Home | History | Annotate | Download | only in vm
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "Dalvik.h"
     18 
     19 #include <fcntl.h>
     20 #include <stdlib.h>
     21 #include <unistd.h>
     22 #include <pthread.h>
     23 #include <time.h>
     24 #include <errno.h>
     25 
     26 /*
     27  * Every Object has a monitor associated with it, but not every Object is
     28  * actually locked.  Even the ones that are locked do not need a
     29  * full-fledged monitor until a) there is actual contention or b) wait()
     30  * is called on the Object.
     31  *
     32  * For Dalvik, we have implemented a scheme similar to the one described
     33  * in Bacon et al.'s "Thin locks: featherweight synchronization for Java"
     34  * (ACM 1998).  Things are even easier for us, though, because we have
     35  * a full 32 bits to work with.
     36  *
     37  * The two states of an Object's lock are referred to as "thin" and
     38  * "fat".  A lock may transition from the "thin" state to the "fat"
     39  * state and this transition is referred to as inflation.  Once a lock
     40  * has been inflated it remains in the "fat" state indefinitely.
     41  *
     42  * The lock value itself is stored in Object.lock.  The LSB of the
     43  * lock encodes its state.  When cleared, the lock is in the "thin"
     44  * state and its bits are formatted as follows:
     45  *
     46  *    [31 ---- 19] [18 ---- 3] [2 ---- 1] [0]
     47  *     lock count   thread id  hash state  0
     48  *
     49  * When set, the lock is in the "fat" state and its bits are formatted
     50  * as follows:
     51  *
     52  *    [31 ---- 3] [2 ---- 1] [0]
     53  *      pointer   hash state  1
     54  *
     55  * For an in-depth description of the mechanics of thin-vs-fat locking,
     56  * read the paper referred to above.
     57  */
     58 
     59 /*
     60  * Monitors provide:
     61  *  - mutually exclusive access to resources
     62  *  - a way for multiple threads to wait for notification
     63  *
     64  * In effect, they fill the role of both mutexes and condition variables.
     65  *
     66  * Only one thread can own the monitor at any time.  There may be several
     67  * threads waiting on it (the wait call unlocks it).  One or more waiting
     68  * threads may be getting interrupted or notified at any given time.
     69  *
     70  * TODO: the various members of monitor are not SMP-safe.
     71  */
     72 struct Monitor {
     73     Thread*     owner;          /* which thread currently owns the lock? */
     74     int         lockCount;      /* owner's recursive lock depth */
     75     Object*     obj;            /* what object are we part of [debug only] */
     76 
     77     Thread*     waitSet;	/* threads currently waiting on this monitor */
     78 
     79     pthread_mutex_t lock;
     80 
     81     Monitor*    next;
     82 
     83     /*
     84      * Who last acquired this monitor, when lock sampling is enabled.
     85      * Even when enabled, ownerFileName may be NULL.
     86      */
     87     const char* ownerFileName;
     88     u4          ownerLineNumber;
     89 };
     90 
     91 
     92 /*
     93  * Create and initialize a monitor.
     94  */
     95 Monitor* dvmCreateMonitor(Object* obj)
     96 {
     97     Monitor* mon;
     98 
     99     mon = (Monitor*) calloc(1, sizeof(Monitor));
    100     if (mon == NULL) {
    101         LOGE("Unable to allocate monitor");
    102         dvmAbort();
    103     }
    104     if (((u4)mon & 7) != 0) {
    105         LOGE("Misaligned monitor: %p", mon);
    106         dvmAbort();
    107     }
    108     mon->obj = obj;
    109     dvmInitMutex(&mon->lock);
    110 
    111     /* replace the head of the list with the new monitor */
    112     do {
    113         mon->next = gDvm.monitorList;
    114     } while (android_atomic_release_cas((int32_t)mon->next, (int32_t)mon,
    115             (int32_t*)(void*)&gDvm.monitorList) != 0);
    116 
    117     return mon;
    118 }
    119 
    120 /*
    121  * Free the monitor list.  Only used when shutting the VM down.
    122  */
    123 void dvmFreeMonitorList()
    124 {
    125     Monitor* mon;
    126     Monitor* nextMon;
    127 
    128     mon = gDvm.monitorList;
    129     while (mon != NULL) {
    130         nextMon = mon->next;
    131         free(mon);
    132         mon = nextMon;
    133     }
    134 }
    135 
    136 /*
    137  * Get the object that a monitor is part of.
    138  */
    139 Object* dvmGetMonitorObject(Monitor* mon)
    140 {
    141     if (mon == NULL)
    142         return NULL;
    143     else
    144         return mon->obj;
    145 }
    146 
    147 /*
    148  * Returns the thread id of the thread owning the given lock.
    149  */
    150 static u4 lockOwner(Object* obj)
    151 {
    152     Thread *owner;
    153     u4 lock;
    154 
    155     assert(obj != NULL);
    156     /*
    157      * Since we're reading the lock value multiple times, latch it so
    158      * that it doesn't change out from under us if we get preempted.
    159      */
    160     lock = obj->lock;
    161     if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
    162         return LW_LOCK_OWNER(lock);
    163     } else {
    164         owner = LW_MONITOR(lock)->owner;
    165         return owner ? owner->threadId : 0;
    166     }
    167 }
    168 
    169 /*
    170  * Get the thread that holds the lock on the specified object.  The
    171  * object may be unlocked, thin-locked, or fat-locked.
    172  *
    173  * The caller must lock the thread list before calling here.
    174  */
    175 Thread* dvmGetObjectLockHolder(Object* obj)
    176 {
    177     u4 threadId = lockOwner(obj);
    178 
    179     if (threadId == 0)
    180         return NULL;
    181     return dvmGetThreadByThreadId(threadId);
    182 }
    183 
    184 /*
    185  * Checks whether the given thread holds the given
    186  * objects's lock.
    187  */
    188 bool dvmHoldsLock(Thread* thread, Object* obj)
    189 {
    190     if (thread == NULL || obj == NULL) {
    191         return false;
    192     } else {
    193         return thread->threadId == lockOwner(obj);
    194     }
    195 }
    196 
    197 /*
    198  * Free the monitor associated with an object and make the object's lock
    199  * thin again.  This is called during garbage collection.
    200  */
    201 static void freeMonitor(Monitor *mon)
    202 {
    203     assert(mon != NULL);
    204     assert(mon->obj != NULL);
    205     assert(LW_SHAPE(mon->obj->lock) == LW_SHAPE_FAT);
    206 
    207     /* This lock is associated with an object
    208      * that's being swept.  The only possible way
    209      * anyone could be holding this lock would be
    210      * if some JNI code locked but didn't unlock
    211      * the object, in which case we've got some bad
    212      * native code somewhere.
    213      */
    214     assert(pthread_mutex_trylock(&mon->lock) == 0);
    215     assert(pthread_mutex_unlock(&mon->lock) == 0);
    216     dvmDestroyMutex(&mon->lock);
    217     free(mon);
    218 }
    219 
    220 /*
    221  * Frees monitor objects belonging to unmarked objects.
    222  */
    223 void dvmSweepMonitorList(Monitor** mon, int (*isUnmarkedObject)(void*))
    224 {
    225     Monitor handle;
    226     Monitor *prev, *curr;
    227     Object *obj;
    228 
    229     assert(mon != NULL);
    230     assert(isUnmarkedObject != NULL);
    231     prev = &handle;
    232     prev->next = curr = *mon;
    233     while (curr != NULL) {
    234         obj = curr->obj;
    235         if (obj != NULL && (*isUnmarkedObject)(obj) != 0) {
    236             prev->next = curr->next;
    237             freeMonitor(curr);
    238             curr = prev->next;
    239         } else {
    240             prev = curr;
    241             curr = curr->next;
    242         }
    243     }
    244     *mon = handle.next;
    245 }
    246 
    247 static char *logWriteInt(char *dst, int value)
    248 {
    249     *dst++ = EVENT_TYPE_INT;
    250     set4LE((u1 *)dst, value);
    251     return dst + 4;
    252 }
    253 
    254 static char *logWriteString(char *dst, const char *value, size_t len)
    255 {
    256     *dst++ = EVENT_TYPE_STRING;
    257     len = len < 32 ? len : 32;
    258     set4LE((u1 *)dst, len);
    259     dst += 4;
    260     memcpy(dst, value, len);
    261     return dst + len;
    262 }
    263 
    264 #define EVENT_LOG_TAG_dvm_lock_sample 20003
    265 
    266 static void logContentionEvent(Thread *self, u4 waitMs, u4 samplePercent,
    267                                const char *ownerFileName, u4 ownerLineNumber)
    268 {
    269     const StackSaveArea *saveArea;
    270     const Method *meth;
    271     u4 relativePc;
    272     char eventBuffer[174];
    273     const char *fileName;
    274     char procName[33];
    275     char *cp;
    276     size_t len;
    277     int fd;
    278 
    279     saveArea = SAVEAREA_FROM_FP(self->interpSave.curFrame);
    280     meth = saveArea->method;
    281     cp = eventBuffer;
    282 
    283     /* Emit the event list length, 1 byte. */
    284     *cp++ = 9;
    285 
    286     /* Emit the process name, <= 37 bytes. */
    287     fd = open("/proc/self/cmdline", O_RDONLY);
    288     memset(procName, 0, sizeof(procName));
    289     read(fd, procName, sizeof(procName) - 1);
    290     close(fd);
    291     len = strlen(procName);
    292     cp = logWriteString(cp, procName, len);
    293 
    294     /* Emit the sensitive thread ("main thread") status, 5 bytes. */
    295     bool isSensitive = false;
    296     if (gDvm.isSensitiveThreadHook != NULL) {
    297         isSensitive = gDvm.isSensitiveThreadHook();
    298     }
    299     cp = logWriteInt(cp, isSensitive);
    300 
    301     /* Emit self thread name string, <= 37 bytes. */
    302     std::string selfName = dvmGetThreadName(self);
    303     cp = logWriteString(cp, selfName.c_str(), selfName.size());
    304 
    305     /* Emit the wait time, 5 bytes. */
    306     cp = logWriteInt(cp, waitMs);
    307 
    308     /* Emit the source code file name, <= 37 bytes. */
    309     fileName = dvmGetMethodSourceFile(meth);
    310     if (fileName == NULL) fileName = "";
    311     cp = logWriteString(cp, fileName, strlen(fileName));
    312 
    313     /* Emit the source code line number, 5 bytes. */
    314     relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
    315     cp = logWriteInt(cp, dvmLineNumFromPC(meth, relativePc));
    316 
    317     /* Emit the lock owner source code file name, <= 37 bytes. */
    318     if (ownerFileName == NULL) {
    319         ownerFileName = "";
    320     } else if (strcmp(fileName, ownerFileName) == 0) {
    321         /* Common case, so save on log space. */
    322         ownerFileName = "-";
    323     }
    324     cp = logWriteString(cp, ownerFileName, strlen(ownerFileName));
    325 
    326     /* Emit the source code line number, 5 bytes. */
    327     cp = logWriteInt(cp, ownerLineNumber);
    328 
    329     /* Emit the sample percentage, 5 bytes. */
    330     cp = logWriteInt(cp, samplePercent);
    331 
    332     assert((size_t)(cp - eventBuffer) <= sizeof(eventBuffer));
    333     android_btWriteLog(EVENT_LOG_TAG_dvm_lock_sample,
    334                        EVENT_TYPE_LIST,
    335                        eventBuffer,
    336                        (size_t)(cp - eventBuffer));
    337 }
    338 
    339 /*
    340  * Lock a monitor.
    341  */
    342 static void lockMonitor(Thread* self, Monitor* mon)
    343 {
    344     ThreadStatus oldStatus;
    345     u4 waitThreshold, samplePercent;
    346     u8 waitStart, waitEnd, waitMs;
    347 
    348     if (mon->owner == self) {
    349         mon->lockCount++;
    350         return;
    351     }
    352     if (dvmTryLockMutex(&mon->lock) != 0) {
    353         oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
    354         waitThreshold = gDvm.lockProfThreshold;
    355         if (waitThreshold) {
    356             waitStart = dvmGetRelativeTimeUsec();
    357         }
    358         const char* currentOwnerFileName = mon->ownerFileName;
    359         u4 currentOwnerLineNumber = mon->ownerLineNumber;
    360 
    361         dvmLockMutex(&mon->lock);
    362         if (waitThreshold) {
    363             waitEnd = dvmGetRelativeTimeUsec();
    364         }
    365         dvmChangeStatus(self, oldStatus);
    366         if (waitThreshold) {
    367             waitMs = (waitEnd - waitStart) / 1000;
    368             if (waitMs >= waitThreshold) {
    369                 samplePercent = 100;
    370             } else {
    371                 samplePercent = 100 * waitMs / waitThreshold;
    372             }
    373             if (samplePercent != 0 && ((u4)rand() % 100 < samplePercent)) {
    374                 logContentionEvent(self, waitMs, samplePercent,
    375                                    currentOwnerFileName, currentOwnerLineNumber);
    376             }
    377         }
    378     }
    379     mon->owner = self;
    380     assert(mon->lockCount == 0);
    381 
    382     // When debugging, save the current monitor holder for future
    383     // acquisition failures to use in sampled logging.
    384     if (gDvm.lockProfThreshold > 0) {
    385         const StackSaveArea *saveArea;
    386         const Method *meth;
    387         mon->ownerLineNumber = 0;
    388         if (self->interpSave.curFrame == NULL) {
    389             mon->ownerFileName = "no_frame";
    390         } else if ((saveArea =
    391                    SAVEAREA_FROM_FP(self->interpSave.curFrame)) == NULL) {
    392             mon->ownerFileName = "no_save_area";
    393         } else if ((meth = saveArea->method) == NULL) {
    394             mon->ownerFileName = "no_method";
    395         } else {
    396             u4 relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
    397             mon->ownerFileName = (char*) dvmGetMethodSourceFile(meth);
    398             if (mon->ownerFileName == NULL) {
    399                 mon->ownerFileName = "no_method_file";
    400             } else {
    401                 mon->ownerLineNumber = dvmLineNumFromPC(meth, relativePc);
    402             }
    403         }
    404     }
    405 }
    406 
    407 /*
    408  * Try to lock a monitor.
    409  *
    410  * Returns "true" on success.
    411  */
    412 #ifdef WITH_COPYING_GC
    413 static bool tryLockMonitor(Thread* self, Monitor* mon)
    414 {
    415     if (mon->owner == self) {
    416         mon->lockCount++;
    417         return true;
    418     } else {
    419         if (dvmTryLockMutex(&mon->lock) == 0) {
    420             mon->owner = self;
    421             assert(mon->lockCount == 0);
    422             return true;
    423         } else {
    424             return false;
    425         }
    426     }
    427 }
    428 #endif
    429 
    430 /*
    431  * Unlock a monitor.
    432  *
    433  * Returns true if the unlock succeeded.
    434  * If the unlock failed, an exception will be pending.
    435  */
    436 static bool unlockMonitor(Thread* self, Monitor* mon)
    437 {
    438     assert(self != NULL);
    439     assert(mon != NULL);
    440     if (mon->owner == self) {
    441         /*
    442          * We own the monitor, so nobody else can be in here.
    443          */
    444         if (mon->lockCount == 0) {
    445             mon->owner = NULL;
    446             mon->ownerFileName = "unlocked";
    447             mon->ownerLineNumber = 0;
    448             dvmUnlockMutex(&mon->lock);
    449         } else {
    450             mon->lockCount--;
    451         }
    452     } else {
    453         /*
    454          * We don't own this, so we're not allowed to unlock it.
    455          * The JNI spec says that we should throw IllegalMonitorStateException
    456          * in this case.
    457          */
    458         dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
    459         return false;
    460     }
    461     return true;
    462 }
    463 
    464 /*
    465  * Checks the wait set for circular structure.  Returns 0 if the list
    466  * is not circular.  Otherwise, returns 1.  Used only by asserts.
    467  */
    468 #ifndef NDEBUG
    469 static int waitSetCheck(Monitor *mon)
    470 {
    471     Thread *fast, *slow;
    472     size_t n;
    473 
    474     assert(mon != NULL);
    475     fast = slow = mon->waitSet;
    476     n = 0;
    477     for (;;) {
    478         if (fast == NULL) return 0;
    479         if (fast->waitNext == NULL) return 0;
    480         if (fast == slow && n > 0) return 1;
    481         n += 2;
    482         fast = fast->waitNext->waitNext;
    483         slow = slow->waitNext;
    484     }
    485 }
    486 #endif
    487 
    488 /*
    489  * Links a thread into a monitor's wait set.  The monitor lock must be
    490  * held by the caller of this routine.
    491  */
    492 static void waitSetAppend(Monitor *mon, Thread *thread)
    493 {
    494     Thread *elt;
    495 
    496     assert(mon != NULL);
    497     assert(mon->owner == dvmThreadSelf());
    498     assert(thread != NULL);
    499     assert(thread->waitNext == NULL);
    500     assert(waitSetCheck(mon) == 0);
    501     if (mon->waitSet == NULL) {
    502         mon->waitSet = thread;
    503         return;
    504     }
    505     elt = mon->waitSet;
    506     while (elt->waitNext != NULL) {
    507         elt = elt->waitNext;
    508     }
    509     elt->waitNext = thread;
    510 }
    511 
    512 /*
    513  * Unlinks a thread from a monitor's wait set.  The monitor lock must
    514  * be held by the caller of this routine.
    515  */
    516 static void waitSetRemove(Monitor *mon, Thread *thread)
    517 {
    518     Thread *elt;
    519 
    520     assert(mon != NULL);
    521     assert(mon->owner == dvmThreadSelf());
    522     assert(thread != NULL);
    523     assert(waitSetCheck(mon) == 0);
    524     if (mon->waitSet == NULL) {
    525         return;
    526     }
    527     if (mon->waitSet == thread) {
    528         mon->waitSet = thread->waitNext;
    529         thread->waitNext = NULL;
    530         return;
    531     }
    532     elt = mon->waitSet;
    533     while (elt->waitNext != NULL) {
    534         if (elt->waitNext == thread) {
    535             elt->waitNext = thread->waitNext;
    536             thread->waitNext = NULL;
    537             return;
    538         }
    539         elt = elt->waitNext;
    540     }
    541 }
    542 
    543 /*
    544  * Converts the given relative waiting time into an absolute time.
    545  */
    546 static void absoluteTime(s8 msec, s4 nsec, struct timespec *ts)
    547 {
    548     s8 endSec;
    549 
    550 #ifdef HAVE_TIMEDWAIT_MONOTONIC
    551     clock_gettime(CLOCK_MONOTONIC, ts);
    552 #else
    553     {
    554         struct timeval tv;
    555         gettimeofday(&tv, NULL);
    556         ts->tv_sec = tv.tv_sec;
    557         ts->tv_nsec = tv.tv_usec * 1000;
    558     }
    559 #endif
    560     endSec = ts->tv_sec + msec / 1000;
    561     if (endSec >= 0x7fffffff) {
    562         LOGV("NOTE: end time exceeds epoch");
    563         endSec = 0x7ffffffe;
    564     }
    565     ts->tv_sec = endSec;
    566     ts->tv_nsec = (ts->tv_nsec + (msec % 1000) * 1000000) + nsec;
    567 
    568     /* catch rollover */
    569     if (ts->tv_nsec >= 1000000000L) {
    570         ts->tv_sec++;
    571         ts->tv_nsec -= 1000000000L;
    572     }
    573 }
    574 
    575 int dvmRelativeCondWait(pthread_cond_t* cond, pthread_mutex_t* mutex,
    576                         s8 msec, s4 nsec)
    577 {
    578     int ret;
    579     struct timespec ts;
    580     absoluteTime(msec, nsec, &ts);
    581 #if defined(HAVE_TIMEDWAIT_MONOTONIC)
    582     ret = pthread_cond_timedwait_monotonic(cond, mutex, &ts);
    583 #else
    584     ret = pthread_cond_timedwait(cond, mutex, &ts);
    585 #endif
    586     assert(ret == 0 || ret == ETIMEDOUT);
    587     return ret;
    588 }
    589 
    590 /*
    591  * Wait on a monitor until timeout, interrupt, or notification.  Used for
    592  * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
    593  *
    594  * If another thread calls Thread.interrupt(), we throw InterruptedException
    595  * and return immediately if one of the following are true:
    596  *  - blocked in wait(), wait(long), or wait(long, int) methods of Object
    597  *  - blocked in join(), join(long), or join(long, int) methods of Thread
    598  *  - blocked in sleep(long), or sleep(long, int) methods of Thread
    599  * Otherwise, we set the "interrupted" flag.
    600  *
    601  * Checks to make sure that "nsec" is in the range 0-999999
    602  * (i.e. fractions of a millisecond) and throws the appropriate
    603  * exception if it isn't.
    604  *
    605  * The spec allows "spurious wakeups", and recommends that all code using
    606  * Object.wait() do so in a loop.  This appears to derive from concerns
    607  * about pthread_cond_wait() on multiprocessor systems.  Some commentary
    608  * on the web casts doubt on whether these can/should occur.
    609  *
    610  * Since we're allowed to wake up "early", we clamp extremely long durations
    611  * to return at the end of the 32-bit time epoch.
    612  */
    613 static void waitMonitor(Thread* self, Monitor* mon, s8 msec, s4 nsec,
    614     bool interruptShouldThrow)
    615 {
    616     struct timespec ts;
    617     bool wasInterrupted = false;
    618     bool timed;
    619     int ret;
    620     const char *savedFileName;
    621     u4 savedLineNumber;
    622 
    623     assert(self != NULL);
    624     assert(mon != NULL);
    625 
    626     /* Make sure that we hold the lock. */
    627     if (mon->owner != self) {
    628         dvmThrowIllegalMonitorStateException(
    629             "object not locked by thread before wait()");
    630         return;
    631     }
    632 
    633     /*
    634      * Enforce the timeout range.
    635      */
    636     if (msec < 0 || nsec < 0 || nsec > 999999) {
    637         dvmThrowIllegalArgumentException("timeout arguments out of range");
    638         return;
    639     }
    640 
    641     /*
    642      * Compute absolute wakeup time, if necessary.
    643      */
    644     if (msec == 0 && nsec == 0) {
    645         timed = false;
    646     } else {
    647         absoluteTime(msec, nsec, &ts);
    648         timed = true;
    649     }
    650 
    651     /*
    652      * Add ourselves to the set of threads waiting on this monitor, and
    653      * release our hold.  We need to let it go even if we're a few levels
    654      * deep in a recursive lock, and we need to restore that later.
    655      *
    656      * We append to the wait set ahead of clearing the count and owner
    657      * fields so the subroutine can check that the calling thread owns
    658      * the monitor.  Aside from that, the order of member updates is
    659      * not order sensitive as we hold the pthread mutex.
    660      */
    661     waitSetAppend(mon, self);
    662     int prevLockCount = mon->lockCount;
    663     mon->lockCount = 0;
    664     mon->owner = NULL;
    665     savedFileName = mon->ownerFileName;
    666     mon->ownerFileName = NULL;
    667     savedLineNumber = mon->ownerLineNumber;
    668     mon->ownerLineNumber = 0;
    669 
    670     /*
    671      * Update thread status.  If the GC wakes up, it'll ignore us, knowing
    672      * that we won't touch any references in this state, and we'll check
    673      * our suspend mode before we transition out.
    674      */
    675     if (timed)
    676         dvmChangeStatus(self, THREAD_TIMED_WAIT);
    677     else
    678         dvmChangeStatus(self, THREAD_WAIT);
    679 
    680     dvmLockMutex(&self->waitMutex);
    681 
    682     /*
    683      * Set waitMonitor to the monitor object we will be waiting on.
    684      * When waitMonitor is non-NULL a notifying or interrupting thread
    685      * must signal the thread's waitCond to wake it up.
    686      */
    687     assert(self->waitMonitor == NULL);
    688     self->waitMonitor = mon;
    689 
    690     /*
    691      * Handle the case where the thread was interrupted before we called
    692      * wait().
    693      */
    694     if (self->interrupted) {
    695         wasInterrupted = true;
    696         self->waitMonitor = NULL;
    697         dvmUnlockMutex(&self->waitMutex);
    698         goto done;
    699     }
    700 
    701     /*
    702      * Release the monitor lock and wait for a notification or
    703      * a timeout to occur.
    704      */
    705     dvmUnlockMutex(&mon->lock);
    706 
    707     if (!timed) {
    708         ret = pthread_cond_wait(&self->waitCond, &self->waitMutex);
    709         assert(ret == 0);
    710     } else {
    711 #ifdef HAVE_TIMEDWAIT_MONOTONIC
    712         ret = pthread_cond_timedwait_monotonic(&self->waitCond, &self->waitMutex, &ts);
    713 #else
    714         ret = pthread_cond_timedwait(&self->waitCond, &self->waitMutex, &ts);
    715 #endif
    716         assert(ret == 0 || ret == ETIMEDOUT);
    717     }
    718     if (self->interrupted) {
    719         wasInterrupted = true;
    720     }
    721 
    722     self->interrupted = false;
    723     self->waitMonitor = NULL;
    724 
    725     dvmUnlockMutex(&self->waitMutex);
    726 
    727     /* Reacquire the monitor lock. */
    728     lockMonitor(self, mon);
    729 
    730 done:
    731     /*
    732      * We remove our thread from wait set after restoring the count
    733      * and owner fields so the subroutine can check that the calling
    734      * thread owns the monitor. Aside from that, the order of member
    735      * updates is not order sensitive as we hold the pthread mutex.
    736      */
    737     mon->owner = self;
    738     mon->lockCount = prevLockCount;
    739     mon->ownerFileName = savedFileName;
    740     mon->ownerLineNumber = savedLineNumber;
    741     waitSetRemove(mon, self);
    742 
    743     /* set self->status back to THREAD_RUNNING, and self-suspend if needed */
    744     dvmChangeStatus(self, THREAD_RUNNING);
    745 
    746     if (wasInterrupted) {
    747         /*
    748          * We were interrupted while waiting, or somebody interrupted an
    749          * un-interruptible thread earlier and we're bailing out immediately.
    750          *
    751          * The doc sayeth: "The interrupted status of the current thread is
    752          * cleared when this exception is thrown."
    753          */
    754         self->interrupted = false;
    755         if (interruptShouldThrow) {
    756             dvmThrowInterruptedException(NULL);
    757         }
    758     }
    759 }
    760 
    761 /*
    762  * Notify one thread waiting on this monitor.
    763  */
    764 static void notifyMonitor(Thread* self, Monitor* mon)
    765 {
    766     Thread* thread;
    767 
    768     assert(self != NULL);
    769     assert(mon != NULL);
    770 
    771     /* Make sure that we hold the lock. */
    772     if (mon->owner != self) {
    773         dvmThrowIllegalMonitorStateException(
    774             "object not locked by thread before notify()");
    775         return;
    776     }
    777     /* Signal the first waiting thread in the wait set. */
    778     while (mon->waitSet != NULL) {
    779         thread = mon->waitSet;
    780         mon->waitSet = thread->waitNext;
    781         thread->waitNext = NULL;
    782         dvmLockMutex(&thread->waitMutex);
    783         /* Check to see if the thread is still waiting. */
    784         if (thread->waitMonitor != NULL) {
    785             pthread_cond_signal(&thread->waitCond);
    786             dvmUnlockMutex(&thread->waitMutex);
    787             return;
    788         }
    789         dvmUnlockMutex(&thread->waitMutex);
    790     }
    791 }
    792 
    793 /*
    794  * Notify all threads waiting on this monitor.
    795  */
    796 static void notifyAllMonitor(Thread* self, Monitor* mon)
    797 {
    798     Thread* thread;
    799 
    800     assert(self != NULL);
    801     assert(mon != NULL);
    802 
    803     /* Make sure that we hold the lock. */
    804     if (mon->owner != self) {
    805         dvmThrowIllegalMonitorStateException(
    806             "object not locked by thread before notifyAll()");
    807         return;
    808     }
    809     /* Signal all threads in the wait set. */
    810     while (mon->waitSet != NULL) {
    811         thread = mon->waitSet;
    812         mon->waitSet = thread->waitNext;
    813         thread->waitNext = NULL;
    814         dvmLockMutex(&thread->waitMutex);
    815         /* Check to see if the thread is still waiting. */
    816         if (thread->waitMonitor != NULL) {
    817             pthread_cond_signal(&thread->waitCond);
    818         }
    819         dvmUnlockMutex(&thread->waitMutex);
    820     }
    821 }
    822 
    823 /*
    824  * Changes the shape of a monitor from thin to fat, preserving the
    825  * internal lock state.  The calling thread must own the lock.
    826  */
    827 static void inflateMonitor(Thread *self, Object *obj)
    828 {
    829     Monitor *mon;
    830     u4 thin;
    831 
    832     assert(self != NULL);
    833     assert(obj != NULL);
    834     assert(LW_SHAPE(obj->lock) == LW_SHAPE_THIN);
    835     assert(LW_LOCK_OWNER(obj->lock) == self->threadId);
    836     /* Allocate and acquire a new monitor. */
    837     mon = dvmCreateMonitor(obj);
    838     lockMonitor(self, mon);
    839     /* Propagate the lock state. */
    840     thin = obj->lock;
    841     mon->lockCount = LW_LOCK_COUNT(thin);
    842     thin &= LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT;
    843     thin |= (u4)mon | LW_SHAPE_FAT;
    844     /* Publish the updated lock word. */
    845     android_atomic_release_store(thin, (int32_t *)&obj->lock);
    846 }
    847 
    848 /*
    849  * Implements monitorenter for "synchronized" stuff.
    850  *
    851  * This does not fail or throw an exception (unless deadlock prediction
    852  * is enabled and set to "err" mode).
    853  */
    854 void dvmLockObject(Thread* self, Object *obj)
    855 {
    856     volatile u4 *thinp;
    857     ThreadStatus oldStatus;
    858     struct timespec tm;
    859     long sleepDelayNs;
    860     long minSleepDelayNs = 1000000;  /* 1 millisecond */
    861     long maxSleepDelayNs = 1000000000;  /* 1 second */
    862     u4 thin, newThin, threadId;
    863 
    864     assert(self != NULL);
    865     assert(obj != NULL);
    866     threadId = self->threadId;
    867     thinp = &obj->lock;
    868 retry:
    869     thin = *thinp;
    870     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
    871         /*
    872          * The lock is a thin lock.  The owner field is used to
    873          * determine the acquire method, ordered by cost.
    874          */
    875         if (LW_LOCK_OWNER(thin) == threadId) {
    876             /*
    877              * The calling thread owns the lock.  Increment the
    878              * value of the recursion count field.
    879              */
    880             obj->lock += 1 << LW_LOCK_COUNT_SHIFT;
    881             if (LW_LOCK_COUNT(obj->lock) == LW_LOCK_COUNT_MASK) {
    882                 /*
    883                  * The reacquisition limit has been reached.  Inflate
    884                  * the lock so the next acquire will not overflow the
    885                  * recursion count field.
    886                  */
    887                 inflateMonitor(self, obj);
    888             }
    889         } else if (LW_LOCK_OWNER(thin) == 0) {
    890             /*
    891              * The lock is unowned.  Install the thread id of the
    892              * calling thread into the owner field.  This is the
    893              * common case.  In performance critical code the JIT
    894              * will have tried this before calling out to the VM.
    895              */
    896             newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
    897             if (android_atomic_acquire_cas(thin, newThin,
    898                     (int32_t*)thinp) != 0) {
    899                 /*
    900                  * The acquire failed.  Try again.
    901                  */
    902                 goto retry;
    903             }
    904         } else {
    905             LOGV("(%d) spin on lock %p: %#x (%#x) %#x",
    906                  threadId, &obj->lock, 0, *thinp, thin);
    907             /*
    908              * The lock is owned by another thread.  Notify the VM
    909              * that we are about to wait.
    910              */
    911             oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
    912             /*
    913              * Spin until the thin lock is released or inflated.
    914              */
    915             sleepDelayNs = 0;
    916             for (;;) {
    917                 thin = *thinp;
    918                 /*
    919                  * Check the shape of the lock word.  Another thread
    920                  * may have inflated the lock while we were waiting.
    921                  */
    922                 if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
    923                     if (LW_LOCK_OWNER(thin) == 0) {
    924                         /*
    925                          * The lock has been released.  Install the
    926                          * thread id of the calling thread into the
    927                          * owner field.
    928                          */
    929                         newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
    930                         if (android_atomic_acquire_cas(thin, newThin,
    931                                 (int32_t *)thinp) == 0) {
    932                             /*
    933                              * The acquire succeed.  Break out of the
    934                              * loop and proceed to inflate the lock.
    935                              */
    936                             break;
    937                         }
    938                     } else {
    939                         /*
    940                          * The lock has not been released.  Yield so
    941                          * the owning thread can run.
    942                          */
    943                         if (sleepDelayNs == 0) {
    944                             sched_yield();
    945                             sleepDelayNs = minSleepDelayNs;
    946                         } else {
    947                             tm.tv_sec = 0;
    948                             tm.tv_nsec = sleepDelayNs;
    949                             nanosleep(&tm, NULL);
    950                             /*
    951                              * Prepare the next delay value.  Wrap to
    952                              * avoid once a second polls for eternity.
    953                              */
    954                             if (sleepDelayNs < maxSleepDelayNs / 2) {
    955                                 sleepDelayNs *= 2;
    956                             } else {
    957                                 sleepDelayNs = minSleepDelayNs;
    958                             }
    959                         }
    960                     }
    961                 } else {
    962                     /*
    963                      * The thin lock was inflated by another thread.
    964                      * Let the VM know we are no longer waiting and
    965                      * try again.
    966                      */
    967                     LOGV("(%d) lock %p surprise-fattened",
    968                              threadId, &obj->lock);
    969                     dvmChangeStatus(self, oldStatus);
    970                     goto retry;
    971                 }
    972             }
    973             LOGV("(%d) spin on lock done %p: %#x (%#x) %#x",
    974                  threadId, &obj->lock, 0, *thinp, thin);
    975             /*
    976              * We have acquired the thin lock.  Let the VM know that
    977              * we are no longer waiting.
    978              */
    979             dvmChangeStatus(self, oldStatus);
    980             /*
    981              * Fatten the lock.
    982              */
    983             inflateMonitor(self, obj);
    984             LOGV("(%d) lock %p fattened", threadId, &obj->lock);
    985         }
    986     } else {
    987         /*
    988          * The lock is a fat lock.
    989          */
    990         assert(LW_MONITOR(obj->lock) != NULL);
    991         lockMonitor(self, LW_MONITOR(obj->lock));
    992     }
    993 }
    994 
    995 /*
    996  * Implements monitorexit for "synchronized" stuff.
    997  *
    998  * On failure, throws an exception and returns "false".
    999  */
   1000 bool dvmUnlockObject(Thread* self, Object *obj)
   1001 {
   1002     u4 thin;
   1003 
   1004     assert(self != NULL);
   1005     assert(self->status == THREAD_RUNNING);
   1006     assert(obj != NULL);
   1007     /*
   1008      * Cache the lock word as its value can change while we are
   1009      * examining its state.
   1010      */
   1011     thin = *(volatile u4 *)&obj->lock;
   1012     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
   1013         /*
   1014          * The lock is thin.  We must ensure that the lock is owned
   1015          * by the given thread before unlocking it.
   1016          */
   1017         if (LW_LOCK_OWNER(thin) == self->threadId) {
   1018             /*
   1019              * We are the lock owner.  It is safe to update the lock
   1020              * without CAS as lock ownership guards the lock itself.
   1021              */
   1022             if (LW_LOCK_COUNT(thin) == 0) {
   1023                 /*
   1024                  * The lock was not recursively acquired, the common
   1025                  * case.  Unlock by clearing all bits except for the
   1026                  * hash state.
   1027                  */
   1028                 thin &= (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT);
   1029                 android_atomic_release_store(thin, (int32_t*)&obj->lock);
   1030             } else {
   1031                 /*
   1032                  * The object was recursively acquired.  Decrement the
   1033                  * lock recursion count field.
   1034                  */
   1035                 obj->lock -= 1 << LW_LOCK_COUNT_SHIFT;
   1036             }
   1037         } else {
   1038             /*
   1039              * We do not own the lock.  The JVM spec requires that we
   1040              * throw an exception in this case.
   1041              */
   1042             dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
   1043             return false;
   1044         }
   1045     } else {
   1046         /*
   1047          * The lock is fat.  We must check to see if unlockMonitor has
   1048          * raised any exceptions before continuing.
   1049          */
   1050         assert(LW_MONITOR(obj->lock) != NULL);
   1051         if (!unlockMonitor(self, LW_MONITOR(obj->lock))) {
   1052             /*
   1053              * An exception has been raised.  Do not fall through.
   1054              */
   1055             return false;
   1056         }
   1057     }
   1058     return true;
   1059 }
   1060 
   1061 /*
   1062  * Object.wait().  Also called for class init.
   1063  */
   1064 void dvmObjectWait(Thread* self, Object *obj, s8 msec, s4 nsec,
   1065     bool interruptShouldThrow)
   1066 {
   1067     Monitor* mon;
   1068     u4 thin = *(volatile u4 *)&obj->lock;
   1069 
   1070     /* If the lock is still thin, we need to fatten it.
   1071      */
   1072     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
   1073         /* Make sure that 'self' holds the lock.
   1074          */
   1075         if (LW_LOCK_OWNER(thin) != self->threadId) {
   1076             dvmThrowIllegalMonitorStateException(
   1077                 "object not locked by thread before wait()");
   1078             return;
   1079         }
   1080 
   1081         /* This thread holds the lock.  We need to fatten the lock
   1082          * so 'self' can block on it.  Don't update the object lock
   1083          * field yet, because 'self' needs to acquire the lock before
   1084          * any other thread gets a chance.
   1085          */
   1086         inflateMonitor(self, obj);
   1087         LOGV("(%d) lock %p fattened by wait()", self->threadId, &obj->lock);
   1088     }
   1089     mon = LW_MONITOR(obj->lock);
   1090     waitMonitor(self, mon, msec, nsec, interruptShouldThrow);
   1091 }
   1092 
   1093 /*
   1094  * Object.notify().
   1095  */
   1096 void dvmObjectNotify(Thread* self, Object *obj)
   1097 {
   1098     u4 thin = *(volatile u4 *)&obj->lock;
   1099 
   1100     /* If the lock is still thin, there aren't any waiters;
   1101      * waiting on an object forces lock fattening.
   1102      */
   1103     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
   1104         /* Make sure that 'self' holds the lock.
   1105          */
   1106         if (LW_LOCK_OWNER(thin) != self->threadId) {
   1107             dvmThrowIllegalMonitorStateException(
   1108                 "object not locked by thread before notify()");
   1109             return;
   1110         }
   1111 
   1112         /* no-op;  there are no waiters to notify.
   1113          */
   1114     } else {
   1115         /* It's a fat lock.
   1116          */
   1117         notifyMonitor(self, LW_MONITOR(thin));
   1118     }
   1119 }
   1120 
   1121 /*
   1122  * Object.notifyAll().
   1123  */
   1124 void dvmObjectNotifyAll(Thread* self, Object *obj)
   1125 {
   1126     u4 thin = *(volatile u4 *)&obj->lock;
   1127 
   1128     /* If the lock is still thin, there aren't any waiters;
   1129      * waiting on an object forces lock fattening.
   1130      */
   1131     if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
   1132         /* Make sure that 'self' holds the lock.
   1133          */
   1134         if (LW_LOCK_OWNER(thin) != self->threadId) {
   1135             dvmThrowIllegalMonitorStateException(
   1136                 "object not locked by thread before notifyAll()");
   1137             return;
   1138         }
   1139 
   1140         /* no-op;  there are no waiters to notify.
   1141          */
   1142     } else {
   1143         /* It's a fat lock.
   1144          */
   1145         notifyAllMonitor(self, LW_MONITOR(thin));
   1146     }
   1147 }
   1148 
   1149 /*
   1150  * This implements java.lang.Thread.sleep(long msec, int nsec).
   1151  *
   1152  * The sleep is interruptible by other threads, which means we can't just
   1153  * plop into an OS sleep call.  (We probably could if we wanted to send
   1154  * signals around and rely on EINTR, but that's inefficient and relies
   1155  * on native code respecting our signal mask.)
   1156  *
   1157  * We have to do all of this stuff for Object.wait() as well, so it's
   1158  * easiest to just sleep on a private Monitor.
   1159  *
   1160  * It appears that we want sleep(0,0) to go through the motions of sleeping
   1161  * for a very short duration, rather than just returning.
   1162  */
   1163 void dvmThreadSleep(u8 msec, u4 nsec)
   1164 {
   1165     Thread* self = dvmThreadSelf();
   1166     Monitor* mon = gDvm.threadSleepMon;
   1167 
   1168     /* sleep(0,0) wakes up immediately, wait(0,0) means wait forever; adjust */
   1169     if (msec == 0 && nsec == 0)
   1170         nsec++;
   1171 
   1172     lockMonitor(self, mon);
   1173     waitMonitor(self, mon, msec, nsec, true);
   1174     unlockMonitor(self, mon);
   1175 }
   1176 
   1177 /*
   1178  * Implement java.lang.Thread.interrupt().
   1179  */
   1180 void dvmThreadInterrupt(Thread* thread)
   1181 {
   1182     assert(thread != NULL);
   1183 
   1184     dvmLockMutex(&thread->waitMutex);
   1185 
   1186     /*
   1187      * If the interrupted flag is already set no additional action is
   1188      * required.
   1189      */
   1190     if (thread->interrupted == true) {
   1191         dvmUnlockMutex(&thread->waitMutex);
   1192         return;
   1193     }
   1194 
   1195     /*
   1196      * Raise the "interrupted" flag.  This will cause it to bail early out
   1197      * of the next wait() attempt, if it's not currently waiting on
   1198      * something.
   1199      */
   1200     thread->interrupted = true;
   1201 
   1202     /*
   1203      * Is the thread waiting?
   1204      *
   1205      * Note that fat vs. thin doesn't matter here;  waitMonitor
   1206      * is only set when a thread actually waits on a monitor,
   1207      * which implies that the monitor has already been fattened.
   1208      */
   1209     if (thread->waitMonitor != NULL) {
   1210         pthread_cond_signal(&thread->waitCond);
   1211     }
   1212 
   1213     dvmUnlockMutex(&thread->waitMutex);
   1214 }
   1215 
   1216 #ifndef WITH_COPYING_GC
   1217 u4 dvmIdentityHashCode(Object *obj)
   1218 {
   1219     return (u4)obj;
   1220 }
   1221 #else
   1222 /*
   1223  * Returns the identity hash code of the given object.
   1224  */
   1225 u4 dvmIdentityHashCode(Object *obj)
   1226 {
   1227     Thread *self, *thread;
   1228     volatile u4 *lw;
   1229     size_t size;
   1230     u4 lock, owner, hashState;
   1231 
   1232     if (obj == NULL) {
   1233         /*
   1234          * Null is defined to have an identity hash code of 0.
   1235          */
   1236         return 0;
   1237     }
   1238     lw = &obj->lock;
   1239 retry:
   1240     hashState = LW_HASH_STATE(*lw);
   1241     if (hashState == LW_HASH_STATE_HASHED) {
   1242         /*
   1243          * The object has been hashed but has not had its hash code
   1244          * relocated by the garbage collector.  Use the raw object
   1245          * address.
   1246          */
   1247         return (u4)obj >> 3;
   1248     } else if (hashState == LW_HASH_STATE_HASHED_AND_MOVED) {
   1249         /*
   1250          * The object has been hashed and its hash code has been
   1251          * relocated by the collector.  Use the value of the naturally
   1252          * aligned word following the instance data.
   1253          */
   1254         assert(!dvmIsClassObject(obj));
   1255         if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISARRAY)) {
   1256             size = dvmArrayObjectSize((ArrayObject *)obj);
   1257             size = (size + 2) & ~2;
   1258         } else {
   1259             size = obj->clazz->objectSize;
   1260         }
   1261         return *(u4 *)(((char *)obj) + size);
   1262     } else if (hashState == LW_HASH_STATE_UNHASHED) {
   1263         /*
   1264          * The object has never been hashed.  Change the hash state to
   1265          * hashed and use the raw object address.
   1266          */
   1267         self = dvmThreadSelf();
   1268         if (self->threadId == lockOwner(obj)) {
   1269             /*
   1270              * We already own the lock so we can update the hash state
   1271              * directly.
   1272              */
   1273             *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
   1274             return (u4)obj >> 3;
   1275         }
   1276         /*
   1277          * We do not own the lock.  Try acquiring the lock.  Should
   1278          * this fail, we must suspend the owning thread.
   1279          */
   1280         if (LW_SHAPE(*lw) == LW_SHAPE_THIN) {
   1281             /*
   1282              * If the lock is thin assume it is unowned.  We simulate
   1283              * an acquire, update, and release with a single CAS.
   1284              */
   1285             lock = (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
   1286             if (android_atomic_acquire_cas(
   1287                                 0,
   1288                                 (int32_t)lock,
   1289                                 (int32_t *)lw) == 0) {
   1290                 /*
   1291                  * A new lockword has been installed with a hash state
   1292                  * of hashed.  Use the raw object address.
   1293                  */
   1294                 return (u4)obj >> 3;
   1295             }
   1296         } else {
   1297             if (tryLockMonitor(self, LW_MONITOR(*lw))) {
   1298                 /*
   1299                  * The monitor lock has been acquired.  Change the
   1300                  * hash state to hashed and use the raw object
   1301                  * address.
   1302                  */
   1303                 *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
   1304                 unlockMonitor(self, LW_MONITOR(*lw));
   1305                 return (u4)obj >> 3;
   1306             }
   1307         }
   1308         /*
   1309          * At this point we have failed to acquire the lock.  We must
   1310          * identify the owning thread and suspend it.
   1311          */
   1312         dvmLockThreadList(self);
   1313         /*
   1314          * Cache the lock word as its value can change between
   1315          * determining its shape and retrieving its owner.
   1316          */
   1317         lock = *lw;
   1318         if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
   1319             /*
   1320              * Find the thread with the corresponding thread id.
   1321              */
   1322             owner = LW_LOCK_OWNER(lock);
   1323             assert(owner != self->threadId);
   1324             /*
   1325              * If the lock has no owner do not bother scanning the
   1326              * thread list and fall through to the failure handler.
   1327              */
   1328             thread = owner ? gDvm.threadList : NULL;
   1329             while (thread != NULL) {
   1330                 if (thread->threadId == owner) {
   1331                     break;
   1332                 }
   1333                 thread = thread->next;
   1334             }
   1335         } else {
   1336             thread = LW_MONITOR(lock)->owner;
   1337         }
   1338         /*
   1339          * If thread is NULL the object has been released since the
   1340          * thread list lock was acquired.  Try again.
   1341          */
   1342         if (thread == NULL) {
   1343             dvmUnlockThreadList();
   1344             goto retry;
   1345         }
   1346         /*
   1347          * Wait for the owning thread to suspend.
   1348          */
   1349         dvmSuspendThread(thread);
   1350         if (dvmHoldsLock(thread, obj)) {
   1351             /*
   1352              * The owning thread has been suspended.  We can safely
   1353              * change the hash state to hashed.
   1354              */
   1355             *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
   1356             dvmResumeThread(thread);
   1357             dvmUnlockThreadList();
   1358             return (u4)obj >> 3;
   1359         }
   1360         /*
   1361          * The wrong thread has been suspended.  Try again.
   1362          */
   1363         dvmResumeThread(thread);
   1364         dvmUnlockThreadList();
   1365         goto retry;
   1366     }
   1367     LOGE("object %p has an unknown hash state %#x", obj, hashState);
   1368     dvmDumpThread(dvmThreadSelf(), false);
   1369     dvmAbort();
   1370     return 0;  /* Quiet the compiler. */
   1371 }
   1372 #endif  /* WITH_COPYING_GC */
   1373