F); 2129 setDoesNotCapture(F, 1); 2130 } 2131 break; 2132 case 'v': 2133 if (Name == "vscanf") { 2134 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2135 return; 2136 setDoesNotThrow(F); 2137 setDoesNotCapture(F, 1); 2138 } else if (Name == "vsscanf" || 2139 Name == "vfscanf") { 2140 if (FTy->getNumParams() != 3 || 2141 !FTy->getParamType(1)->isPointerTy() || 2142 !FTy->getParamType(2)->isPointerTy()) 2143 return; 2144 setDoesNotThrow(F); 2145 setDoesNotCapture(F, 1); 2146 setDoesNotCapture(F, 2); 2147 } else if (Name == "valloc") { 2148 if (!FTy->getReturnType()->isPointerTy()) 2149 return; 2150 setDoesNotThrow(F); 2151 setDoesNotAlias(F, 0); 2152 } else if (Name == "vprintf") { 2153 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) 2154 return; 2155 setDoesNotThrow(F); 2156 setDoesNotCapture(F, 1); 2157 } else if (Name == "vfprintf" || 2158 Name == "vsprintf") { 2159 if (FTy->getNumParams() != 3 || 2160 !FTy->getParamType(0)->isPointerTy() || 2161 !FTy->getParamType(1)->isPointerTy()) 2162 return; 2163 setDoesNotThrow(F); 2164 setDoesNotCapture(F, 1); 2165 setDoesNotCapture(F, 2); 2166 } else if (Name == "vsnprintf") { 2167 if (FTy->getNumParams() != 4 || 2168 !FTy->getParamType(0)->isPointerTy() || 2169 !FTy->getParamType(2)->isPointerTy()) 2170 return; 2171 setDoesNotThrow(F); 2172 setDoesNotCapture(F, 1); 2173 setDoesNotCapture(F, 3); 2174 } 2175 break; 2176 case 'o': 2177 if (Name == "open") { 2178 if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy()) 2179 return; 2180 // May throw; "open" is a valid pthread cancellation point. 2181 setDoesNotCapture(F, 1); 2182 } else if (Name == "opendir") { 2183 if (FTy->getNumParams() != 1 || 2184 !FTy->getReturnType()->isPointerTy() || 2185 !FTy->getParamType(0)->isPointerTy()) 2186 return; 2187 setDoesNotThrow(F); 2188 setDoesNotAlias(F, 0); 2189 setDoesNotCapture(F, 1); 2190 } 2191 break; 2192 case 't': 2193 if (Name == "tmpfile") { 2194 if (!FTy->getReturnType()->isPointerTy()) 2195 return; 2196 setDoesNotThrow(F); 2197 setDoesNotAlias(F, 0); 2198 } else if (Name == "times") { 2199 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2200 return; 2201 setDoesNotThrow(F); 2202 setDoesNotCapture(F, 1); 2203 } 2204 break; 2205 case 'h': 2206 if (Name == "htonl" || 2207 Name == "htons") { 2208 setDoesNotThrow(F); 2209 setDoesNotAccessMemory(F); 2210 } 2211 break; 2212 case 'n': 2213 if (Name == "ntohl" || 2214 Name == "ntohs") { 2215 setDoesNotThrow(F); 2216 setDoesNotAccessMemory(F); 2217 } 2218 break; 2219 case 'l': 2220 if (Name == "lstat") { 2221 if (FTy->getNumParams() != 2 || 2222 !FTy->getParamType(0)->isPointerTy() || 2223 !FTy->getParamType(1)->isPointerTy()) 2224 return; 2225 setDoesNotThrow(F); 2226 setDoesNotCapture(F, 1); 2227 setDoesNotCapture(F, 2); 2228 } else if (Name == "lchown") { 2229 if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy()) 2230 return; 2231 setDoesNotThrow(F); 2232 setDoesNotCapture(F, 1); 2233 } 2234 break; 2235 case 'q': 2236 if (Name == "qsort") { 2237 if (FTy->getNumParams() != 4 || !FTy->getParamType(3)->isPointerTy()) 2238 return; 2239 // May throw; places call through function pointer. 2240 setDoesNotCapture(F, 4); 2241 } 2242 break; 2243 case '_': 2244 if (Name == "__strdup" || 2245 Name == "__strndup") { 2246 if (FTy->getNumParams() < 1 || 2247 !FTy->getReturnType()->isPointerTy() || 2248 !FTy->getParamType(0)->isPointerTy()) 2249 return; 2250 setDoesNotThrow(F); 2251 setDoesNotAlias(F, 0); 2252 setDoesNotCapture(F, 1); 2253 } else if (Name == "__strtok_r") { 2254 if (FTy->getNumParams() != 3 || 2255 !FTy->getParamType(1)->isPointerTy()) 2256 return; 2257 setDoesNotThrow(F); 2258 setDoesNotCapture(F, 2); 2259 } else if (Name == "_IO_getc") { 2260 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2261 return; 2262 setDoesNotThrow(F); 2263 setDoesNotCapture(F, 1); 2264 } else if (Name == "_IO_putc") { 2265 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2266 return; 2267 setDoesNotThrow(F); 2268 setDoesNotCapture(F, 2); 2269 } 2270 break; 2271 case 1: 2272 if (Name == "\1__isoc99_scanf") { 2273 if (FTy->getNumParams() < 1 || 2274 !FTy->getParamType(0)->isPointerTy()) 2275 return; 2276 setDoesNotThrow(F); 2277 setDoesNotCapture(F, 1); 2278 } else if (Name == "\1stat64" || 2279 Name == "\1lstat64" || 2280 Name == "\1statvfs64" || 2281 Name == "\1__isoc99_sscanf") { 2282 if (FTy->getNumParams() < 1 || 2283 !FTy->getParamType(0)->isPointerTy() || 2284 !FTy->getParamType(1)->isPointerTy()) 2285 return; 2286 setDoesNotThrow(F); 2287 setDoesNotCapture(F, 1); 2288 setDoesNotCapture(F, 2); 2289 } else if (Name == "\1fopen64") { 2290 if (FTy->getNumParams() != 2 || 2291 !FTy->getReturnType()->isPointerTy() || 2292 !FTy->getParamType(0)->isPointerTy() || 2293 !FTy->getParamType(1)->isPointerTy()) 2294 return; 2295 setDoesNotThrow(F); 2296 setDoesNotAlias(F, 0); 2297 setDoesNotCapture(F, 1); 2298 setDoesNotCapture(F, 2); 2299 } else if (Name == "\1fseeko64" || 2300 Name == "\1ftello64") { 2301 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) 2302 return; 2303 setDoesNotThrow(F); 2304 setDoesNotCapture(F, 1); 2305 } else if (Name == "\1tmpfile64") { 2306 if (!FTy->getReturnType()->isPointerTy()) 2307 return; 2308 setDoesNotThrow(F); 2309 setDoesNotAlias(F, 0); 2310 } else if (Name == "\1fstat64" || 2311 Name == "\1fstatvfs64") { 2312 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2313 return; 2314 setDoesNotThrow(F); 2315 setDoesNotCapture(F, 2); 2316 } else if (Name == "\1open64") { 2317 if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy()) 2318 return; 2319 // May throw; "open" is a valid pthread cancellation point. 2320 setDoesNotCapture(F, 1); 2321 } 2322 break; 2323 } 2324 } 2325 2326 /// doInitialization - Add attributes to well-known functions. 2327 /// 2328 bool SimplifyLibCalls::doInitialization(Module &M) { 2329 Modified = false; 2330 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 2331 Function &F = *I; 2332 if (F.isDeclaration() && F.hasName()) 2333 inferPrototypeAttributes(F); 2334 } 2335 return Modified; 2336 } 2337 2338 // TODO: 2339 // Additional cases that we need to add to this file: 2340 // 2341 // cbrt: 2342 // * cbrt(expN(X)) -> expN(x/3) 2343 // * cbrt(sqrt(x)) -> pow(x,1/6) 2344 // * cbrt(sqrt(x)) -> pow(x,1/9) 2345 // 2346 // cos, cosf, cosl: 2347 // * cos(-x) -> cos(x) 2348 // 2349 // exp, expf, expl: 2350 // * exp(log(x)) -> x 2351 // 2352 // log, logf, logl: 2353 // * log(exp(x)) -> x 2354 // * log(x**y) -> y*log(x) 2355 // * log(exp(y)) -> y*log(e) 2356 // * log(exp2(y)) -> y*log(2) 2357 // * log(exp10(y)) -> y*log(10) 2358 // * log(sqrt(x)) -> 0.5*log(x) 2359 // * log(pow(x,y)) -> y*log(x) 2360 // 2361 // lround, lroundf, lroundl: 2362 // * lround(cnst) -> cnst' 2363 // 2364 // pow, powf, powl: 2365 // * pow(exp(x),y) -> exp(x*y) 2366 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2367 // * pow(pow(x,y),z)-> pow(x,y*z) 2368 // 2369 // round, roundf, roundl: 2370 // * round(cnst) -> cnst' 2371 // 2372 // signbit: 2373 // * signbit(cnst) -> cnst' 2374 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2375 // 2376 // sqrt, sqrtf, sqrtl: 2377 // * sqrt(expN(x)) -> expN(x*0.5) 2378 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2379 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2380 // 2381 // stpcpy: 2382 // * stpcpy(str, "literal") -> 2383 // llvm.memcpy(str,"literal",strlen("literal")+1,1) 2384 // 2385 // tan, tanf, tanl: 2386 // * tan(atan(x)) -> x 2387 // 2388 // trunc, truncf, truncl: 2389 // * trunc(cnst) -> cnst' 2390 // 2391 // 2392