Home | History | Annotate | Download | only in VMCore
      1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the function verifier interface, that can be used for some
     11 // sanity checking of input to the system.
     12 //
     13 // Note that this does not provide full `Java style' security and verifications,
     14 // instead it just tries to ensure that code is well-formed.
     15 //
     16 //  * Both of a binary operator's parameters are of the same type
     17 //  * Verify that the indices of mem access instructions match other operands
     18 //  * Verify that arithmetic and other things are only performed on first-class
     19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
     20 //  * All of the constants in a switch statement are of the correct type
     21 //  * The code is in valid SSA form
     22 //  * It should be illegal to put a label into any other type (like a structure)
     23 //    or to return one. [except constant arrays!]
     24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
     25 //  * PHI nodes must have an entry for each predecessor, with no extras.
     26 //  * PHI nodes must be the first thing in a basic block, all grouped together
     27 //  * PHI nodes must have at least one entry
     28 //  * All basic blocks should only end with terminator insts, not contain them
     29 //  * The entry node to a function must not have predecessors
     30 //  * All Instructions must be embedded into a basic block
     31 //  * Functions cannot take a void-typed parameter
     32 //  * Verify that a function's argument list agrees with it's declared type.
     33 //  * It is illegal to specify a name for a void value.
     34 //  * It is illegal to have a internal global value with no initializer
     35 //  * It is illegal to have a ret instruction that returns a value that does not
     36 //    agree with the function return value type.
     37 //  * Function call argument types match the function prototype
     38 //  * All other things that are tested by asserts spread about the code...
     39 //
     40 //===----------------------------------------------------------------------===//
     41 
     42 #include "llvm/Analysis/Verifier.h"
     43 #include "llvm/CallingConv.h"
     44 #include "llvm/Constants.h"
     45 #include "llvm/DerivedTypes.h"
     46 #include "llvm/InlineAsm.h"
     47 #include "llvm/IntrinsicInst.h"
     48 #include "llvm/Metadata.h"
     49 #include "llvm/Module.h"
     50 #include "llvm/Pass.h"
     51 #include "llvm/PassManager.h"
     52 #include "llvm/Analysis/Dominators.h"
     53 #include "llvm/Assembly/Writer.h"
     54 #include "llvm/CodeGen/ValueTypes.h"
     55 #include "llvm/Support/CallSite.h"
     56 #include "llvm/Support/CFG.h"
     57 #include "llvm/Support/Debug.h"
     58 #include "llvm/Support/InstVisitor.h"
     59 #include "llvm/ADT/SetVector.h"
     60 #include "llvm/ADT/SmallPtrSet.h"
     61 #include "llvm/ADT/SmallVector.h"
     62 #include "llvm/ADT/StringExtras.h"
     63 #include "llvm/ADT/STLExtras.h"
     64 #include "llvm/Support/ErrorHandling.h"
     65 #include "llvm/Support/raw_ostream.h"
     66 #include <algorithm>
     67 #include <cstdarg>
     68 using namespace llvm;
     69 
     70 namespace {  // Anonymous namespace for class
     71   struct PreVerifier : public FunctionPass {
     72     static char ID; // Pass ID, replacement for typeid
     73 
     74     PreVerifier() : FunctionPass(ID) {
     75       initializePreVerifierPass(*PassRegistry::getPassRegistry());
     76     }
     77 
     78     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     79       AU.setPreservesAll();
     80     }
     81 
     82     // Check that the prerequisites for successful DominatorTree construction
     83     // are satisfied.
     84     bool runOnFunction(Function &F) {
     85       bool Broken = false;
     86 
     87       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
     88         if (I->empty() || !I->back().isTerminator()) {
     89           dbgs() << "Basic Block in function '" << F.getName()
     90                  << "' does not have terminator!\n";
     91           WriteAsOperand(dbgs(), I, true);
     92           dbgs() << "\n";
     93           Broken = true;
     94         }
     95       }
     96 
     97       if (Broken)
     98         report_fatal_error("Broken module, no Basic Block terminator!");
     99 
    100       return false;
    101     }
    102   };
    103 }
    104 
    105 char PreVerifier::ID = 0;
    106 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
    107                 false, false)
    108 static char &PreVerifyID = PreVerifier::ID;
    109 
    110 namespace {
    111   struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
    112     static char ID; // Pass ID, replacement for typeid
    113     bool Broken;          // Is this module found to be broken?
    114     bool RealPass;        // Are we not being run by a PassManager?
    115     VerifierFailureAction action;
    116                           // What to do if verification fails.
    117     Module *Mod;          // Module we are verifying right now
    118     LLVMContext *Context; // Context within which we are verifying
    119     DominatorTree *DT;    // Dominator Tree, caution can be null!
    120 
    121     std::string Messages;
    122     raw_string_ostream MessagesStr;
    123 
    124     /// InstInThisBlock - when verifying a basic block, keep track of all of the
    125     /// instructions we have seen so far.  This allows us to do efficient
    126     /// dominance checks for the case when an instruction has an operand that is
    127     /// an instruction in the same block.
    128     SmallPtrSet<Instruction*, 16> InstsInThisBlock;
    129 
    130     /// MDNodes - keep track of the metadata nodes that have been checked
    131     /// already.
    132     SmallPtrSet<MDNode *, 32> MDNodes;
    133 
    134     Verifier()
    135       : FunctionPass(ID),
    136       Broken(false), RealPass(true), action(AbortProcessAction),
    137       Mod(0), Context(0), DT(0), MessagesStr(Messages) {
    138         initializeVerifierPass(*PassRegistry::getPassRegistry());
    139       }
    140     explicit Verifier(VerifierFailureAction ctn)
    141       : FunctionPass(ID),
    142       Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0),
    143       MessagesStr(Messages) {
    144         initializeVerifierPass(*PassRegistry::getPassRegistry());
    145       }
    146 
    147     bool doInitialization(Module &M) {
    148       Mod = &M;
    149       Context = &M.getContext();
    150 
    151       // If this is a real pass, in a pass manager, we must abort before
    152       // returning back to the pass manager, or else the pass manager may try to
    153       // run other passes on the broken module.
    154       if (RealPass)
    155         return abortIfBroken();
    156       return false;
    157     }
    158 
    159     bool runOnFunction(Function &F) {
    160       // Get dominator information if we are being run by PassManager
    161       if (RealPass) DT = &getAnalysis<DominatorTree>();
    162 
    163       Mod = F.getParent();
    164       if (!Context) Context = &F.getContext();
    165 
    166       visit(F);
    167       InstsInThisBlock.clear();
    168 
    169       // If this is a real pass, in a pass manager, we must abort before
    170       // returning back to the pass manager, or else the pass manager may try to
    171       // run other passes on the broken module.
    172       if (RealPass)
    173         return abortIfBroken();
    174 
    175       return false;
    176     }
    177 
    178     bool doFinalization(Module &M) {
    179       // Scan through, checking all of the external function's linkage now...
    180       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    181         visitGlobalValue(*I);
    182 
    183         // Check to make sure function prototypes are okay.
    184         if (I->isDeclaration()) visitFunction(*I);
    185       }
    186 
    187       for (Module::global_iterator I = M.global_begin(), E = M.global_end();
    188            I != E; ++I)
    189         visitGlobalVariable(*I);
    190 
    191       for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
    192            I != E; ++I)
    193         visitGlobalAlias(*I);
    194 
    195       for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    196            E = M.named_metadata_end(); I != E; ++I)
    197         visitNamedMDNode(*I);
    198 
    199       // If the module is broken, abort at this time.
    200       return abortIfBroken();
    201     }
    202 
    203     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    204       AU.setPreservesAll();
    205       AU.addRequiredID(PreVerifyID);
    206       if (RealPass)
    207         AU.addRequired<DominatorTree>();
    208     }
    209 
    210     /// abortIfBroken - If the module is broken and we are supposed to abort on
    211     /// this condition, do so.
    212     ///
    213     bool abortIfBroken() {
    214       if (!Broken) return false;
    215       MessagesStr << "Broken module found, ";
    216       switch (action) {
    217       default: llvm_unreachable("Unknown action");
    218       case AbortProcessAction:
    219         MessagesStr << "compilation aborted!\n";
    220         dbgs() << MessagesStr.str();
    221         // Client should choose different reaction if abort is not desired
    222         abort();
    223       case PrintMessageAction:
    224         MessagesStr << "verification continues.\n";
    225         dbgs() << MessagesStr.str();
    226         return false;
    227       case ReturnStatusAction:
    228         MessagesStr << "compilation terminated.\n";
    229         return true;
    230       }
    231     }
    232 
    233 
    234     // Verification methods...
    235     void visitGlobalValue(GlobalValue &GV);
    236     void visitGlobalVariable(GlobalVariable &GV);
    237     void visitGlobalAlias(GlobalAlias &GA);
    238     void visitNamedMDNode(NamedMDNode &NMD);
    239     void visitMDNode(MDNode &MD, Function *F);
    240     void visitFunction(Function &F);
    241     void visitBasicBlock(BasicBlock &BB);
    242     using InstVisitor<Verifier>::visit;
    243 
    244     void visit(Instruction &I);
    245 
    246     void visitTruncInst(TruncInst &I);
    247     void visitZExtInst(ZExtInst &I);
    248     void visitSExtInst(SExtInst &I);
    249     void visitFPTruncInst(FPTruncInst &I);
    250     void visitFPExtInst(FPExtInst &I);
    251     void visitFPToUIInst(FPToUIInst &I);
    252     void visitFPToSIInst(FPToSIInst &I);
    253     void visitUIToFPInst(UIToFPInst &I);
    254     void visitSIToFPInst(SIToFPInst &I);
    255     void visitIntToPtrInst(IntToPtrInst &I);
    256     void visitPtrToIntInst(PtrToIntInst &I);
    257     void visitBitCastInst(BitCastInst &I);
    258     void visitPHINode(PHINode &PN);
    259     void visitBinaryOperator(BinaryOperator &B);
    260     void visitICmpInst(ICmpInst &IC);
    261     void visitFCmpInst(FCmpInst &FC);
    262     void visitExtractElementInst(ExtractElementInst &EI);
    263     void visitInsertElementInst(InsertElementInst &EI);
    264     void visitShuffleVectorInst(ShuffleVectorInst &EI);
    265     void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    266     void visitCallInst(CallInst &CI);
    267     void visitInvokeInst(InvokeInst &II);
    268     void visitGetElementPtrInst(GetElementPtrInst &GEP);
    269     void visitLoadInst(LoadInst &LI);
    270     void visitStoreInst(StoreInst &SI);
    271     void visitInstruction(Instruction &I);
    272     void visitTerminatorInst(TerminatorInst &I);
    273     void visitBranchInst(BranchInst &BI);
    274     void visitReturnInst(ReturnInst &RI);
    275     void visitSwitchInst(SwitchInst &SI);
    276     void visitIndirectBrInst(IndirectBrInst &BI);
    277     void visitSelectInst(SelectInst &SI);
    278     void visitUserOp1(Instruction &I);
    279     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    280     void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    281     void visitAllocaInst(AllocaInst &AI);
    282     void visitExtractValueInst(ExtractValueInst &EVI);
    283     void visitInsertValueInst(InsertValueInst &IVI);
    284 
    285     void VerifyCallSite(CallSite CS);
    286     bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
    287                           int VT, unsigned ArgNo, std::string &Suffix);
    288     void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
    289                                   unsigned RetNum, unsigned ParamNum, ...);
    290     void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
    291                               bool isReturnValue, const Value *V);
    292     void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
    293                              const Value *V);
    294 
    295     void WriteValue(const Value *V) {
    296       if (!V) return;
    297       if (isa<Instruction>(V)) {
    298         MessagesStr << *V << '\n';
    299       } else {
    300         WriteAsOperand(MessagesStr, V, true, Mod);
    301         MessagesStr << '\n';
    302       }
    303     }
    304 
    305     void WriteType(Type *T) {
    306       if (!T) return;
    307       MessagesStr << ' ' << *T;
    308     }
    309 
    310 
    311     // CheckFailed - A check failed, so print out the condition and the message
    312     // that failed.  This provides a nice place to put a breakpoint if you want
    313     // to see why something is not correct.
    314     void CheckFailed(const Twine &Message,
    315                      const Value *V1 = 0, const Value *V2 = 0,
    316                      const Value *V3 = 0, const Value *V4 = 0) {
    317       MessagesStr << Message.str() << "\n";
    318       WriteValue(V1);
    319       WriteValue(V2);
    320       WriteValue(V3);
    321       WriteValue(V4);
    322       Broken = true;
    323     }
    324 
    325     void CheckFailed(const Twine &Message, const Value *V1,
    326                      Type *T2, const Value *V3 = 0) {
    327       MessagesStr << Message.str() << "\n";
    328       WriteValue(V1);
    329       WriteType(T2);
    330       WriteValue(V3);
    331       Broken = true;
    332     }
    333 
    334     void CheckFailed(const Twine &Message, Type *T1,
    335                      Type *T2 = 0, Type *T3 = 0) {
    336       MessagesStr << Message.str() << "\n";
    337       WriteType(T1);
    338       WriteType(T2);
    339       WriteType(T3);
    340       Broken = true;
    341     }
    342   };
    343 } // End anonymous namespace
    344 
    345 char Verifier::ID = 0;
    346 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
    347 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
    348 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    349 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
    350 
    351 // Assert - We know that cond should be true, if not print an error message.
    352 #define Assert(C, M) \
    353   do { if (!(C)) { CheckFailed(M); return; } } while (0)
    354 #define Assert1(C, M, V1) \
    355   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    356 #define Assert2(C, M, V1, V2) \
    357   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    358 #define Assert3(C, M, V1, V2, V3) \
    359   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    360 #define Assert4(C, M, V1, V2, V3, V4) \
    361   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    362 
    363 void Verifier::visit(Instruction &I) {
    364   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    365     Assert1(I.getOperand(i) != 0, "Operand is null", &I);
    366   InstVisitor<Verifier>::visit(I);
    367 }
    368 
    369 
    370 void Verifier::visitGlobalValue(GlobalValue &GV) {
    371   Assert1(!GV.isDeclaration() ||
    372           GV.isMaterializable() ||
    373           GV.hasExternalLinkage() ||
    374           GV.hasDLLImportLinkage() ||
    375           GV.hasExternalWeakLinkage() ||
    376           (isa<GlobalAlias>(GV) &&
    377            (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
    378   "Global is external, but doesn't have external or dllimport or weak linkage!",
    379           &GV);
    380 
    381   Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
    382           "Global is marked as dllimport, but not external", &GV);
    383 
    384   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
    385           "Only global variables can have appending linkage!", &GV);
    386 
    387   if (GV.hasAppendingLinkage()) {
    388     GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    389     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
    390             "Only global arrays can have appending linkage!", GVar);
    391   }
    392 
    393   Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
    394           "linker_private_weak_def_auto can only have default visibility!",
    395           &GV);
    396 }
    397 
    398 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
    399   if (GV.hasInitializer()) {
    400     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
    401             "Global variable initializer type does not match global "
    402             "variable type!", &GV);
    403 
    404     // If the global has common linkage, it must have a zero initializer and
    405     // cannot be constant.
    406     if (GV.hasCommonLinkage()) {
    407       Assert1(GV.getInitializer()->isNullValue(),
    408               "'common' global must have a zero initializer!", &GV);
    409       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
    410               &GV);
    411     }
    412   } else {
    413     Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
    414             GV.hasExternalWeakLinkage(),
    415             "invalid linkage type for global declaration", &GV);
    416   }
    417 
    418   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
    419                        GV.getName() == "llvm.global_dtors")) {
    420     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    421             "invalid linkage for intrinsic global variable", &GV);
    422     // Don't worry about emitting an error for it not being an array,
    423     // visitGlobalValue will complain on appending non-array.
    424     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
    425       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
    426       PointerType *FuncPtrTy =
    427           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
    428       Assert1(STy && STy->getNumElements() == 2 &&
    429               STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
    430               STy->getTypeAtIndex(1) == FuncPtrTy,
    431               "wrong type for intrinsic global variable", &GV);
    432     }
    433   }
    434 
    435   visitGlobalValue(GV);
    436 }
    437 
    438 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
    439   Assert1(!GA.getName().empty(),
    440           "Alias name cannot be empty!", &GA);
    441   Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
    442           GA.hasWeakLinkage(),
    443           "Alias should have external or external weak linkage!", &GA);
    444   Assert1(GA.getAliasee(),
    445           "Aliasee cannot be NULL!", &GA);
    446   Assert1(GA.getType() == GA.getAliasee()->getType(),
    447           "Alias and aliasee types should match!", &GA);
    448   Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
    449 
    450   if (!isa<GlobalValue>(GA.getAliasee())) {
    451     const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
    452     Assert1(CE &&
    453             (CE->getOpcode() == Instruction::BitCast ||
    454              CE->getOpcode() == Instruction::GetElementPtr) &&
    455             isa<GlobalValue>(CE->getOperand(0)),
    456             "Aliasee should be either GlobalValue or bitcast of GlobalValue",
    457             &GA);
    458   }
    459 
    460   const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
    461   Assert1(Aliasee,
    462           "Aliasing chain should end with function or global variable", &GA);
    463 
    464   visitGlobalValue(GA);
    465 }
    466 
    467 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
    468   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    469     MDNode *MD = NMD.getOperand(i);
    470     if (!MD)
    471       continue;
    472 
    473     Assert1(!MD->isFunctionLocal(),
    474             "Named metadata operand cannot be function local!", MD);
    475     visitMDNode(*MD, 0);
    476   }
    477 }
    478 
    479 void Verifier::visitMDNode(MDNode &MD, Function *F) {
    480   // Only visit each node once.  Metadata can be mutually recursive, so this
    481   // avoids infinite recursion here, as well as being an optimization.
    482   if (!MDNodes.insert(&MD))
    483     return;
    484 
    485   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    486     Value *Op = MD.getOperand(i);
    487     if (!Op)
    488       continue;
    489     if (isa<Constant>(Op) || isa<MDString>(Op))
    490       continue;
    491     if (MDNode *N = dyn_cast<MDNode>(Op)) {
    492       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
    493               "Global metadata operand cannot be function local!", &MD, N);
    494       visitMDNode(*N, F);
    495       continue;
    496     }
    497     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
    498 
    499     // If this was an instruction, bb, or argument, verify that it is in the
    500     // function that we expect.
    501     Function *ActualF = 0;
    502     if (Instruction *I = dyn_cast<Instruction>(Op))
    503       ActualF = I->getParent()->getParent();
    504     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
    505       ActualF = BB->getParent();
    506     else if (Argument *A = dyn_cast<Argument>(Op))
    507       ActualF = A->getParent();
    508     assert(ActualF && "Unimplemented function local metadata case!");
    509 
    510     Assert2(ActualF == F, "function-local metadata used in wrong function",
    511             &MD, Op);
    512   }
    513 }
    514 
    515 // VerifyParameterAttrs - Check the given attributes for an argument or return
    516 // value of the specified type.  The value V is printed in error messages.
    517 void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
    518                                     bool isReturnValue, const Value *V) {
    519   if (Attrs == Attribute::None)
    520     return;
    521 
    522   Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
    523   Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
    524           " only applies to the function!", V);
    525 
    526   if (isReturnValue) {
    527     Attributes RetI = Attrs & Attribute::ParameterOnly;
    528     Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
    529             " does not apply to return values!", V);
    530   }
    531 
    532   for (unsigned i = 0;
    533        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    534     Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
    535     Assert1(!(MutI & (MutI - 1)), "Attributes " +
    536             Attribute::getAsString(MutI) + " are incompatible!", V);
    537   }
    538 
    539   Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
    540   Assert1(!TypeI, "Wrong type for attribute " +
    541           Attribute::getAsString(TypeI), V);
    542 
    543   Attributes ByValI = Attrs & Attribute::ByVal;
    544   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    545     Assert1(!ByValI || PTy->getElementType()->isSized(),
    546             "Attribute " + Attribute::getAsString(ByValI) +
    547             " does not support unsized types!", V);
    548   } else {
    549     Assert1(!ByValI,
    550             "Attribute " + Attribute::getAsString(ByValI) +
    551             " only applies to parameters with pointer type!", V);
    552   }
    553 }
    554 
    555 // VerifyFunctionAttrs - Check parameter attributes against a function type.
    556 // The value V is printed in error messages.
    557 void Verifier::VerifyFunctionAttrs(FunctionType *FT,
    558                                    const AttrListPtr &Attrs,
    559                                    const Value *V) {
    560   if (Attrs.isEmpty())
    561     return;
    562 
    563   bool SawNest = false;
    564 
    565   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    566     const AttributeWithIndex &Attr = Attrs.getSlot(i);
    567 
    568     Type *Ty;
    569     if (Attr.Index == 0)
    570       Ty = FT->getReturnType();
    571     else if (Attr.Index-1 < FT->getNumParams())
    572       Ty = FT->getParamType(Attr.Index-1);
    573     else
    574       break;  // VarArgs attributes, verified elsewhere.
    575 
    576     VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
    577 
    578     if (Attr.Attrs & Attribute::Nest) {
    579       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
    580       SawNest = true;
    581     }
    582 
    583     if (Attr.Attrs & Attribute::StructRet)
    584       Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
    585   }
    586 
    587   Attributes FAttrs = Attrs.getFnAttributes();
    588   Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
    589   Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
    590           " does not apply to the function!", V);
    591 
    592   for (unsigned i = 0;
    593        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    594     Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
    595     Assert1(!(MutI & (MutI - 1)), "Attributes " +
    596             Attribute::getAsString(MutI) + " are incompatible!", V);
    597   }
    598 }
    599 
    600 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
    601   if (Attrs.isEmpty())
    602     return true;
    603 
    604   unsigned LastSlot = Attrs.getNumSlots() - 1;
    605   unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
    606   if (LastIndex <= Params
    607       || (LastIndex == (unsigned)~0
    608           && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
    609     return true;
    610 
    611   return false;
    612 }
    613 
    614 // visitFunction - Verify that a function is ok.
    615 //
    616 void Verifier::visitFunction(Function &F) {
    617   // Check function arguments.
    618   FunctionType *FT = F.getFunctionType();
    619   unsigned NumArgs = F.arg_size();
    620 
    621   Assert1(Context == &F.getContext(),
    622           "Function context does not match Module context!", &F);
    623 
    624   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
    625   Assert2(FT->getNumParams() == NumArgs,
    626           "# formal arguments must match # of arguments for function type!",
    627           &F, FT);
    628   Assert1(F.getReturnType()->isFirstClassType() ||
    629           F.getReturnType()->isVoidTy() ||
    630           F.getReturnType()->isStructTy(),
    631           "Functions cannot return aggregate values!", &F);
    632 
    633   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
    634           "Invalid struct return type!", &F);
    635 
    636   const AttrListPtr &Attrs = F.getAttributes();
    637 
    638   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
    639           "Attributes after last parameter!", &F);
    640 
    641   // Check function attributes.
    642   VerifyFunctionAttrs(FT, Attrs, &F);
    643 
    644   // Check that this function meets the restrictions on this calling convention.
    645   switch (F.getCallingConv()) {
    646   default:
    647     break;
    648   case CallingConv::C:
    649     break;
    650   case CallingConv::Fast:
    651   case CallingConv::Cold:
    652   case CallingConv::X86_FastCall:
    653   case CallingConv::X86_ThisCall:
    654   case CallingConv::PTX_Kernel:
    655   case CallingConv::PTX_Device:
    656     Assert1(!F.isVarArg(),
    657             "Varargs functions must have C calling conventions!", &F);
    658     break;
    659   }
    660 
    661   bool isLLVMdotName = F.getName().size() >= 5 &&
    662                        F.getName().substr(0, 5) == "llvm.";
    663 
    664   // Check that the argument values match the function type for this function...
    665   unsigned i = 0;
    666   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
    667        I != E; ++I, ++i) {
    668     Assert2(I->getType() == FT->getParamType(i),
    669             "Argument value does not match function argument type!",
    670             I, FT->getParamType(i));
    671     Assert1(I->getType()->isFirstClassType(),
    672             "Function arguments must have first-class types!", I);
    673     if (!isLLVMdotName)
    674       Assert2(!I->getType()->isMetadataTy(),
    675               "Function takes metadata but isn't an intrinsic", I, &F);
    676   }
    677 
    678   if (F.isMaterializable()) {
    679     // Function has a body somewhere we can't see.
    680   } else if (F.isDeclaration()) {
    681     Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
    682             F.hasExternalWeakLinkage(),
    683             "invalid linkage type for function declaration", &F);
    684   } else {
    685     // Verify that this function (which has a body) is not named "llvm.*".  It
    686     // is not legal to define intrinsics.
    687     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
    688 
    689     // Check the entry node
    690     BasicBlock *Entry = &F.getEntryBlock();
    691     Assert1(pred_begin(Entry) == pred_end(Entry),
    692             "Entry block to function must not have predecessors!", Entry);
    693 
    694     // The address of the entry block cannot be taken, unless it is dead.
    695     if (Entry->hasAddressTaken()) {
    696       Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
    697               "blockaddress may not be used with the entry block!", Entry);
    698     }
    699   }
    700 
    701   // If this function is actually an intrinsic, verify that it is only used in
    702   // direct call/invokes, never having its "address taken".
    703   if (F.getIntrinsicID()) {
    704     const User *U;
    705     if (F.hasAddressTaken(&U))
    706       Assert1(0, "Invalid user of intrinsic instruction!", U);
    707   }
    708 }
    709 
    710 // verifyBasicBlock - Verify that a basic block is well formed...
    711 //
    712 void Verifier::visitBasicBlock(BasicBlock &BB) {
    713   InstsInThisBlock.clear();
    714 
    715   // Ensure that basic blocks have terminators!
    716   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
    717 
    718   // Check constraints that this basic block imposes on all of the PHI nodes in
    719   // it.
    720   if (isa<PHINode>(BB.front())) {
    721     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    722     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    723     std::sort(Preds.begin(), Preds.end());
    724     PHINode *PN;
    725     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
    726       // Ensure that PHI nodes have at least one entry!
    727       Assert1(PN->getNumIncomingValues() != 0,
    728               "PHI nodes must have at least one entry.  If the block is dead, "
    729               "the PHI should be removed!", PN);
    730       Assert1(PN->getNumIncomingValues() == Preds.size(),
    731               "PHINode should have one entry for each predecessor of its "
    732               "parent basic block!", PN);
    733 
    734       // Get and sort all incoming values in the PHI node...
    735       Values.clear();
    736       Values.reserve(PN->getNumIncomingValues());
    737       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    738         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
    739                                         PN->getIncomingValue(i)));
    740       std::sort(Values.begin(), Values.end());
    741 
    742       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
    743         // Check to make sure that if there is more than one entry for a
    744         // particular basic block in this PHI node, that the incoming values are
    745         // all identical.
    746         //
    747         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
    748                 Values[i].second == Values[i-1].second,
    749                 "PHI node has multiple entries for the same basic block with "
    750                 "different incoming values!", PN, Values[i].first,
    751                 Values[i].second, Values[i-1].second);
    752 
    753         // Check to make sure that the predecessors and PHI node entries are
    754         // matched up.
    755         Assert3(Values[i].first == Preds[i],
    756                 "PHI node entries do not match predecessors!", PN,
    757                 Values[i].first, Preds[i]);
    758       }
    759     }
    760   }
    761 }
    762 
    763 void Verifier::visitTerminatorInst(TerminatorInst &I) {
    764   // Ensure that terminators only exist at the end of the basic block.
    765   Assert1(&I == I.getParent()->getTerminator(),
    766           "Terminator found in the middle of a basic block!", I.getParent());
    767   visitInstruction(I);
    768 }
    769 
    770 void Verifier::visitBranchInst(BranchInst &BI) {
    771   if (BI.isConditional()) {
    772     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
    773             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
    774   }
    775   visitTerminatorInst(BI);
    776 }
    777 
    778 void Verifier::visitReturnInst(ReturnInst &RI) {
    779   Function *F = RI.getParent()->getParent();
    780   unsigned N = RI.getNumOperands();
    781   if (F->getReturnType()->isVoidTy())
    782     Assert2(N == 0,
    783             "Found return instr that returns non-void in Function of void "
    784             "return type!", &RI, F->getReturnType());
    785   else
    786     Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
    787             "Function return type does not match operand "
    788             "type of return inst!", &RI, F->getReturnType());
    789 
    790   // Check to make sure that the return value has necessary properties for
    791   // terminators...
    792   visitTerminatorInst(RI);
    793 }
    794 
    795 void Verifier::visitSwitchInst(SwitchInst &SI) {
    796   // Check to make sure that all of the constants in the switch instruction
    797   // have the same type as the switched-on value.
    798   Type *SwitchTy = SI.getCondition()->getType();
    799   SmallPtrSet<ConstantInt*, 32> Constants;
    800   for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
    801     Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
    802             "Switch constants must all be same type as switch value!", &SI);
    803     Assert2(Constants.insert(SI.getCaseValue(i)),
    804             "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
    805   }
    806 
    807   visitTerminatorInst(SI);
    808 }
    809 
    810 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
    811   Assert1(BI.getAddress()->getType()->isPointerTy(),
    812           "Indirectbr operand must have pointer type!", &BI);
    813   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    814     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
    815             "Indirectbr destinations must all have pointer type!", &BI);
    816 
    817   visitTerminatorInst(BI);
    818 }
    819 
    820 void Verifier::visitSelectInst(SelectInst &SI) {
    821   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
    822                                           SI.getOperand(2)),
    823           "Invalid operands for select instruction!", &SI);
    824 
    825   Assert1(SI.getTrueValue()->getType() == SI.getType(),
    826           "Select values must have same type as select instruction!", &SI);
    827   visitInstruction(SI);
    828 }
    829 
    830 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
    831 /// a pass, if any exist, it's an error.
    832 ///
    833 void Verifier::visitUserOp1(Instruction &I) {
    834   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
    835 }
    836 
    837 void Verifier::visitTruncInst(TruncInst &I) {
    838   // Get the source and destination types
    839   Type *SrcTy = I.getOperand(0)->getType();
    840   Type *DestTy = I.getType();
    841 
    842   // Get the size of the types in bits, we'll need this later
    843   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    844   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    845 
    846   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
    847   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
    848   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    849           "trunc source and destination must both be a vector or neither", &I);
    850   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
    851 
    852   visitInstruction(I);
    853 }
    854 
    855 void Verifier::visitZExtInst(ZExtInst &I) {
    856   // Get the source and destination types
    857   Type *SrcTy = I.getOperand(0)->getType();
    858   Type *DestTy = I.getType();
    859 
    860   // Get the size of the types in bits, we'll need this later
    861   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
    862   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
    863   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    864           "zext source and destination must both be a vector or neither", &I);
    865   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    866   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    867 
    868   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
    869 
    870   visitInstruction(I);
    871 }
    872 
    873 void Verifier::visitSExtInst(SExtInst &I) {
    874   // Get the source and destination types
    875   Type *SrcTy = I.getOperand(0)->getType();
    876   Type *DestTy = I.getType();
    877 
    878   // Get the size of the types in bits, we'll need this later
    879   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    880   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    881 
    882   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
    883   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
    884   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    885           "sext source and destination must both be a vector or neither", &I);
    886   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
    887 
    888   visitInstruction(I);
    889 }
    890 
    891 void Verifier::visitFPTruncInst(FPTruncInst &I) {
    892   // Get the source and destination types
    893   Type *SrcTy = I.getOperand(0)->getType();
    894   Type *DestTy = I.getType();
    895   // Get the size of the types in bits, we'll need this later
    896   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    897   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    898 
    899   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
    900   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
    901   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    902           "fptrunc source and destination must both be a vector or neither",&I);
    903   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
    904 
    905   visitInstruction(I);
    906 }
    907 
    908 void Verifier::visitFPExtInst(FPExtInst &I) {
    909   // Get the source and destination types
    910   Type *SrcTy = I.getOperand(0)->getType();
    911   Type *DestTy = I.getType();
    912 
    913   // Get the size of the types in bits, we'll need this later
    914   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    915   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    916 
    917   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
    918   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
    919   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    920           "fpext source and destination must both be a vector or neither", &I);
    921   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
    922 
    923   visitInstruction(I);
    924 }
    925 
    926 void Verifier::visitUIToFPInst(UIToFPInst &I) {
    927   // Get the source and destination types
    928   Type *SrcTy = I.getOperand(0)->getType();
    929   Type *DestTy = I.getType();
    930 
    931   bool SrcVec = SrcTy->isVectorTy();
    932   bool DstVec = DestTy->isVectorTy();
    933 
    934   Assert1(SrcVec == DstVec,
    935           "UIToFP source and dest must both be vector or scalar", &I);
    936   Assert1(SrcTy->isIntOrIntVectorTy(),
    937           "UIToFP source must be integer or integer vector", &I);
    938   Assert1(DestTy->isFPOrFPVectorTy(),
    939           "UIToFP result must be FP or FP vector", &I);
    940 
    941   if (SrcVec && DstVec)
    942     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    943             cast<VectorType>(DestTy)->getNumElements(),
    944             "UIToFP source and dest vector length mismatch", &I);
    945 
    946   visitInstruction(I);
    947 }
    948 
    949 void Verifier::visitSIToFPInst(SIToFPInst &I) {
    950   // Get the source and destination types
    951   Type *SrcTy = I.getOperand(0)->getType();
    952   Type *DestTy = I.getType();
    953 
    954   bool SrcVec = SrcTy->isVectorTy();
    955   bool DstVec = DestTy->isVectorTy();
    956 
    957   Assert1(SrcVec == DstVec,
    958           "SIToFP source and dest must both be vector or scalar", &I);
    959   Assert1(SrcTy->isIntOrIntVectorTy(),
    960           "SIToFP source must be integer or integer vector", &I);
    961   Assert1(DestTy->isFPOrFPVectorTy(),
    962           "SIToFP result must be FP or FP vector", &I);
    963 
    964   if (SrcVec && DstVec)
    965     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    966             cast<VectorType>(DestTy)->getNumElements(),
    967             "SIToFP source and dest vector length mismatch", &I);
    968 
    969   visitInstruction(I);
    970 }
    971 
    972 void Verifier::visitFPToUIInst(FPToUIInst &I) {
    973   // Get the source and destination types
    974   Type *SrcTy = I.getOperand(0)->getType();
    975   Type *DestTy = I.getType();
    976 
    977   bool SrcVec = SrcTy->isVectorTy();
    978   bool DstVec = DestTy->isVectorTy();
    979 
    980   Assert1(SrcVec == DstVec,
    981           "FPToUI source and dest must both be vector or scalar", &I);
    982   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
    983           &I);
    984   Assert1(DestTy->isIntOrIntVectorTy(),
    985           "FPToUI result must be integer or integer vector", &I);
    986 
    987   if (SrcVec && DstVec)
    988     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    989             cast<VectorType>(DestTy)->getNumElements(),
    990             "FPToUI source and dest vector length mismatch", &I);
    991 
    992   visitInstruction(I);
    993 }
    994 
    995 void Verifier::visitFPToSIInst(FPToSIInst &I) {
    996   // Get the source and destination types
    997   Type *SrcTy = I.getOperand(0)->getType();
    998   Type *DestTy = I.getType();
    999 
   1000   bool SrcVec = SrcTy->isVectorTy();
   1001   bool DstVec = DestTy->isVectorTy();
   1002 
   1003   Assert1(SrcVec == DstVec,
   1004           "FPToSI source and dest must both be vector or scalar", &I);
   1005   Assert1(SrcTy->isFPOrFPVectorTy(),
   1006           "FPToSI source must be FP or FP vector", &I);
   1007   Assert1(DestTy->isIntOrIntVectorTy(),
   1008           "FPToSI result must be integer or integer vector", &I);
   1009 
   1010   if (SrcVec && DstVec)
   1011     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1012             cast<VectorType>(DestTy)->getNumElements(),
   1013             "FPToSI source and dest vector length mismatch", &I);
   1014 
   1015   visitInstruction(I);
   1016 }
   1017 
   1018 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
   1019   // Get the source and destination types
   1020   Type *SrcTy = I.getOperand(0)->getType();
   1021   Type *DestTy = I.getType();
   1022 
   1023   Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
   1024   Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
   1025 
   1026   visitInstruction(I);
   1027 }
   1028 
   1029 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
   1030   // Get the source and destination types
   1031   Type *SrcTy = I.getOperand(0)->getType();
   1032   Type *DestTy = I.getType();
   1033 
   1034   Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
   1035   Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
   1036 
   1037   visitInstruction(I);
   1038 }
   1039 
   1040 void Verifier::visitBitCastInst(BitCastInst &I) {
   1041   // Get the source and destination types
   1042   Type *SrcTy = I.getOperand(0)->getType();
   1043   Type *DestTy = I.getType();
   1044 
   1045   // Get the size of the types in bits, we'll need this later
   1046   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
   1047   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
   1048 
   1049   // BitCast implies a no-op cast of type only. No bits change.
   1050   // However, you can't cast pointers to anything but pointers.
   1051   Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
   1052           "Bitcast requires both operands to be pointer or neither", &I);
   1053   Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
   1054 
   1055   // Disallow aggregates.
   1056   Assert1(!SrcTy->isAggregateType(),
   1057           "Bitcast operand must not be aggregate", &I);
   1058   Assert1(!DestTy->isAggregateType(),
   1059           "Bitcast type must not be aggregate", &I);
   1060 
   1061   visitInstruction(I);
   1062 }
   1063 
   1064 /// visitPHINode - Ensure that a PHI node is well formed.
   1065 ///
   1066 void Verifier::visitPHINode(PHINode &PN) {
   1067   // Ensure that the PHI nodes are all grouped together at the top of the block.
   1068   // This can be tested by checking whether the instruction before this is
   1069   // either nonexistent (because this is begin()) or is a PHI node.  If not,
   1070   // then there is some other instruction before a PHI.
   1071   Assert2(&PN == &PN.getParent()->front() ||
   1072           isa<PHINode>(--BasicBlock::iterator(&PN)),
   1073           "PHI nodes not grouped at top of basic block!",
   1074           &PN, PN.getParent());
   1075 
   1076   // Check that all of the values of the PHI node have the same type as the
   1077   // result, and that the incoming blocks are really basic blocks.
   1078   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1079     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
   1080             "PHI node operands are not the same type as the result!", &PN);
   1081   }
   1082 
   1083   // All other PHI node constraints are checked in the visitBasicBlock method.
   1084 
   1085   visitInstruction(PN);
   1086 }
   1087 
   1088 void Verifier::VerifyCallSite(CallSite CS) {
   1089   Instruction *I = CS.getInstruction();
   1090 
   1091   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
   1092           "Called function must be a pointer!", I);
   1093   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
   1094 
   1095   Assert1(FPTy->getElementType()->isFunctionTy(),
   1096           "Called function is not pointer to function type!", I);
   1097   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
   1098 
   1099   // Verify that the correct number of arguments are being passed
   1100   if (FTy->isVarArg())
   1101     Assert1(CS.arg_size() >= FTy->getNumParams(),
   1102             "Called function requires more parameters than were provided!",I);
   1103   else
   1104     Assert1(CS.arg_size() == FTy->getNumParams(),
   1105             "Incorrect number of arguments passed to called function!", I);
   1106 
   1107   // Verify that all arguments to the call match the function type.
   1108   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1109     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
   1110             "Call parameter type does not match function signature!",
   1111             CS.getArgument(i), FTy->getParamType(i), I);
   1112 
   1113   const AttrListPtr &Attrs = CS.getAttributes();
   1114 
   1115   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
   1116           "Attributes after last parameter!", I);
   1117 
   1118   // Verify call attributes.
   1119   VerifyFunctionAttrs(FTy, Attrs, I);
   1120 
   1121   if (FTy->isVarArg())
   1122     // Check attributes on the varargs part.
   1123     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
   1124       Attributes Attr = Attrs.getParamAttributes(Idx);
   1125 
   1126       VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
   1127 
   1128       Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
   1129       Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
   1130               " cannot be used for vararg call arguments!", I);
   1131     }
   1132 
   1133   // Verify that there's no metadata unless it's a direct call to an intrinsic.
   1134   if (CS.getCalledFunction() == 0 ||
   1135       !CS.getCalledFunction()->getName().startswith("llvm.")) {
   1136     for (FunctionType::param_iterator PI = FTy->param_begin(),
   1137            PE = FTy->param_end(); PI != PE; ++PI)
   1138       Assert1(!(*PI)->isMetadataTy(),
   1139               "Function has metadata parameter but isn't an intrinsic", I);
   1140   }
   1141 
   1142   visitInstruction(*I);
   1143 }
   1144 
   1145 void Verifier::visitCallInst(CallInst &CI) {
   1146   VerifyCallSite(&CI);
   1147 
   1148   if (Function *F = CI.getCalledFunction())
   1149     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   1150       visitIntrinsicFunctionCall(ID, CI);
   1151 }
   1152 
   1153 void Verifier::visitInvokeInst(InvokeInst &II) {
   1154   VerifyCallSite(&II);
   1155   visitTerminatorInst(II);
   1156 }
   1157 
   1158 /// visitBinaryOperator - Check that both arguments to the binary operator are
   1159 /// of the same type!
   1160 ///
   1161 void Verifier::visitBinaryOperator(BinaryOperator &B) {
   1162   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
   1163           "Both operands to a binary operator are not of the same type!", &B);
   1164 
   1165   switch (B.getOpcode()) {
   1166   // Check that integer arithmetic operators are only used with
   1167   // integral operands.
   1168   case Instruction::Add:
   1169   case Instruction::Sub:
   1170   case Instruction::Mul:
   1171   case Instruction::SDiv:
   1172   case Instruction::UDiv:
   1173   case Instruction::SRem:
   1174   case Instruction::URem:
   1175     Assert1(B.getType()->isIntOrIntVectorTy(),
   1176             "Integer arithmetic operators only work with integral types!", &B);
   1177     Assert1(B.getType() == B.getOperand(0)->getType(),
   1178             "Integer arithmetic operators must have same type "
   1179             "for operands and result!", &B);
   1180     break;
   1181   // Check that floating-point arithmetic operators are only used with
   1182   // floating-point operands.
   1183   case Instruction::FAdd:
   1184   case Instruction::FSub:
   1185   case Instruction::FMul:
   1186   case Instruction::FDiv:
   1187   case Instruction::FRem:
   1188     Assert1(B.getType()->isFPOrFPVectorTy(),
   1189             "Floating-point arithmetic operators only work with "
   1190             "floating-point types!", &B);
   1191     Assert1(B.getType() == B.getOperand(0)->getType(),
   1192             "Floating-point arithmetic operators must have same type "
   1193             "for operands and result!", &B);
   1194     break;
   1195   // Check that logical operators are only used with integral operands.
   1196   case Instruction::And:
   1197   case Instruction::Or:
   1198   case Instruction::Xor:
   1199     Assert1(B.getType()->isIntOrIntVectorTy(),
   1200             "Logical operators only work with integral types!", &B);
   1201     Assert1(B.getType() == B.getOperand(0)->getType(),
   1202             "Logical operators must have same type for operands and result!",
   1203             &B);
   1204     break;
   1205   case Instruction::Shl:
   1206   case Instruction::LShr:
   1207   case Instruction::AShr:
   1208     Assert1(B.getType()->isIntOrIntVectorTy(),
   1209             "Shifts only work with integral types!", &B);
   1210     Assert1(B.getType() == B.getOperand(0)->getType(),
   1211             "Shift return type must be same as operands!", &B);
   1212     break;
   1213   default:
   1214     llvm_unreachable("Unknown BinaryOperator opcode!");
   1215   }
   1216 
   1217   visitInstruction(B);
   1218 }
   1219 
   1220 void Verifier::visitICmpInst(ICmpInst &IC) {
   1221   // Check that the operands are the same type
   1222   Type *Op0Ty = IC.getOperand(0)->getType();
   1223   Type *Op1Ty = IC.getOperand(1)->getType();
   1224   Assert1(Op0Ty == Op1Ty,
   1225           "Both operands to ICmp instruction are not of the same type!", &IC);
   1226   // Check that the operands are the right type
   1227   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
   1228           "Invalid operand types for ICmp instruction", &IC);
   1229   // Check that the predicate is valid.
   1230   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
   1231           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
   1232           "Invalid predicate in ICmp instruction!", &IC);
   1233 
   1234   visitInstruction(IC);
   1235 }
   1236 
   1237 void Verifier::visitFCmpInst(FCmpInst &FC) {
   1238   // Check that the operands are the same type
   1239   Type *Op0Ty = FC.getOperand(0)->getType();
   1240   Type *Op1Ty = FC.getOperand(1)->getType();
   1241   Assert1(Op0Ty == Op1Ty,
   1242           "Both operands to FCmp instruction are not of the same type!", &FC);
   1243   // Check that the operands are the right type
   1244   Assert1(Op0Ty->isFPOrFPVectorTy(),
   1245           "Invalid operand types for FCmp instruction", &FC);
   1246   // Check that the predicate is valid.
   1247   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
   1248           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
   1249           "Invalid predicate in FCmp instruction!", &FC);
   1250 
   1251   visitInstruction(FC);
   1252 }
   1253 
   1254 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
   1255   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
   1256                                               EI.getOperand(1)),
   1257           "Invalid extractelement operands!", &EI);
   1258   visitInstruction(EI);
   1259 }
   1260 
   1261 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
   1262   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
   1263                                              IE.getOperand(1),
   1264                                              IE.getOperand(2)),
   1265           "Invalid insertelement operands!", &IE);
   1266   visitInstruction(IE);
   1267 }
   1268 
   1269 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
   1270   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
   1271                                              SV.getOperand(2)),
   1272           "Invalid shufflevector operands!", &SV);
   1273   visitInstruction(SV);
   1274 }
   1275 
   1276 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1277   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
   1278   Type *ElTy =
   1279     GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
   1280                                       Idxs.begin(), Idxs.end());
   1281   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
   1282   Assert2(GEP.getType()->isPointerTy() &&
   1283           cast<PointerType>(GEP.getType())->getElementType() == ElTy,
   1284           "GEP is not of right type for indices!", &GEP, ElTy);
   1285   visitInstruction(GEP);
   1286 }
   1287 
   1288 void Verifier::visitLoadInst(LoadInst &LI) {
   1289   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
   1290   Assert1(PTy, "Load operand must be a pointer.", &LI);
   1291   Type *ElTy = PTy->getElementType();
   1292   Assert2(ElTy == LI.getType(),
   1293           "Load result type does not match pointer operand type!", &LI, ElTy);
   1294   visitInstruction(LI);
   1295 }
   1296 
   1297 void Verifier::visitStoreInst(StoreInst &SI) {
   1298   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
   1299   Assert1(PTy, "Store operand must be a pointer.", &SI);
   1300   Type *ElTy = PTy->getElementType();
   1301   Assert2(ElTy == SI.getOperand(0)->getType(),
   1302           "Stored value type does not match pointer operand type!",
   1303           &SI, ElTy);
   1304   visitInstruction(SI);
   1305 }
   1306 
   1307 void Verifier::visitAllocaInst(AllocaInst &AI) {
   1308   PointerType *PTy = AI.getType();
   1309   Assert1(PTy->getAddressSpace() == 0,
   1310           "Allocation instruction pointer not in the generic address space!",
   1311           &AI);
   1312   Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
   1313           &AI);
   1314   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
   1315           "Alloca array size must have integer type", &AI);
   1316   visitInstruction(AI);
   1317 }
   1318 
   1319 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
   1320   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
   1321                                            EVI.getIndices()) ==
   1322           EVI.getType(),
   1323           "Invalid ExtractValueInst operands!", &EVI);
   1324 
   1325   visitInstruction(EVI);
   1326 }
   1327 
   1328 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
   1329   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
   1330                                            IVI.getIndices()) ==
   1331           IVI.getOperand(1)->getType(),
   1332           "Invalid InsertValueInst operands!", &IVI);
   1333 
   1334   visitInstruction(IVI);
   1335 }
   1336 
   1337 /// verifyInstruction - Verify that an instruction is well formed.
   1338 ///
   1339 void Verifier::visitInstruction(Instruction &I) {
   1340   BasicBlock *BB = I.getParent();
   1341   Assert1(BB, "Instruction not embedded in basic block!", &I);
   1342 
   1343   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
   1344     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
   1345          UI != UE; ++UI)
   1346       Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
   1347               "Only PHI nodes may reference their own value!", &I);
   1348   }
   1349 
   1350   // Check that void typed values don't have names
   1351   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
   1352           "Instruction has a name, but provides a void value!", &I);
   1353 
   1354   // Check that the return value of the instruction is either void or a legal
   1355   // value type.
   1356   Assert1(I.getType()->isVoidTy() ||
   1357           I.getType()->isFirstClassType(),
   1358           "Instruction returns a non-scalar type!", &I);
   1359 
   1360   // Check that the instruction doesn't produce metadata. Calls are already
   1361   // checked against the callee type.
   1362   Assert1(!I.getType()->isMetadataTy() ||
   1363           isa<CallInst>(I) || isa<InvokeInst>(I),
   1364           "Invalid use of metadata!", &I);
   1365 
   1366   // Check that all uses of the instruction, if they are instructions
   1367   // themselves, actually have parent basic blocks.  If the use is not an
   1368   // instruction, it is an error!
   1369   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
   1370        UI != UE; ++UI) {
   1371     if (Instruction *Used = dyn_cast<Instruction>(*UI))
   1372       Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
   1373               " embedded in a basic block!", &I, Used);
   1374     else {
   1375       CheckFailed("Use of instruction is not an instruction!", *UI);
   1376       return;
   1377     }
   1378   }
   1379 
   1380   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1381     Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
   1382 
   1383     // Check to make sure that only first-class-values are operands to
   1384     // instructions.
   1385     if (!I.getOperand(i)->getType()->isFirstClassType()) {
   1386       Assert1(0, "Instruction operands must be first-class values!", &I);
   1387     }
   1388 
   1389     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
   1390       // Check to make sure that the "address of" an intrinsic function is never
   1391       // taken.
   1392       Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
   1393               "Cannot take the address of an intrinsic!", &I);
   1394       Assert1(F->getParent() == Mod, "Referencing function in another module!",
   1395               &I);
   1396     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
   1397       Assert1(OpBB->getParent() == BB->getParent(),
   1398               "Referring to a basic block in another function!", &I);
   1399     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
   1400       Assert1(OpArg->getParent() == BB->getParent(),
   1401               "Referring to an argument in another function!", &I);
   1402     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
   1403       Assert1(GV->getParent() == Mod, "Referencing global in another module!",
   1404               &I);
   1405     } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
   1406       BasicBlock *OpBlock = Op->getParent();
   1407 
   1408       // Check that a definition dominates all of its uses.
   1409       if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
   1410         // Invoke results are only usable in the normal destination, not in the
   1411         // exceptional destination.
   1412         BasicBlock *NormalDest = II->getNormalDest();
   1413 
   1414         Assert2(NormalDest != II->getUnwindDest(),
   1415                 "No uses of invoke possible due to dominance structure!",
   1416                 Op, &I);
   1417 
   1418         // PHI nodes differ from other nodes because they actually "use" the
   1419         // value in the predecessor basic blocks they correspond to.
   1420         BasicBlock *UseBlock = BB;
   1421         if (PHINode *PN = dyn_cast<PHINode>(&I)) {
   1422           unsigned j = PHINode::getIncomingValueNumForOperand(i);
   1423           UseBlock = PN->getIncomingBlock(j);
   1424         }
   1425         Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
   1426                 Op, &I);
   1427 
   1428         if (isa<PHINode>(I) && UseBlock == OpBlock) {
   1429           // Special case of a phi node in the normal destination or the unwind
   1430           // destination.
   1431           Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
   1432                   "Invoke result not available in the unwind destination!",
   1433                   Op, &I);
   1434         } else {
   1435           Assert2(DT->dominates(NormalDest, UseBlock) ||
   1436                   !DT->isReachableFromEntry(UseBlock),
   1437                   "Invoke result does not dominate all uses!", Op, &I);
   1438 
   1439           // If the normal successor of an invoke instruction has multiple
   1440           // predecessors, then the normal edge from the invoke is critical,
   1441           // so the invoke value can only be live if the destination block
   1442           // dominates all of it's predecessors (other than the invoke).
   1443           if (!NormalDest->getSinglePredecessor() &&
   1444               DT->isReachableFromEntry(UseBlock))
   1445             // If it is used by something non-phi, then the other case is that
   1446             // 'NormalDest' dominates all of its predecessors other than the
   1447             // invoke.  In this case, the invoke value can still be used.
   1448             for (pred_iterator PI = pred_begin(NormalDest),
   1449                  E = pred_end(NormalDest); PI != E; ++PI)
   1450               if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
   1451                   DT->isReachableFromEntry(*PI)) {
   1452                 CheckFailed("Invoke result does not dominate all uses!", Op,&I);
   1453                 return;
   1454               }
   1455         }
   1456       } else if (PHINode *PN = dyn_cast<PHINode>(&I)) {
   1457         // PHI nodes are more difficult than other nodes because they actually
   1458         // "use" the value in the predecessor basic blocks they correspond to.
   1459         unsigned j = PHINode::getIncomingValueNumForOperand(i);
   1460         BasicBlock *PredBB = PN->getIncomingBlock(j);
   1461         Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
   1462                            !DT->isReachableFromEntry(PredBB)),
   1463                 "Instruction does not dominate all uses!", Op, &I);
   1464       } else {
   1465         if (OpBlock == BB) {
   1466           // If they are in the same basic block, make sure that the definition
   1467           // comes before the use.
   1468           Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
   1469                   "Instruction does not dominate all uses!", Op, &I);
   1470         }
   1471 
   1472         // Definition must dominate use unless use is unreachable!
   1473         Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
   1474                 !DT->isReachableFromEntry(BB),
   1475                 "Instruction does not dominate all uses!", Op, &I);
   1476       }
   1477     } else if (isa<InlineAsm>(I.getOperand(i))) {
   1478       Assert1((i + 1 == e && isa<CallInst>(I)) ||
   1479               (i + 3 == e && isa<InvokeInst>(I)),
   1480               "Cannot take the address of an inline asm!", &I);
   1481     }
   1482   }
   1483   InstsInThisBlock.insert(&I);
   1484 }
   1485 
   1486 // Flags used by TableGen to mark intrinsic parameters with the
   1487 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
   1488 static const unsigned ExtendedElementVectorType = 0x40000000;
   1489 static const unsigned TruncatedElementVectorType = 0x20000000;
   1490 
   1491 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
   1492 ///
   1493 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
   1494   Function *IF = CI.getCalledFunction();
   1495   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
   1496           IF);
   1497 
   1498 #define GET_INTRINSIC_VERIFIER
   1499 #include "llvm/Intrinsics.gen"
   1500 #undef GET_INTRINSIC_VERIFIER
   1501 
   1502   // If the intrinsic takes MDNode arguments, verify that they are either global
   1503   // or are local to *this* function.
   1504   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
   1505     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
   1506       visitMDNode(*MD, CI.getParent()->getParent());
   1507 
   1508   switch (ID) {
   1509   default:
   1510     break;
   1511   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
   1512     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
   1513                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
   1514     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
   1515     Assert1(MD->getNumOperands() == 1,
   1516                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
   1517   } break;
   1518   case Intrinsic::memcpy:
   1519   case Intrinsic::memmove:
   1520   case Intrinsic::memset:
   1521     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
   1522             "alignment argument of memory intrinsics must be a constant int",
   1523             &CI);
   1524     Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
   1525             "isvolatile argument of memory intrinsics must be a constant int",
   1526             &CI);
   1527     break;
   1528   case Intrinsic::gcroot:
   1529   case Intrinsic::gcwrite:
   1530   case Intrinsic::gcread:
   1531     if (ID == Intrinsic::gcroot) {
   1532       AllocaInst *AI =
   1533         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
   1534       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
   1535       Assert1(isa<Constant>(CI.getArgOperand(1)),
   1536               "llvm.gcroot parameter #2 must be a constant.", &CI);
   1537       if (!AI->getType()->getElementType()->isPointerTy()) {
   1538         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
   1539                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
   1540                 "or argument #2 must be a non-null constant.", &CI);
   1541       }
   1542     }
   1543 
   1544     Assert1(CI.getParent()->getParent()->hasGC(),
   1545             "Enclosing function does not use GC.", &CI);
   1546     break;
   1547   case Intrinsic::init_trampoline:
   1548     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
   1549             "llvm.init_trampoline parameter #2 must resolve to a function.",
   1550             &CI);
   1551     break;
   1552   case Intrinsic::prefetch:
   1553     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
   1554             isa<ConstantInt>(CI.getArgOperand(2)) &&
   1555             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
   1556             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
   1557             "invalid arguments to llvm.prefetch",
   1558             &CI);
   1559     break;
   1560   case Intrinsic::stackprotector:
   1561     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
   1562             "llvm.stackprotector parameter #2 must resolve to an alloca.",
   1563             &CI);
   1564     break;
   1565   case Intrinsic::lifetime_start:
   1566   case Intrinsic::lifetime_end:
   1567   case Intrinsic::invariant_start:
   1568     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
   1569             "size argument of memory use markers must be a constant integer",
   1570             &CI);
   1571     break;
   1572   case Intrinsic::invariant_end:
   1573     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   1574             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
   1575     break;
   1576   }
   1577 }
   1578 
   1579 /// Produce a string to identify an intrinsic parameter or return value.
   1580 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
   1581 /// parameters beginning with NumRets.
   1582 ///
   1583 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
   1584   if (ArgNo >= NumRets)
   1585     return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
   1586   if (NumRets == 1)
   1587     return "Intrinsic result type";
   1588   return "Intrinsic result type #" + utostr(ArgNo);
   1589 }
   1590 
   1591 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
   1592                                 int VT, unsigned ArgNo, std::string &Suffix) {
   1593   FunctionType *FTy = F->getFunctionType();
   1594 
   1595   unsigned NumElts = 0;
   1596   Type *EltTy = Ty;
   1597   VectorType *VTy = dyn_cast<VectorType>(Ty);
   1598   if (VTy) {
   1599     EltTy = VTy->getElementType();
   1600     NumElts = VTy->getNumElements();
   1601   }
   1602 
   1603   Type *RetTy = FTy->getReturnType();
   1604   StructType *ST = dyn_cast<StructType>(RetTy);
   1605   unsigned NumRetVals;
   1606   if (RetTy->isVoidTy())
   1607     NumRetVals = 0;
   1608   else if (ST)
   1609     NumRetVals = ST->getNumElements();
   1610   else
   1611     NumRetVals = 1;
   1612 
   1613   if (VT < 0) {
   1614     int Match = ~VT;
   1615 
   1616     // Check flags that indicate a type that is an integral vector type with
   1617     // elements that are larger or smaller than the elements of the matched
   1618     // type.
   1619     if ((Match & (ExtendedElementVectorType |
   1620                   TruncatedElementVectorType)) != 0) {
   1621       IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
   1622       if (!VTy || !IEltTy) {
   1623         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1624                     "an integral vector type.", F);
   1625         return false;
   1626       }
   1627       // Adjust the current Ty (in the opposite direction) rather than
   1628       // the type being matched against.
   1629       if ((Match & ExtendedElementVectorType) != 0) {
   1630         if ((IEltTy->getBitWidth() & 1) != 0) {
   1631           CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
   1632                       "element bit-width is odd.", F);
   1633           return false;
   1634         }
   1635         Ty = VectorType::getTruncatedElementVectorType(VTy);
   1636       } else
   1637         Ty = VectorType::getExtendedElementVectorType(VTy);
   1638       Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
   1639     }
   1640 
   1641     if (Match <= static_cast<int>(NumRetVals - 1)) {
   1642       if (ST)
   1643         RetTy = ST->getElementType(Match);
   1644 
   1645       if (Ty != RetTy) {
   1646         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
   1647                     "match return type.", F);
   1648         return false;
   1649       }
   1650     } else {
   1651       if (Ty != FTy->getParamType(Match - NumRetVals)) {
   1652         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
   1653                     "match parameter %" + utostr(Match - NumRetVals) + ".", F);
   1654         return false;
   1655       }
   1656     }
   1657   } else if (VT == MVT::iAny) {
   1658     if (!EltTy->isIntegerTy()) {
   1659       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1660                   "an integer type.", F);
   1661       return false;
   1662     }
   1663 
   1664     unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
   1665     Suffix += ".";
   1666 
   1667     if (EltTy != Ty)
   1668       Suffix += "v" + utostr(NumElts);
   1669 
   1670     Suffix += "i" + utostr(GotBits);
   1671 
   1672     // Check some constraints on various intrinsics.
   1673     switch (ID) {
   1674     default: break; // Not everything needs to be checked.
   1675     case Intrinsic::bswap:
   1676       if (GotBits < 16 || GotBits % 16 != 0) {
   1677         CheckFailed("Intrinsic requires even byte width argument", F);
   1678         return false;
   1679       }
   1680       break;
   1681     }
   1682   } else if (VT == MVT::fAny) {
   1683     if (!EltTy->isFloatingPointTy()) {
   1684       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1685                   "a floating-point type.", F);
   1686       return false;
   1687     }
   1688 
   1689     Suffix += ".";
   1690 
   1691     if (EltTy != Ty)
   1692       Suffix += "v" + utostr(NumElts);
   1693 
   1694     Suffix += EVT::getEVT(EltTy).getEVTString();
   1695   } else if (VT == MVT::vAny) {
   1696     if (!VTy) {
   1697       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
   1698                   F);
   1699       return false;
   1700     }
   1701     Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
   1702   } else if (VT == MVT::iPTR) {
   1703     if (!Ty->isPointerTy()) {
   1704       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
   1705                   "pointer and a pointer is required.", F);
   1706       return false;
   1707     }
   1708   } else if (VT == MVT::iPTRAny) {
   1709     // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
   1710     // and iPTR. In the verifier, we can not distinguish which case we have so
   1711     // allow either case to be legal.
   1712     if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
   1713       EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
   1714       if (PointeeVT == MVT::Other) {
   1715         CheckFailed("Intrinsic has pointer to complex type.");
   1716         return false;
   1717       }
   1718       Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
   1719         PointeeVT.getEVTString();
   1720     } else {
   1721       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
   1722                   "pointer and a pointer is required.", F);
   1723       return false;
   1724     }
   1725   } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
   1726     EVT VVT = EVT((MVT::SimpleValueType)VT);
   1727 
   1728     // If this is a vector argument, verify the number and type of elements.
   1729     if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
   1730       CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
   1731       return false;
   1732     }
   1733 
   1734     if (VVT.getVectorNumElements() != NumElts) {
   1735       CheckFailed("Intrinsic prototype has incorrect number of "
   1736                   "vector elements!", F);
   1737       return false;
   1738     }
   1739   } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
   1740              EltTy) {
   1741     CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
   1742     return false;
   1743   } else if (EltTy != Ty) {
   1744     CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
   1745                 "and a scalar is required.", F);
   1746     return false;
   1747   }
   1748 
   1749   return true;
   1750 }
   1751 
   1752 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
   1753 /// Intrinsics.gen.  This implements a little state machine that verifies the
   1754 /// prototype of intrinsics.
   1755 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
   1756                                         unsigned NumRetVals,
   1757                                         unsigned NumParams, ...) {
   1758   va_list VA;
   1759   va_start(VA, NumParams);
   1760   FunctionType *FTy = F->getFunctionType();
   1761 
   1762   // For overloaded intrinsics, the Suffix of the function name must match the
   1763   // types of the arguments. This variable keeps track of the expected
   1764   // suffix, to be checked at the end.
   1765   std::string Suffix;
   1766 
   1767   if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
   1768     CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
   1769     return;
   1770   }
   1771 
   1772   Type *Ty = FTy->getReturnType();
   1773   StructType *ST = dyn_cast<StructType>(Ty);
   1774 
   1775   if (NumRetVals == 0 && !Ty->isVoidTy()) {
   1776     CheckFailed("Intrinsic should return void", F);
   1777     return;
   1778   }
   1779 
   1780   // Verify the return types.
   1781   if (ST && ST->getNumElements() != NumRetVals) {
   1782     CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
   1783     return;
   1784   }
   1785 
   1786   for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
   1787     int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
   1788 
   1789     if (ST) Ty = ST->getElementType(ArgNo);
   1790     if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
   1791       break;
   1792   }
   1793 
   1794   // Verify the parameter types.
   1795   for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
   1796     int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
   1797 
   1798     if (VT == MVT::isVoid && ArgNo > 0) {
   1799       if (!FTy->isVarArg())
   1800         CheckFailed("Intrinsic prototype has no '...'!", F);
   1801       break;
   1802     }
   1803 
   1804     if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
   1805                           ArgNo + NumRetVals, Suffix))
   1806       break;
   1807   }
   1808 
   1809   va_end(VA);
   1810 
   1811   // For intrinsics without pointer arguments, if we computed a Suffix then the
   1812   // intrinsic is overloaded and we need to make sure that the name of the
   1813   // function is correct. We add the suffix to the name of the intrinsic and
   1814   // compare against the given function name. If they are not the same, the
   1815   // function name is invalid. This ensures that overloading of intrinsics
   1816   // uses a sane and consistent naming convention.  Note that intrinsics with
   1817   // pointer argument may or may not be overloaded so we will check assuming it
   1818   // has a suffix and not.
   1819   if (!Suffix.empty()) {
   1820     std::string Name(Intrinsic::getName(ID));
   1821     if (Name + Suffix != F->getName()) {
   1822       CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
   1823                   F->getName().substr(Name.length()) + "'. It should be '" +
   1824                   Suffix + "'", F);
   1825     }
   1826   }
   1827 
   1828   // Check parameter attributes.
   1829   Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
   1830           "Intrinsic has wrong parameter attributes!", F);
   1831 }
   1832 
   1833 
   1834 //===----------------------------------------------------------------------===//
   1835 //  Implement the public interfaces to this file...
   1836 //===----------------------------------------------------------------------===//
   1837 
   1838 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
   1839   return new Verifier(action);
   1840 }
   1841 
   1842 
   1843 /// verifyFunction - Check a function for errors, printing messages on stderr.
   1844 /// Return true if the function is corrupt.
   1845 ///
   1846 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
   1847   Function &F = const_cast<Function&>(f);
   1848   assert(!F.isDeclaration() && "Cannot verify external functions");
   1849 
   1850   FunctionPassManager FPM(F.getParent());
   1851   Verifier *V = new Verifier(action);
   1852   FPM.add(V);
   1853   FPM.run(F);
   1854   return V->Broken;
   1855 }
   1856 
   1857 /// verifyModule - Check a module for errors, printing messages on stderr.
   1858 /// Return true if the module is corrupt.
   1859 ///
   1860 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
   1861                         std::string *ErrorInfo) {
   1862   PassManager PM;
   1863   Verifier *V = new Verifier(action);
   1864   PM.add(V);
   1865   PM.run(const_cast<Module&>(M));
   1866 
   1867   if (ErrorInfo && V->Broken)
   1868     *ErrorInfo = V->MessagesStr.str();
   1869   return V->Broken;
   1870 }
   1871