Home | History | Annotate | Download | only in eap_peer
      1 /*
      2  * EAP peer state machines (RFC 4137)
      3  * Copyright (c) 2004-2010, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This program is free software; you can redistribute it and/or modify
      6  * it under the terms of the GNU General Public License version 2 as
      7  * published by the Free Software Foundation.
      8  *
      9  * Alternatively, this software may be distributed under the terms of BSD
     10  * license.
     11  *
     12  * See README and COPYING for more details.
     13  *
     14  * This file implements the Peer State Machine as defined in RFC 4137. The used
     15  * states and state transitions match mostly with the RFC. However, there are
     16  * couple of additional transitions for working around small issues noticed
     17  * during testing. These exceptions are explained in comments within the
     18  * functions in this file. The method functions, m.func(), are similar to the
     19  * ones used in RFC 4137, but some small changes have used here to optimize
     20  * operations and to add functionality needed for fast re-authentication
     21  * (session resumption).
     22  */
     23 
     24 #include "includes.h"
     25 
     26 #include "common.h"
     27 #include "pcsc_funcs.h"
     28 #include "state_machine.h"
     29 #include "crypto/crypto.h"
     30 #include "crypto/tls.h"
     31 #include "common/wpa_ctrl.h"
     32 #include "eap_common/eap_wsc_common.h"
     33 #include "eap_i.h"
     34 #include "eap_config.h"
     35 
     36 #define STATE_MACHINE_DATA struct eap_sm
     37 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
     38 
     39 #define EAP_MAX_AUTH_ROUNDS 50
     40 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
     41 
     42 
     43 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
     44 				  EapType method);
     45 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
     46 static void eap_sm_processIdentity(struct eap_sm *sm,
     47 				   const struct wpabuf *req);
     48 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
     49 static struct wpabuf * eap_sm_buildNotify(int id);
     50 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
     51 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
     52 static const char * eap_sm_method_state_txt(EapMethodState state);
     53 static const char * eap_sm_decision_txt(EapDecision decision);
     54 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
     55 
     56 
     57 
     58 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
     59 {
     60 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
     61 }
     62 
     63 
     64 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
     65 			   Boolean value)
     66 {
     67 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
     68 }
     69 
     70 
     71 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
     72 {
     73 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
     74 }
     75 
     76 
     77 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
     78 			  unsigned int value)
     79 {
     80 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
     81 }
     82 
     83 
     84 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
     85 {
     86 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
     87 }
     88 
     89 
     90 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
     91 {
     92 	if (sm->m == NULL || sm->eap_method_priv == NULL)
     93 		return;
     94 
     95 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
     96 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
     97 	sm->m->deinit(sm, sm->eap_method_priv);
     98 	sm->eap_method_priv = NULL;
     99 	sm->m = NULL;
    100 }
    101 
    102 
    103 /**
    104  * eap_allowed_method - Check whether EAP method is allowed
    105  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
    106  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
    107  * @method: EAP type
    108  * Returns: 1 = allowed EAP method, 0 = not allowed
    109  */
    110 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
    111 {
    112 	struct eap_peer_config *config = eap_get_config(sm);
    113 	int i;
    114 	struct eap_method_type *m;
    115 
    116 	if (config == NULL || config->eap_methods == NULL)
    117 		return 1;
    118 
    119 	m = config->eap_methods;
    120 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
    121 		     m[i].method != EAP_TYPE_NONE; i++) {
    122 		if (m[i].vendor == vendor && m[i].method == method)
    123 			return 1;
    124 	}
    125 	return 0;
    126 }
    127 
    128 
    129 /*
    130  * This state initializes state machine variables when the machine is
    131  * activated (portEnabled = TRUE). This is also used when re-starting
    132  * authentication (eapRestart == TRUE).
    133  */
    134 SM_STATE(EAP, INITIALIZE)
    135 {
    136 	SM_ENTRY(EAP, INITIALIZE);
    137 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
    138 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
    139 	    !sm->prev_failure) {
    140 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
    141 			   "fast reauthentication");
    142 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
    143 	} else {
    144 		eap_deinit_prev_method(sm, "INITIALIZE");
    145 	}
    146 	sm->selectedMethod = EAP_TYPE_NONE;
    147 	sm->methodState = METHOD_NONE;
    148 	sm->allowNotifications = TRUE;
    149 	sm->decision = DECISION_FAIL;
    150 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    151 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
    152 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
    153 	os_free(sm->eapKeyData);
    154 	sm->eapKeyData = NULL;
    155 	sm->eapKeyAvailable = FALSE;
    156 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
    157 	sm->lastId = -1; /* new session - make sure this does not match with
    158 			  * the first EAP-Packet */
    159 	/*
    160 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
    161 	 * seemed to be able to trigger cases where both were set and if EAPOL
    162 	 * state machine uses eapNoResp first, it may end up not sending a real
    163 	 * reply correctly. This occurred when the workaround in FAIL state set
    164 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
    165 	 * something else(?)
    166 	 */
    167 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
    168 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
    169 	sm->num_rounds = 0;
    170 	sm->prev_failure = 0;
    171 }
    172 
    173 
    174 /*
    175  * This state is reached whenever service from the lower layer is interrupted
    176  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
    177  * occurs when the port becomes enabled.
    178  */
    179 SM_STATE(EAP, DISABLED)
    180 {
    181 	SM_ENTRY(EAP, DISABLED);
    182 	sm->num_rounds = 0;
    183 }
    184 
    185 
    186 /*
    187  * The state machine spends most of its time here, waiting for something to
    188  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
    189  * SEND_RESPONSE states.
    190  */
    191 SM_STATE(EAP, IDLE)
    192 {
    193 	SM_ENTRY(EAP, IDLE);
    194 }
    195 
    196 
    197 /*
    198  * This state is entered when an EAP packet is received (eapReq == TRUE) to
    199  * parse the packet header.
    200  */
    201 SM_STATE(EAP, RECEIVED)
    202 {
    203 	const struct wpabuf *eapReqData;
    204 
    205 	SM_ENTRY(EAP, RECEIVED);
    206 	eapReqData = eapol_get_eapReqData(sm);
    207 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
    208 	eap_sm_parseEapReq(sm, eapReqData);
    209 	sm->num_rounds++;
    210 }
    211 
    212 
    213 /*
    214  * This state is entered when a request for a new type comes in. Either the
    215  * correct method is started, or a Nak response is built.
    216  */
    217 SM_STATE(EAP, GET_METHOD)
    218 {
    219 	int reinit;
    220 	EapType method;
    221 
    222 	SM_ENTRY(EAP, GET_METHOD);
    223 
    224 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    225 		method = sm->reqVendorMethod;
    226 	else
    227 		method = sm->reqMethod;
    228 
    229 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
    230 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
    231 			   sm->reqVendor, method);
    232 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    233 			"vendor=%u method=%u -> NAK",
    234 			sm->reqVendor, method);
    235 		goto nak;
    236 	}
    237 
    238 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    239 		"vendor=%u method=%u", sm->reqVendor, method);
    240 
    241 	/*
    242 	 * RFC 4137 does not define specific operation for fast
    243 	 * re-authentication (session resumption). The design here is to allow
    244 	 * the previously used method data to be maintained for
    245 	 * re-authentication if the method support session resumption.
    246 	 * Otherwise, the previously used method data is freed and a new method
    247 	 * is allocated here.
    248 	 */
    249 	if (sm->fast_reauth &&
    250 	    sm->m && sm->m->vendor == sm->reqVendor &&
    251 	    sm->m->method == method &&
    252 	    sm->m->has_reauth_data &&
    253 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
    254 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
    255 			   " for fast re-authentication");
    256 		reinit = 1;
    257 	} else {
    258 		eap_deinit_prev_method(sm, "GET_METHOD");
    259 		reinit = 0;
    260 	}
    261 
    262 	sm->selectedMethod = sm->reqMethod;
    263 	if (sm->m == NULL)
    264 		sm->m = eap_peer_get_eap_method(sm->reqVendor, method);
    265 	if (!sm->m) {
    266 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
    267 			   "vendor %d method %d",
    268 			   sm->reqVendor, method);
    269 		goto nak;
    270 	}
    271 
    272 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    273 
    274 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
    275 		   "vendor %u method %u (%s)",
    276 		   sm->reqVendor, method, sm->m->name);
    277 	if (reinit)
    278 		sm->eap_method_priv = sm->m->init_for_reauth(
    279 			sm, sm->eap_method_priv);
    280 	else
    281 		sm->eap_method_priv = sm->m->init(sm);
    282 
    283 	if (sm->eap_method_priv == NULL) {
    284 		struct eap_peer_config *config = eap_get_config(sm);
    285 		wpa_msg(sm->msg_ctx, MSG_INFO,
    286 			"EAP: Failed to initialize EAP method: vendor %u "
    287 			"method %u (%s)",
    288 			sm->reqVendor, method, sm->m->name);
    289 		sm->m = NULL;
    290 		sm->methodState = METHOD_NONE;
    291 		sm->selectedMethod = EAP_TYPE_NONE;
    292 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
    293 		    (config->pending_req_pin ||
    294 		     config->pending_req_passphrase)) {
    295 			/*
    296 			 * Return without generating Nak in order to allow
    297 			 * entering of PIN code or passphrase to retry the
    298 			 * current EAP packet.
    299 			 */
    300 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
    301 				   "request - skip Nak");
    302 			return;
    303 		}
    304 
    305 		goto nak;
    306 	}
    307 
    308 	sm->methodState = METHOD_INIT;
    309 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
    310 		"EAP vendor %u method %u (%s) selected",
    311 		sm->reqVendor, method, sm->m->name);
    312 	return;
    313 
    314 nak:
    315 	wpabuf_free(sm->eapRespData);
    316 	sm->eapRespData = NULL;
    317 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
    318 }
    319 
    320 
    321 /*
    322  * The method processing happens here. The request from the authenticator is
    323  * processed, and an appropriate response packet is built.
    324  */
    325 SM_STATE(EAP, METHOD)
    326 {
    327 	struct wpabuf *eapReqData;
    328 	struct eap_method_ret ret;
    329 
    330 	SM_ENTRY(EAP, METHOD);
    331 	if (sm->m == NULL) {
    332 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
    333 		return;
    334 	}
    335 
    336 	eapReqData = eapol_get_eapReqData(sm);
    337 
    338 	/*
    339 	 * Get ignore, methodState, decision, allowNotifications, and
    340 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
    341 	 * process, and buildResp) in this state. These have been combined into
    342 	 * a single function call to m->process() in order to optimize EAP
    343 	 * method implementation interface a bit. These procedures are only
    344 	 * used from within this METHOD state, so there is no need to keep
    345 	 * these as separate C functions.
    346 	 *
    347 	 * The RFC 4137 procedures return values as follows:
    348 	 * ignore = m.check(eapReqData)
    349 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
    350 	 * eapRespData = m.buildResp(reqId)
    351 	 */
    352 	os_memset(&ret, 0, sizeof(ret));
    353 	ret.ignore = sm->ignore;
    354 	ret.methodState = sm->methodState;
    355 	ret.decision = sm->decision;
    356 	ret.allowNotifications = sm->allowNotifications;
    357 	wpabuf_free(sm->eapRespData);
    358 	sm->eapRespData = NULL;
    359 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
    360 					 eapReqData);
    361 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
    362 		   "methodState=%s decision=%s",
    363 		   ret.ignore ? "TRUE" : "FALSE",
    364 		   eap_sm_method_state_txt(ret.methodState),
    365 		   eap_sm_decision_txt(ret.decision));
    366 
    367 	sm->ignore = ret.ignore;
    368 	if (sm->ignore)
    369 		return;
    370 	sm->methodState = ret.methodState;
    371 	sm->decision = ret.decision;
    372 	sm->allowNotifications = ret.allowNotifications;
    373 
    374 	if (sm->m->isKeyAvailable && sm->m->getKey &&
    375 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
    376 		os_free(sm->eapKeyData);
    377 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
    378 					       &sm->eapKeyDataLen);
    379 	}
    380 }
    381 
    382 
    383 /*
    384  * This state signals the lower layer that a response packet is ready to be
    385  * sent.
    386  */
    387 SM_STATE(EAP, SEND_RESPONSE)
    388 {
    389 	SM_ENTRY(EAP, SEND_RESPONSE);
    390 	wpabuf_free(sm->lastRespData);
    391 	if (sm->eapRespData) {
    392 		if (sm->workaround)
    393 			os_memcpy(sm->last_md5, sm->req_md5, 16);
    394 		sm->lastId = sm->reqId;
    395 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
    396 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
    397 	} else
    398 		sm->lastRespData = NULL;
    399 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    400 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    401 }
    402 
    403 
    404 /*
    405  * This state signals the lower layer that the request was discarded, and no
    406  * response packet will be sent at this time.
    407  */
    408 SM_STATE(EAP, DISCARD)
    409 {
    410 	SM_ENTRY(EAP, DISCARD);
    411 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    412 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    413 }
    414 
    415 
    416 /*
    417  * Handles requests for Identity method and builds a response.
    418  */
    419 SM_STATE(EAP, IDENTITY)
    420 {
    421 	const struct wpabuf *eapReqData;
    422 
    423 	SM_ENTRY(EAP, IDENTITY);
    424 	eapReqData = eapol_get_eapReqData(sm);
    425 	eap_sm_processIdentity(sm, eapReqData);
    426 	wpabuf_free(sm->eapRespData);
    427 	sm->eapRespData = NULL;
    428 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
    429 }
    430 
    431 
    432 /*
    433  * Handles requests for Notification method and builds a response.
    434  */
    435 SM_STATE(EAP, NOTIFICATION)
    436 {
    437 	const struct wpabuf *eapReqData;
    438 
    439 	SM_ENTRY(EAP, NOTIFICATION);
    440 	eapReqData = eapol_get_eapReqData(sm);
    441 	eap_sm_processNotify(sm, eapReqData);
    442 	wpabuf_free(sm->eapRespData);
    443 	sm->eapRespData = NULL;
    444 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
    445 }
    446 
    447 
    448 /*
    449  * This state retransmits the previous response packet.
    450  */
    451 SM_STATE(EAP, RETRANSMIT)
    452 {
    453 	SM_ENTRY(EAP, RETRANSMIT);
    454 	wpabuf_free(sm->eapRespData);
    455 	if (sm->lastRespData)
    456 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
    457 	else
    458 		sm->eapRespData = NULL;
    459 }
    460 
    461 
    462 /*
    463  * This state is entered in case of a successful completion of authentication
    464  * and state machine waits here until port is disabled or EAP authentication is
    465  * restarted.
    466  */
    467 SM_STATE(EAP, SUCCESS)
    468 {
    469 	SM_ENTRY(EAP, SUCCESS);
    470 	if (sm->eapKeyData != NULL)
    471 		sm->eapKeyAvailable = TRUE;
    472 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
    473 
    474 	/*
    475 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    476 	 * to avoid processing the same request twice when state machine is
    477 	 * initialized.
    478 	 */
    479 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    480 
    481 	/*
    482 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
    483 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
    484 	 * addition, either eapResp or eapNoResp is required to be set after
    485 	 * processing the received EAP frame.
    486 	 */
    487 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    488 
    489 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
    490 		"EAP authentication completed successfully");
    491 }
    492 
    493 
    494 /*
    495  * This state is entered in case of a failure and state machine waits here
    496  * until port is disabled or EAP authentication is restarted.
    497  */
    498 SM_STATE(EAP, FAILURE)
    499 {
    500 	SM_ENTRY(EAP, FAILURE);
    501 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
    502 
    503 	/*
    504 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    505 	 * to avoid processing the same request twice when state machine is
    506 	 * initialized.
    507 	 */
    508 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    509 
    510 	/*
    511 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
    512 	 * eapNoResp is required to be set after processing the received EAP
    513 	 * frame.
    514 	 */
    515 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    516 
    517 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
    518 		"EAP authentication failed");
    519 
    520 	sm->prev_failure = 1;
    521 }
    522 
    523 
    524 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
    525 {
    526 	/*
    527 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
    528 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
    529 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
    530 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
    531 	 *
    532 	 * Accept this kind of Id if EAP workarounds are enabled. These are
    533 	 * unauthenticated plaintext messages, so this should have minimal
    534 	 * security implications (bit easier to fake EAP-Success/Failure).
    535 	 */
    536 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
    537 			       reqId == ((lastId + 2) & 0xff))) {
    538 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
    539 			   "identifier field in EAP Success: "
    540 			   "reqId=%d lastId=%d (these are supposed to be "
    541 			   "same)", reqId, lastId);
    542 		return 1;
    543 	}
    544 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
    545 		   "lastId=%d", reqId, lastId);
    546 	return 0;
    547 }
    548 
    549 
    550 /*
    551  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
    552  */
    553 
    554 static void eap_peer_sm_step_idle(struct eap_sm *sm)
    555 {
    556 	/*
    557 	 * The first three transitions are from RFC 4137. The last two are
    558 	 * local additions to handle special cases with LEAP and PEAP server
    559 	 * not sending EAP-Success in some cases.
    560 	 */
    561 	if (eapol_get_bool(sm, EAPOL_eapReq))
    562 		SM_ENTER(EAP, RECEIVED);
    563 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
    564 		  sm->decision != DECISION_FAIL) ||
    565 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    566 		  sm->decision == DECISION_UNCOND_SUCC))
    567 		SM_ENTER(EAP, SUCCESS);
    568 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
    569 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    570 		  sm->decision != DECISION_UNCOND_SUCC) ||
    571 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
    572 		  sm->methodState != METHOD_CONT &&
    573 		  sm->decision == DECISION_FAIL))
    574 		SM_ENTER(EAP, FAILURE);
    575 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    576 		 sm->leap_done && sm->decision != DECISION_FAIL &&
    577 		 sm->methodState == METHOD_DONE)
    578 		SM_ENTER(EAP, SUCCESS);
    579 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
    580 		 sm->peap_done && sm->decision != DECISION_FAIL &&
    581 		 sm->methodState == METHOD_DONE)
    582 		SM_ENTER(EAP, SUCCESS);
    583 }
    584 
    585 
    586 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
    587 {
    588 	int duplicate;
    589 
    590 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
    591 	if (sm->workaround && duplicate &&
    592 	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
    593 		/*
    594 		 * RFC 4137 uses (reqId == lastId) as the only verification for
    595 		 * duplicate EAP requests. However, this misses cases where the
    596 		 * AS is incorrectly using the same id again; and
    597 		 * unfortunately, such implementations exist. Use MD5 hash as
    598 		 * an extra verification for the packets being duplicate to
    599 		 * workaround these issues.
    600 		 */
    601 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
    602 			   "EAP packets were not identical");
    603 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
    604 			   "duplicate packet");
    605 		duplicate = 0;
    606 	}
    607 
    608 	return duplicate;
    609 }
    610 
    611 
    612 static void eap_peer_sm_step_received(struct eap_sm *sm)
    613 {
    614 	int duplicate = eap_peer_req_is_duplicate(sm);
    615 
    616 	/*
    617 	 * Two special cases below for LEAP are local additions to work around
    618 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
    619 	 * then swapped roles). Other transitions are based on RFC 4137.
    620 	 */
    621 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
    622 	    (sm->reqId == sm->lastId ||
    623 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
    624 		SM_ENTER(EAP, SUCCESS);
    625 	else if (sm->methodState != METHOD_CONT &&
    626 		 ((sm->rxFailure &&
    627 		   sm->decision != DECISION_UNCOND_SUCC) ||
    628 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
    629 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
    630 		    sm->methodState != METHOD_MAY_CONT))) &&
    631 		 (sm->reqId == sm->lastId ||
    632 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
    633 		SM_ENTER(EAP, FAILURE);
    634 	else if (sm->rxReq && duplicate)
    635 		SM_ENTER(EAP, RETRANSMIT);
    636 	else if (sm->rxReq && !duplicate &&
    637 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
    638 		 sm->allowNotifications)
    639 		SM_ENTER(EAP, NOTIFICATION);
    640 	else if (sm->rxReq && !duplicate &&
    641 		 sm->selectedMethod == EAP_TYPE_NONE &&
    642 		 sm->reqMethod == EAP_TYPE_IDENTITY)
    643 		SM_ENTER(EAP, IDENTITY);
    644 	else if (sm->rxReq && !duplicate &&
    645 		 sm->selectedMethod == EAP_TYPE_NONE &&
    646 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
    647 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
    648 		SM_ENTER(EAP, GET_METHOD);
    649 	else if (sm->rxReq && !duplicate &&
    650 		 sm->reqMethod == sm->selectedMethod &&
    651 		 sm->methodState != METHOD_DONE)
    652 		SM_ENTER(EAP, METHOD);
    653 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    654 		 (sm->rxSuccess || sm->rxResp))
    655 		SM_ENTER(EAP, METHOD);
    656 	else
    657 		SM_ENTER(EAP, DISCARD);
    658 }
    659 
    660 
    661 static void eap_peer_sm_step_local(struct eap_sm *sm)
    662 {
    663 	switch (sm->EAP_state) {
    664 	case EAP_INITIALIZE:
    665 		SM_ENTER(EAP, IDLE);
    666 		break;
    667 	case EAP_DISABLED:
    668 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
    669 		    !sm->force_disabled)
    670 			SM_ENTER(EAP, INITIALIZE);
    671 		break;
    672 	case EAP_IDLE:
    673 		eap_peer_sm_step_idle(sm);
    674 		break;
    675 	case EAP_RECEIVED:
    676 		eap_peer_sm_step_received(sm);
    677 		break;
    678 	case EAP_GET_METHOD:
    679 		if (sm->selectedMethod == sm->reqMethod)
    680 			SM_ENTER(EAP, METHOD);
    681 		else
    682 			SM_ENTER(EAP, SEND_RESPONSE);
    683 		break;
    684 	case EAP_METHOD:
    685 		if (sm->ignore)
    686 			SM_ENTER(EAP, DISCARD);
    687 		else
    688 			SM_ENTER(EAP, SEND_RESPONSE);
    689 		break;
    690 	case EAP_SEND_RESPONSE:
    691 		SM_ENTER(EAP, IDLE);
    692 		break;
    693 	case EAP_DISCARD:
    694 		SM_ENTER(EAP, IDLE);
    695 		break;
    696 	case EAP_IDENTITY:
    697 		SM_ENTER(EAP, SEND_RESPONSE);
    698 		break;
    699 	case EAP_NOTIFICATION:
    700 		SM_ENTER(EAP, SEND_RESPONSE);
    701 		break;
    702 	case EAP_RETRANSMIT:
    703 		SM_ENTER(EAP, SEND_RESPONSE);
    704 		break;
    705 	case EAP_SUCCESS:
    706 		break;
    707 	case EAP_FAILURE:
    708 		break;
    709 	}
    710 }
    711 
    712 
    713 SM_STEP(EAP)
    714 {
    715 	/* Global transitions */
    716 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
    717 	    eapol_get_bool(sm, EAPOL_portEnabled))
    718 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
    719 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
    720 		SM_ENTER_GLOBAL(EAP, DISABLED);
    721 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
    722 		/* RFC 4137 does not place any limit on number of EAP messages
    723 		 * in an authentication session. However, some error cases have
    724 		 * ended up in a state were EAP messages were sent between the
    725 		 * peer and server in a loop (e.g., TLS ACK frame in both
    726 		 * direction). Since this is quite undesired outcome, limit the
    727 		 * total number of EAP round-trips and abort authentication if
    728 		 * this limit is exceeded.
    729 		 */
    730 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
    731 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
    732 				"authentication rounds - abort",
    733 				EAP_MAX_AUTH_ROUNDS);
    734 			sm->num_rounds++;
    735 			SM_ENTER_GLOBAL(EAP, FAILURE);
    736 		}
    737 	} else {
    738 		/* Local transitions */
    739 		eap_peer_sm_step_local(sm);
    740 	}
    741 }
    742 
    743 
    744 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
    745 				  EapType method)
    746 {
    747 	if (!eap_allowed_method(sm, vendor, method)) {
    748 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
    749 			   "vendor %u method %u", vendor, method);
    750 		return FALSE;
    751 	}
    752 	if (eap_peer_get_eap_method(vendor, method))
    753 		return TRUE;
    754 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
    755 		   "vendor %u method %u", vendor, method);
    756 	return FALSE;
    757 }
    758 
    759 
    760 static struct wpabuf * eap_sm_build_expanded_nak(
    761 	struct eap_sm *sm, int id, const struct eap_method *methods,
    762 	size_t count)
    763 {
    764 	struct wpabuf *resp;
    765 	int found = 0;
    766 	const struct eap_method *m;
    767 
    768 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
    769 
    770 	/* RFC 3748 - 5.3.2: Expanded Nak */
    771 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
    772 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
    773 	if (resp == NULL)
    774 		return NULL;
    775 
    776 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
    777 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
    778 
    779 	for (m = methods; m; m = m->next) {
    780 		if (sm->reqVendor == m->vendor &&
    781 		    sm->reqVendorMethod == m->method)
    782 			continue; /* do not allow the current method again */
    783 		if (eap_allowed_method(sm, m->vendor, m->method)) {
    784 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
    785 				   "vendor=%u method=%u",
    786 				   m->vendor, m->method);
    787 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    788 			wpabuf_put_be24(resp, m->vendor);
    789 			wpabuf_put_be32(resp, m->method);
    790 
    791 			found++;
    792 		}
    793 	}
    794 	if (!found) {
    795 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
    796 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    797 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
    798 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
    799 	}
    800 
    801 	eap_update_len(resp);
    802 
    803 	return resp;
    804 }
    805 
    806 
    807 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
    808 {
    809 	struct wpabuf *resp;
    810 	u8 *start;
    811 	int found = 0, expanded_found = 0;
    812 	size_t count;
    813 	const struct eap_method *methods, *m;
    814 
    815 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
    816 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
    817 		   sm->reqVendor, sm->reqVendorMethod);
    818 	methods = eap_peer_get_methods(&count);
    819 	if (methods == NULL)
    820 		return NULL;
    821 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    822 		return eap_sm_build_expanded_nak(sm, id, methods, count);
    823 
    824 	/* RFC 3748 - 5.3.1: Legacy Nak */
    825 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
    826 			     sizeof(struct eap_hdr) + 1 + count + 1,
    827 			     EAP_CODE_RESPONSE, id);
    828 	if (resp == NULL)
    829 		return NULL;
    830 
    831 	start = wpabuf_put(resp, 0);
    832 	for (m = methods; m; m = m->next) {
    833 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
    834 			continue; /* do not allow the current method again */
    835 		if (eap_allowed_method(sm, m->vendor, m->method)) {
    836 			if (m->vendor != EAP_VENDOR_IETF) {
    837 				if (expanded_found)
    838 					continue;
    839 				expanded_found = 1;
    840 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    841 			} else
    842 				wpabuf_put_u8(resp, m->method);
    843 			found++;
    844 		}
    845 	}
    846 	if (!found)
    847 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
    848 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
    849 
    850 	eap_update_len(resp);
    851 
    852 	return resp;
    853 }
    854 
    855 
    856 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
    857 {
    858 	const struct eap_hdr *hdr = wpabuf_head(req);
    859 	const u8 *pos = (const u8 *) (hdr + 1);
    860 	pos++;
    861 
    862 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
    863 		"EAP authentication started");
    864 
    865 	/*
    866 	 * RFC 3748 - 5.1: Identity
    867 	 * Data field may contain a displayable message in UTF-8. If this
    868 	 * includes NUL-character, only the data before that should be
    869 	 * displayed. Some EAP implementasitons may piggy-back additional
    870 	 * options after the NUL.
    871 	 */
    872 	/* TODO: could save displayable message so that it can be shown to the
    873 	 * user in case of interaction is required */
    874 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
    875 			  pos, be_to_host16(hdr->length) - 5);
    876 }
    877 
    878 
    879 #ifdef PCSC_FUNCS
    880 static int eap_sm_imsi_identity(struct eap_sm *sm,
    881 				struct eap_peer_config *conf)
    882 {
    883 	int aka = 0;
    884 	char imsi[100];
    885 	size_t imsi_len;
    886 	struct eap_method_type *m = conf->eap_methods;
    887 	int i;
    888 
    889 	imsi_len = sizeof(imsi);
    890 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
    891 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
    892 		return -1;
    893 	}
    894 
    895 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
    896 
    897 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
    898 			  m[i].method != EAP_TYPE_NONE); i++) {
    899 		if (m[i].vendor == EAP_VENDOR_IETF &&
    900 		    m[i].method == EAP_TYPE_AKA) {
    901 			aka = 1;
    902 			break;
    903 		}
    904 	}
    905 
    906 	os_free(conf->identity);
    907 	conf->identity = os_malloc(1 + imsi_len);
    908 	if (conf->identity == NULL) {
    909 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
    910 			   "IMSI-based identity");
    911 		return -1;
    912 	}
    913 
    914 	conf->identity[0] = aka ? '0' : '1';
    915 	os_memcpy(conf->identity + 1, imsi, imsi_len);
    916 	conf->identity_len = 1 + imsi_len;
    917 
    918 	return 0;
    919 }
    920 #endif /* PCSC_FUNCS */
    921 
    922 
    923 static int eap_sm_set_scard_pin(struct eap_sm *sm,
    924 				struct eap_peer_config *conf)
    925 {
    926 #ifdef PCSC_FUNCS
    927 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
    928 		/*
    929 		 * Make sure the same PIN is not tried again in order to avoid
    930 		 * blocking SIM.
    931 		 */
    932 		os_free(conf->pin);
    933 		conf->pin = NULL;
    934 
    935 		wpa_printf(MSG_WARNING, "PIN validation failed");
    936 		eap_sm_request_pin(sm);
    937 		return -1;
    938 	}
    939 	return 0;
    940 #else /* PCSC_FUNCS */
    941 	return -1;
    942 #endif /* PCSC_FUNCS */
    943 }
    944 
    945 static int eap_sm_get_scard_identity(struct eap_sm *sm,
    946 				     struct eap_peer_config *conf)
    947 {
    948 #ifdef PCSC_FUNCS
    949 	if (eap_sm_set_scard_pin(sm, conf))
    950 		return -1;
    951 
    952 	return eap_sm_imsi_identity(sm, conf);
    953 #else /* PCSC_FUNCS */
    954 	return -1;
    955 #endif /* PCSC_FUNCS */
    956 }
    957 
    958 
    959 /**
    960  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
    961  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
    962  * @id: EAP identifier for the packet
    963  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
    964  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
    965  * failure
    966  *
    967  * This function allocates and builds an EAP-Identity/Response packet for the
    968  * current network. The caller is responsible for freeing the returned data.
    969  */
    970 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
    971 {
    972 	struct eap_peer_config *config = eap_get_config(sm);
    973 	struct wpabuf *resp;
    974 	const u8 *identity;
    975 	size_t identity_len;
    976 
    977 	if (config == NULL) {
    978 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
    979 			   "was not available");
    980 		return NULL;
    981 	}
    982 
    983 	if (sm->m && sm->m->get_identity &&
    984 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
    985 					    &identity_len)) != NULL) {
    986 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
    987 				  "identity", identity, identity_len);
    988 	} else if (!encrypted && config->anonymous_identity) {
    989 		identity = config->anonymous_identity;
    990 		identity_len = config->anonymous_identity_len;
    991 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
    992 				  identity, identity_len);
    993 	} else {
    994 		identity = config->identity;
    995 		identity_len = config->identity_len;
    996 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
    997 				  identity, identity_len);
    998 	}
    999 
   1000 	if (identity == NULL) {
   1001 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
   1002 			   "configuration was not available");
   1003 		if (config->pcsc) {
   1004 			if (eap_sm_get_scard_identity(sm, config) < 0)
   1005 				return NULL;
   1006 			identity = config->identity;
   1007 			identity_len = config->identity_len;
   1008 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
   1009 					  "IMSI", identity, identity_len);
   1010 		} else {
   1011 			eap_sm_request_identity(sm);
   1012 			return NULL;
   1013 		}
   1014 	} else if (config->pcsc) {
   1015 		if (eap_sm_set_scard_pin(sm, config) < 0)
   1016 			return NULL;
   1017 	}
   1018 
   1019 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
   1020 			     EAP_CODE_RESPONSE, id);
   1021 	if (resp == NULL)
   1022 		return NULL;
   1023 
   1024 	wpabuf_put_data(resp, identity, identity_len);
   1025 
   1026 	return resp;
   1027 }
   1028 
   1029 
   1030 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
   1031 {
   1032 	const u8 *pos;
   1033 	char *msg;
   1034 	size_t i, msg_len;
   1035 
   1036 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
   1037 			       &msg_len);
   1038 	if (pos == NULL)
   1039 		return;
   1040 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
   1041 			  pos, msg_len);
   1042 
   1043 	msg = os_malloc(msg_len + 1);
   1044 	if (msg == NULL)
   1045 		return;
   1046 	for (i = 0; i < msg_len; i++)
   1047 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
   1048 	msg[msg_len] = '\0';
   1049 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
   1050 		WPA_EVENT_EAP_NOTIFICATION, msg);
   1051 	os_free(msg);
   1052 }
   1053 
   1054 
   1055 static struct wpabuf * eap_sm_buildNotify(int id)
   1056 {
   1057 	struct wpabuf *resp;
   1058 
   1059 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
   1060 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
   1061 			     EAP_CODE_RESPONSE, id);
   1062 	if (resp == NULL)
   1063 		return NULL;
   1064 
   1065 	return resp;
   1066 }
   1067 
   1068 
   1069 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
   1070 {
   1071 	const struct eap_hdr *hdr;
   1072 	size_t plen;
   1073 	const u8 *pos;
   1074 
   1075 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
   1076 	sm->reqId = 0;
   1077 	sm->reqMethod = EAP_TYPE_NONE;
   1078 	sm->reqVendor = EAP_VENDOR_IETF;
   1079 	sm->reqVendorMethod = EAP_TYPE_NONE;
   1080 
   1081 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
   1082 		return;
   1083 
   1084 	hdr = wpabuf_head(req);
   1085 	plen = be_to_host16(hdr->length);
   1086 	if (plen > wpabuf_len(req)) {
   1087 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
   1088 			   "(len=%lu plen=%lu)",
   1089 			   (unsigned long) wpabuf_len(req),
   1090 			   (unsigned long) plen);
   1091 		return;
   1092 	}
   1093 
   1094 	sm->reqId = hdr->identifier;
   1095 
   1096 	if (sm->workaround) {
   1097 		const u8 *addr[1];
   1098 		addr[0] = wpabuf_head(req);
   1099 		md5_vector(1, addr, &plen, sm->req_md5);
   1100 	}
   1101 
   1102 	switch (hdr->code) {
   1103 	case EAP_CODE_REQUEST:
   1104 		if (plen < sizeof(*hdr) + 1) {
   1105 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
   1106 				   "no Type field");
   1107 			return;
   1108 		}
   1109 		sm->rxReq = TRUE;
   1110 		pos = (const u8 *) (hdr + 1);
   1111 		sm->reqMethod = *pos++;
   1112 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
   1113 			if (plen < sizeof(*hdr) + 8) {
   1114 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
   1115 					   "expanded EAP-Packet (plen=%lu)",
   1116 					   (unsigned long) plen);
   1117 				return;
   1118 			}
   1119 			sm->reqVendor = WPA_GET_BE24(pos);
   1120 			pos += 3;
   1121 			sm->reqVendorMethod = WPA_GET_BE32(pos);
   1122 		}
   1123 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
   1124 			   "method=%u vendor=%u vendorMethod=%u",
   1125 			   sm->reqId, sm->reqMethod, sm->reqVendor,
   1126 			   sm->reqVendorMethod);
   1127 		break;
   1128 	case EAP_CODE_RESPONSE:
   1129 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
   1130 			/*
   1131 			 * LEAP differs from RFC 4137 by using reversed roles
   1132 			 * for mutual authentication and because of this, we
   1133 			 * need to accept EAP-Response frames if LEAP is used.
   1134 			 */
   1135 			if (plen < sizeof(*hdr) + 1) {
   1136 				wpa_printf(MSG_DEBUG, "EAP: Too short "
   1137 					   "EAP-Response - no Type field");
   1138 				return;
   1139 			}
   1140 			sm->rxResp = TRUE;
   1141 			pos = (const u8 *) (hdr + 1);
   1142 			sm->reqMethod = *pos;
   1143 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
   1144 				   "LEAP method=%d id=%d",
   1145 				   sm->reqMethod, sm->reqId);
   1146 			break;
   1147 		}
   1148 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
   1149 		break;
   1150 	case EAP_CODE_SUCCESS:
   1151 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
   1152 		sm->rxSuccess = TRUE;
   1153 		break;
   1154 	case EAP_CODE_FAILURE:
   1155 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
   1156 		sm->rxFailure = TRUE;
   1157 		break;
   1158 	default:
   1159 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
   1160 			   "code %d", hdr->code);
   1161 		break;
   1162 	}
   1163 }
   1164 
   1165 
   1166 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
   1167 				  union tls_event_data *data)
   1168 {
   1169 	struct eap_sm *sm = ctx;
   1170 	char *hash_hex = NULL;
   1171 
   1172 	switch (ev) {
   1173 	case TLS_CERT_CHAIN_FAILURE:
   1174 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
   1175 			"reason=%d depth=%d subject='%s' err='%s'",
   1176 			data->cert_fail.reason,
   1177 			data->cert_fail.depth,
   1178 			data->cert_fail.subject,
   1179 			data->cert_fail.reason_txt);
   1180 		break;
   1181 	case TLS_PEER_CERTIFICATE:
   1182 		if (!sm->eapol_cb->notify_cert)
   1183 			break;
   1184 
   1185 		if (data->peer_cert.hash) {
   1186 			size_t len = data->peer_cert.hash_len * 2 + 1;
   1187 			hash_hex = os_malloc(len);
   1188 			if (hash_hex) {
   1189 				wpa_snprintf_hex(hash_hex, len,
   1190 						 data->peer_cert.hash,
   1191 						 data->peer_cert.hash_len);
   1192 			}
   1193 		}
   1194 
   1195 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
   1196 					  data->peer_cert.depth,
   1197 					  data->peer_cert.subject,
   1198 					  hash_hex, data->peer_cert.cert);
   1199 		break;
   1200 	}
   1201 
   1202 	os_free(hash_hex);
   1203 }
   1204 
   1205 
   1206 /**
   1207  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
   1208  * @eapol_ctx: Context data to be used with eapol_cb calls
   1209  * @eapol_cb: Pointer to EAPOL callback functions
   1210  * @msg_ctx: Context data for wpa_msg() calls
   1211  * @conf: EAP configuration
   1212  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
   1213  *
   1214  * This function allocates and initializes an EAP state machine. In addition,
   1215  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
   1216  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
   1217  * state machine. Consequently, the caller must make sure that this data
   1218  * structure remains alive while the EAP state machine is active.
   1219  */
   1220 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
   1221 				 struct eapol_callbacks *eapol_cb,
   1222 				 void *msg_ctx, struct eap_config *conf)
   1223 {
   1224 	struct eap_sm *sm;
   1225 	struct tls_config tlsconf;
   1226 
   1227 	sm = os_zalloc(sizeof(*sm));
   1228 	if (sm == NULL)
   1229 		return NULL;
   1230 	sm->eapol_ctx = eapol_ctx;
   1231 	sm->eapol_cb = eapol_cb;
   1232 	sm->msg_ctx = msg_ctx;
   1233 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
   1234 	sm->wps = conf->wps;
   1235 
   1236 	os_memset(&tlsconf, 0, sizeof(tlsconf));
   1237 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
   1238 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
   1239 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
   1240 #ifdef CONFIG_FIPS
   1241 	tlsconf.fips_mode = 1;
   1242 #endif /* CONFIG_FIPS */
   1243 	tlsconf.event_cb = eap_peer_sm_tls_event;
   1244 	tlsconf.cb_ctx = sm;
   1245 	sm->ssl_ctx = tls_init(&tlsconf);
   1246 	if (sm->ssl_ctx == NULL) {
   1247 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
   1248 			   "context.");
   1249 		os_free(sm);
   1250 		return NULL;
   1251 	}
   1252 
   1253 	return sm;
   1254 }
   1255 
   1256 
   1257 /**
   1258  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
   1259  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1260  *
   1261  * This function deinitializes EAP state machine and frees all allocated
   1262  * resources.
   1263  */
   1264 void eap_peer_sm_deinit(struct eap_sm *sm)
   1265 {
   1266 	if (sm == NULL)
   1267 		return;
   1268 	eap_deinit_prev_method(sm, "EAP deinit");
   1269 	eap_sm_abort(sm);
   1270 	tls_deinit(sm->ssl_ctx);
   1271 	os_free(sm);
   1272 }
   1273 
   1274 
   1275 /**
   1276  * eap_peer_sm_step - Step EAP peer state machine
   1277  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1278  * Returns: 1 if EAP state was changed or 0 if not
   1279  *
   1280  * This function advances EAP state machine to a new state to match with the
   1281  * current variables. This should be called whenever variables used by the EAP
   1282  * state machine have changed.
   1283  */
   1284 int eap_peer_sm_step(struct eap_sm *sm)
   1285 {
   1286 	int res = 0;
   1287 	do {
   1288 		sm->changed = FALSE;
   1289 		SM_STEP_RUN(EAP);
   1290 		if (sm->changed)
   1291 			res = 1;
   1292 	} while (sm->changed);
   1293 	return res;
   1294 }
   1295 
   1296 
   1297 /**
   1298  * eap_sm_abort - Abort EAP authentication
   1299  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1300  *
   1301  * Release system resources that have been allocated for the authentication
   1302  * session without fully deinitializing the EAP state machine.
   1303  */
   1304 void eap_sm_abort(struct eap_sm *sm)
   1305 {
   1306 	wpabuf_free(sm->lastRespData);
   1307 	sm->lastRespData = NULL;
   1308 	wpabuf_free(sm->eapRespData);
   1309 	sm->eapRespData = NULL;
   1310 	os_free(sm->eapKeyData);
   1311 	sm->eapKeyData = NULL;
   1312 
   1313 	/* This is not clearly specified in the EAP statemachines draft, but
   1314 	 * it seems necessary to make sure that some of the EAPOL variables get
   1315 	 * cleared for the next authentication. */
   1316 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
   1317 }
   1318 
   1319 
   1320 #ifdef CONFIG_CTRL_IFACE
   1321 static const char * eap_sm_state_txt(int state)
   1322 {
   1323 	switch (state) {
   1324 	case EAP_INITIALIZE:
   1325 		return "INITIALIZE";
   1326 	case EAP_DISABLED:
   1327 		return "DISABLED";
   1328 	case EAP_IDLE:
   1329 		return "IDLE";
   1330 	case EAP_RECEIVED:
   1331 		return "RECEIVED";
   1332 	case EAP_GET_METHOD:
   1333 		return "GET_METHOD";
   1334 	case EAP_METHOD:
   1335 		return "METHOD";
   1336 	case EAP_SEND_RESPONSE:
   1337 		return "SEND_RESPONSE";
   1338 	case EAP_DISCARD:
   1339 		return "DISCARD";
   1340 	case EAP_IDENTITY:
   1341 		return "IDENTITY";
   1342 	case EAP_NOTIFICATION:
   1343 		return "NOTIFICATION";
   1344 	case EAP_RETRANSMIT:
   1345 		return "RETRANSMIT";
   1346 	case EAP_SUCCESS:
   1347 		return "SUCCESS";
   1348 	case EAP_FAILURE:
   1349 		return "FAILURE";
   1350 	default:
   1351 		return "UNKNOWN";
   1352 	}
   1353 }
   1354 #endif /* CONFIG_CTRL_IFACE */
   1355 
   1356 
   1357 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   1358 static const char * eap_sm_method_state_txt(EapMethodState state)
   1359 {
   1360 	switch (state) {
   1361 	case METHOD_NONE:
   1362 		return "NONE";
   1363 	case METHOD_INIT:
   1364 		return "INIT";
   1365 	case METHOD_CONT:
   1366 		return "CONT";
   1367 	case METHOD_MAY_CONT:
   1368 		return "MAY_CONT";
   1369 	case METHOD_DONE:
   1370 		return "DONE";
   1371 	default:
   1372 		return "UNKNOWN";
   1373 	}
   1374 }
   1375 
   1376 
   1377 static const char * eap_sm_decision_txt(EapDecision decision)
   1378 {
   1379 	switch (decision) {
   1380 	case DECISION_FAIL:
   1381 		return "FAIL";
   1382 	case DECISION_COND_SUCC:
   1383 		return "COND_SUCC";
   1384 	case DECISION_UNCOND_SUCC:
   1385 		return "UNCOND_SUCC";
   1386 	default:
   1387 		return "UNKNOWN";
   1388 	}
   1389 }
   1390 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1391 
   1392 
   1393 #ifdef CONFIG_CTRL_IFACE
   1394 
   1395 /**
   1396  * eap_sm_get_status - Get EAP state machine status
   1397  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1398  * @buf: Buffer for status information
   1399  * @buflen: Maximum buffer length
   1400  * @verbose: Whether to include verbose status information
   1401  * Returns: Number of bytes written to buf.
   1402  *
   1403  * Query EAP state machine for status information. This function fills in a
   1404  * text area with current status information from the EAPOL state machine. If
   1405  * the buffer (buf) is not large enough, status information will be truncated
   1406  * to fit the buffer.
   1407  */
   1408 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
   1409 {
   1410 	int len, ret;
   1411 
   1412 	if (sm == NULL)
   1413 		return 0;
   1414 
   1415 	len = os_snprintf(buf, buflen,
   1416 			  "EAP state=%s\n",
   1417 			  eap_sm_state_txt(sm->EAP_state));
   1418 	if (len < 0 || (size_t) len >= buflen)
   1419 		return 0;
   1420 
   1421 	if (sm->selectedMethod != EAP_TYPE_NONE) {
   1422 		const char *name;
   1423 		if (sm->m) {
   1424 			name = sm->m->name;
   1425 		} else {
   1426 			const struct eap_method *m =
   1427 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
   1428 							sm->selectedMethod);
   1429 			if (m)
   1430 				name = m->name;
   1431 			else
   1432 				name = "?";
   1433 		}
   1434 		ret = os_snprintf(buf + len, buflen - len,
   1435 				  "selectedMethod=%d (EAP-%s)\n",
   1436 				  sm->selectedMethod, name);
   1437 		if (ret < 0 || (size_t) ret >= buflen - len)
   1438 			return len;
   1439 		len += ret;
   1440 
   1441 		if (sm->m && sm->m->get_status) {
   1442 			len += sm->m->get_status(sm, sm->eap_method_priv,
   1443 						 buf + len, buflen - len,
   1444 						 verbose);
   1445 		}
   1446 	}
   1447 
   1448 	if (verbose) {
   1449 		ret = os_snprintf(buf + len, buflen - len,
   1450 				  "reqMethod=%d\n"
   1451 				  "methodState=%s\n"
   1452 				  "decision=%s\n"
   1453 				  "ClientTimeout=%d\n",
   1454 				  sm->reqMethod,
   1455 				  eap_sm_method_state_txt(sm->methodState),
   1456 				  eap_sm_decision_txt(sm->decision),
   1457 				  sm->ClientTimeout);
   1458 		if (ret < 0 || (size_t) ret >= buflen - len)
   1459 			return len;
   1460 		len += ret;
   1461 	}
   1462 
   1463 	return len;
   1464 }
   1465 #endif /* CONFIG_CTRL_IFACE */
   1466 
   1467 
   1468 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   1469 typedef enum {
   1470 	TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD,
   1471 	TYPE_PASSPHRASE
   1472 } eap_ctrl_req_type;
   1473 
   1474 static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type,
   1475 			   const char *msg, size_t msglen)
   1476 {
   1477 	struct eap_peer_config *config;
   1478 	char *field, *txt, *tmp;
   1479 
   1480 	if (sm == NULL)
   1481 		return;
   1482 	config = eap_get_config(sm);
   1483 	if (config == NULL)
   1484 		return;
   1485 
   1486 	switch (type) {
   1487 	case TYPE_IDENTITY:
   1488 		field = "IDENTITY";
   1489 		txt = "Identity";
   1490 		config->pending_req_identity++;
   1491 		break;
   1492 	case TYPE_PASSWORD:
   1493 		field = "PASSWORD";
   1494 		txt = "Password";
   1495 		config->pending_req_password++;
   1496 		break;
   1497 	case TYPE_NEW_PASSWORD:
   1498 		field = "NEW_PASSWORD";
   1499 		txt = "New Password";
   1500 		config->pending_req_new_password++;
   1501 		break;
   1502 	case TYPE_PIN:
   1503 		field = "PIN";
   1504 		txt = "PIN";
   1505 		config->pending_req_pin++;
   1506 		break;
   1507 	case TYPE_OTP:
   1508 		field = "OTP";
   1509 		if (msg) {
   1510 			tmp = os_malloc(msglen + 3);
   1511 			if (tmp == NULL)
   1512 				return;
   1513 			tmp[0] = '[';
   1514 			os_memcpy(tmp + 1, msg, msglen);
   1515 			tmp[msglen + 1] = ']';
   1516 			tmp[msglen + 2] = '\0';
   1517 			txt = tmp;
   1518 			os_free(config->pending_req_otp);
   1519 			config->pending_req_otp = tmp;
   1520 			config->pending_req_otp_len = msglen + 3;
   1521 		} else {
   1522 			if (config->pending_req_otp == NULL)
   1523 				return;
   1524 			txt = config->pending_req_otp;
   1525 		}
   1526 		break;
   1527 	case TYPE_PASSPHRASE:
   1528 		field = "PASSPHRASE";
   1529 		txt = "Private key passphrase";
   1530 		config->pending_req_passphrase++;
   1531 		break;
   1532 	default:
   1533 		return;
   1534 	}
   1535 
   1536 	if (sm->eapol_cb->eap_param_needed)
   1537 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
   1538 }
   1539 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1540 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
   1541 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1542 
   1543 const char * eap_sm_get_method_name(struct eap_sm *sm)
   1544 {
   1545 	if (sm->m == NULL)
   1546 		return "UNKNOWN";
   1547 	return sm->m->name;
   1548 }
   1549 
   1550 
   1551 /**
   1552  * eap_sm_request_identity - Request identity from user (ctrl_iface)
   1553  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1554  *
   1555  * EAP methods can call this function to request identity information for the
   1556  * current network. This is normally called when the identity is not included
   1557  * in the network configuration. The request will be sent to monitor programs
   1558  * through the control interface.
   1559  */
   1560 void eap_sm_request_identity(struct eap_sm *sm)
   1561 {
   1562 	eap_sm_request(sm, TYPE_IDENTITY, NULL, 0);
   1563 }
   1564 
   1565 
   1566 /**
   1567  * eap_sm_request_password - Request password from user (ctrl_iface)
   1568  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1569  *
   1570  * EAP methods can call this function to request password information for the
   1571  * current network. This is normally called when the password is not included
   1572  * in the network configuration. The request will be sent to monitor programs
   1573  * through the control interface.
   1574  */
   1575 void eap_sm_request_password(struct eap_sm *sm)
   1576 {
   1577 	eap_sm_request(sm, TYPE_PASSWORD, NULL, 0);
   1578 }
   1579 
   1580 
   1581 /**
   1582  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
   1583  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1584  *
   1585  * EAP methods can call this function to request new password information for
   1586  * the current network. This is normally called when the EAP method indicates
   1587  * that the current password has expired and password change is required. The
   1588  * request will be sent to monitor programs through the control interface.
   1589  */
   1590 void eap_sm_request_new_password(struct eap_sm *sm)
   1591 {
   1592 	eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0);
   1593 }
   1594 
   1595 
   1596 /**
   1597  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
   1598  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1599  *
   1600  * EAP methods can call this function to request SIM or smart card PIN
   1601  * information for the current network. This is normally called when the PIN is
   1602  * not included in the network configuration. The request will be sent to
   1603  * monitor programs through the control interface.
   1604  */
   1605 void eap_sm_request_pin(struct eap_sm *sm)
   1606 {
   1607 	eap_sm_request(sm, TYPE_PIN, NULL, 0);
   1608 }
   1609 
   1610 
   1611 /**
   1612  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
   1613  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1614  * @msg: Message to be displayed to the user when asking for OTP
   1615  * @msg_len: Length of the user displayable message
   1616  *
   1617  * EAP methods can call this function to request open time password (OTP) for
   1618  * the current network. The request will be sent to monitor programs through
   1619  * the control interface.
   1620  */
   1621 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
   1622 {
   1623 	eap_sm_request(sm, TYPE_OTP, msg, msg_len);
   1624 }
   1625 
   1626 
   1627 /**
   1628  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
   1629  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1630  *
   1631  * EAP methods can call this function to request passphrase for a private key
   1632  * for the current network. This is normally called when the passphrase is not
   1633  * included in the network configuration. The request will be sent to monitor
   1634  * programs through the control interface.
   1635  */
   1636 void eap_sm_request_passphrase(struct eap_sm *sm)
   1637 {
   1638 	eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0);
   1639 }
   1640 
   1641 
   1642 /**
   1643  * eap_sm_notify_ctrl_attached - Notification of attached monitor
   1644  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1645  *
   1646  * Notify EAP state machines that a monitor was attached to the control
   1647  * interface to trigger re-sending of pending requests for user input.
   1648  */
   1649 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
   1650 {
   1651 	struct eap_peer_config *config = eap_get_config(sm);
   1652 
   1653 	if (config == NULL)
   1654 		return;
   1655 
   1656 	/* Re-send any pending requests for user data since a new control
   1657 	 * interface was added. This handles cases where the EAP authentication
   1658 	 * starts immediately after system startup when the user interface is
   1659 	 * not yet running. */
   1660 	if (config->pending_req_identity)
   1661 		eap_sm_request_identity(sm);
   1662 	if (config->pending_req_password)
   1663 		eap_sm_request_password(sm);
   1664 	if (config->pending_req_new_password)
   1665 		eap_sm_request_new_password(sm);
   1666 	if (config->pending_req_otp)
   1667 		eap_sm_request_otp(sm, NULL, 0);
   1668 	if (config->pending_req_pin)
   1669 		eap_sm_request_pin(sm);
   1670 	if (config->pending_req_passphrase)
   1671 		eap_sm_request_passphrase(sm);
   1672 }
   1673 
   1674 
   1675 static int eap_allowed_phase2_type(int vendor, int type)
   1676 {
   1677 	if (vendor != EAP_VENDOR_IETF)
   1678 		return 0;
   1679 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
   1680 		type != EAP_TYPE_FAST;
   1681 }
   1682 
   1683 
   1684 /**
   1685  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
   1686  * @name: EAP method name, e.g., MD5
   1687  * @vendor: Buffer for returning EAP Vendor-Id
   1688  * Returns: EAP method type or %EAP_TYPE_NONE if not found
   1689  *
   1690  * This function maps EAP type names into EAP type numbers that are allowed for
   1691  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
   1692  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
   1693  */
   1694 u32 eap_get_phase2_type(const char *name, int *vendor)
   1695 {
   1696 	int v;
   1697 	u8 type = eap_peer_get_type(name, &v);
   1698 	if (eap_allowed_phase2_type(v, type)) {
   1699 		*vendor = v;
   1700 		return type;
   1701 	}
   1702 	*vendor = EAP_VENDOR_IETF;
   1703 	return EAP_TYPE_NONE;
   1704 }
   1705 
   1706 
   1707 /**
   1708  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
   1709  * @config: Pointer to a network configuration
   1710  * @count: Pointer to a variable to be filled with number of returned EAP types
   1711  * Returns: Pointer to allocated type list or %NULL on failure
   1712  *
   1713  * This function generates an array of allowed EAP phase 2 (tunneled) types for
   1714  * the given network configuration.
   1715  */
   1716 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
   1717 					      size_t *count)
   1718 {
   1719 	struct eap_method_type *buf;
   1720 	u32 method;
   1721 	int vendor;
   1722 	size_t mcount;
   1723 	const struct eap_method *methods, *m;
   1724 
   1725 	methods = eap_peer_get_methods(&mcount);
   1726 	if (methods == NULL)
   1727 		return NULL;
   1728 	*count = 0;
   1729 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
   1730 	if (buf == NULL)
   1731 		return NULL;
   1732 
   1733 	for (m = methods; m; m = m->next) {
   1734 		vendor = m->vendor;
   1735 		method = m->method;
   1736 		if (eap_allowed_phase2_type(vendor, method)) {
   1737 			if (vendor == EAP_VENDOR_IETF &&
   1738 			    method == EAP_TYPE_TLS && config &&
   1739 			    config->private_key2 == NULL)
   1740 				continue;
   1741 			buf[*count].vendor = vendor;
   1742 			buf[*count].method = method;
   1743 			(*count)++;
   1744 		}
   1745 	}
   1746 
   1747 	return buf;
   1748 }
   1749 
   1750 
   1751 /**
   1752  * eap_set_fast_reauth - Update fast_reauth setting
   1753  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1754  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
   1755  */
   1756 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
   1757 {
   1758 	sm->fast_reauth = enabled;
   1759 }
   1760 
   1761 
   1762 /**
   1763  * eap_set_workaround - Update EAP workarounds setting
   1764  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1765  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
   1766  */
   1767 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
   1768 {
   1769 	sm->workaround = workaround;
   1770 }
   1771 
   1772 
   1773 /**
   1774  * eap_get_config - Get current network configuration
   1775  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1776  * Returns: Pointer to the current network configuration or %NULL if not found
   1777  *
   1778  * EAP peer methods should avoid using this function if they can use other
   1779  * access functions, like eap_get_config_identity() and
   1780  * eap_get_config_password(), that do not require direct access to
   1781  * struct eap_peer_config.
   1782  */
   1783 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
   1784 {
   1785 	return sm->eapol_cb->get_config(sm->eapol_ctx);
   1786 }
   1787 
   1788 
   1789 /**
   1790  * eap_get_config_identity - Get identity from the network configuration
   1791  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1792  * @len: Buffer for the length of the identity
   1793  * Returns: Pointer to the identity or %NULL if not found
   1794  */
   1795 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
   1796 {
   1797 	struct eap_peer_config *config = eap_get_config(sm);
   1798 	if (config == NULL)
   1799 		return NULL;
   1800 	*len = config->identity_len;
   1801 	return config->identity;
   1802 }
   1803 
   1804 
   1805 /**
   1806  * eap_get_config_password - Get password from the network configuration
   1807  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1808  * @len: Buffer for the length of the password
   1809  * Returns: Pointer to the password or %NULL if not found
   1810  */
   1811 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
   1812 {
   1813 	struct eap_peer_config *config = eap_get_config(sm);
   1814 	if (config == NULL)
   1815 		return NULL;
   1816 	*len = config->password_len;
   1817 	return config->password;
   1818 }
   1819 
   1820 
   1821 /**
   1822  * eap_get_config_password2 - Get password from the network configuration
   1823  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1824  * @len: Buffer for the length of the password
   1825  * @hash: Buffer for returning whether the password is stored as a
   1826  * NtPasswordHash instead of plaintext password; can be %NULL if this
   1827  * information is not needed
   1828  * Returns: Pointer to the password or %NULL if not found
   1829  */
   1830 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
   1831 {
   1832 	struct eap_peer_config *config = eap_get_config(sm);
   1833 	if (config == NULL)
   1834 		return NULL;
   1835 	*len = config->password_len;
   1836 	if (hash)
   1837 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
   1838 	return config->password;
   1839 }
   1840 
   1841 
   1842 /**
   1843  * eap_get_config_new_password - Get new password from network configuration
   1844  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1845  * @len: Buffer for the length of the new password
   1846  * Returns: Pointer to the new password or %NULL if not found
   1847  */
   1848 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
   1849 {
   1850 	struct eap_peer_config *config = eap_get_config(sm);
   1851 	if (config == NULL)
   1852 		return NULL;
   1853 	*len = config->new_password_len;
   1854 	return config->new_password;
   1855 }
   1856 
   1857 
   1858 /**
   1859  * eap_get_config_otp - Get one-time password from the network configuration
   1860  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1861  * @len: Buffer for the length of the one-time password
   1862  * Returns: Pointer to the one-time password or %NULL if not found
   1863  */
   1864 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
   1865 {
   1866 	struct eap_peer_config *config = eap_get_config(sm);
   1867 	if (config == NULL)
   1868 		return NULL;
   1869 	*len = config->otp_len;
   1870 	return config->otp;
   1871 }
   1872 
   1873 
   1874 /**
   1875  * eap_clear_config_otp - Clear used one-time password
   1876  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1877  *
   1878  * This function clears a used one-time password (OTP) from the current network
   1879  * configuration. This should be called when the OTP has been used and is not
   1880  * needed anymore.
   1881  */
   1882 void eap_clear_config_otp(struct eap_sm *sm)
   1883 {
   1884 	struct eap_peer_config *config = eap_get_config(sm);
   1885 	if (config == NULL)
   1886 		return;
   1887 	os_memset(config->otp, 0, config->otp_len);
   1888 	os_free(config->otp);
   1889 	config->otp = NULL;
   1890 	config->otp_len = 0;
   1891 }
   1892 
   1893 
   1894 /**
   1895  * eap_get_config_phase1 - Get phase1 data from the network configuration
   1896  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1897  * Returns: Pointer to the phase1 data or %NULL if not found
   1898  */
   1899 const char * eap_get_config_phase1(struct eap_sm *sm)
   1900 {
   1901 	struct eap_peer_config *config = eap_get_config(sm);
   1902 	if (config == NULL)
   1903 		return NULL;
   1904 	return config->phase1;
   1905 }
   1906 
   1907 
   1908 /**
   1909  * eap_get_config_phase2 - Get phase2 data from the network configuration
   1910  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1911  * Returns: Pointer to the phase1 data or %NULL if not found
   1912  */
   1913 const char * eap_get_config_phase2(struct eap_sm *sm)
   1914 {
   1915 	struct eap_peer_config *config = eap_get_config(sm);
   1916 	if (config == NULL)
   1917 		return NULL;
   1918 	return config->phase2;
   1919 }
   1920 
   1921 
   1922 int eap_get_config_fragment_size(struct eap_sm *sm)
   1923 {
   1924 	struct eap_peer_config *config = eap_get_config(sm);
   1925 	if (config == NULL)
   1926 		return -1;
   1927 	return config->fragment_size;
   1928 }
   1929 
   1930 
   1931 /**
   1932  * eap_key_available - Get key availability (eapKeyAvailable variable)
   1933  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1934  * Returns: 1 if EAP keying material is available, 0 if not
   1935  */
   1936 int eap_key_available(struct eap_sm *sm)
   1937 {
   1938 	return sm ? sm->eapKeyAvailable : 0;
   1939 }
   1940 
   1941 
   1942 /**
   1943  * eap_notify_success - Notify EAP state machine about external success trigger
   1944  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1945  *
   1946  * This function is called when external event, e.g., successful completion of
   1947  * WPA-PSK key handshake, is indicating that EAP state machine should move to
   1948  * success state. This is mainly used with security modes that do not use EAP
   1949  * state machine (e.g., WPA-PSK).
   1950  */
   1951 void eap_notify_success(struct eap_sm *sm)
   1952 {
   1953 	if (sm) {
   1954 		sm->decision = DECISION_COND_SUCC;
   1955 		sm->EAP_state = EAP_SUCCESS;
   1956 	}
   1957 }
   1958 
   1959 
   1960 /**
   1961  * eap_notify_lower_layer_success - Notification of lower layer success
   1962  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1963  *
   1964  * Notify EAP state machines that a lower layer has detected a successful
   1965  * authentication. This is used to recover from dropped EAP-Success messages.
   1966  */
   1967 void eap_notify_lower_layer_success(struct eap_sm *sm)
   1968 {
   1969 	if (sm == NULL)
   1970 		return;
   1971 
   1972 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
   1973 	    sm->decision == DECISION_FAIL ||
   1974 	    (sm->methodState != METHOD_MAY_CONT &&
   1975 	     sm->methodState != METHOD_DONE))
   1976 		return;
   1977 
   1978 	if (sm->eapKeyData != NULL)
   1979 		sm->eapKeyAvailable = TRUE;
   1980 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
   1981 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
   1982 		"EAP authentication completed successfully (based on lower "
   1983 		"layer success)");
   1984 }
   1985 
   1986 
   1987 /**
   1988  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
   1989  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1990  * @len: Pointer to variable that will be set to number of bytes in the key
   1991  * Returns: Pointer to the EAP keying data or %NULL on failure
   1992  *
   1993  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
   1994  * key is available only after a successful authentication. EAP state machine
   1995  * continues to manage the key data and the caller must not change or free the
   1996  * returned data.
   1997  */
   1998 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
   1999 {
   2000 	if (sm == NULL || sm->eapKeyData == NULL) {
   2001 		*len = 0;
   2002 		return NULL;
   2003 	}
   2004 
   2005 	*len = sm->eapKeyDataLen;
   2006 	return sm->eapKeyData;
   2007 }
   2008 
   2009 
   2010 /**
   2011  * eap_get_eapKeyData - Get EAP response data
   2012  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2013  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
   2014  *
   2015  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
   2016  * available when EAP state machine has processed an incoming EAP request. The
   2017  * EAP state machine does not maintain a reference to the response after this
   2018  * function is called and the caller is responsible for freeing the data.
   2019  */
   2020 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
   2021 {
   2022 	struct wpabuf *resp;
   2023 
   2024 	if (sm == NULL || sm->eapRespData == NULL)
   2025 		return NULL;
   2026 
   2027 	resp = sm->eapRespData;
   2028 	sm->eapRespData = NULL;
   2029 
   2030 	return resp;
   2031 }
   2032 
   2033 
   2034 /**
   2035  * eap_sm_register_scard_ctx - Notification of smart card context
   2036  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2037  * @ctx: Context data for smart card operations
   2038  *
   2039  * Notify EAP state machines of context data for smart card operations. This
   2040  * context data will be used as a parameter for scard_*() functions.
   2041  */
   2042 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
   2043 {
   2044 	if (sm)
   2045 		sm->scard_ctx = ctx;
   2046 }
   2047 
   2048 
   2049 /**
   2050  * eap_set_config_blob - Set or add a named configuration blob
   2051  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2052  * @blob: New value for the blob
   2053  *
   2054  * Adds a new configuration blob or replaces the current value of an existing
   2055  * blob.
   2056  */
   2057 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
   2058 {
   2059 #ifndef CONFIG_NO_CONFIG_BLOBS
   2060 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
   2061 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2062 }
   2063 
   2064 
   2065 /**
   2066  * eap_get_config_blob - Get a named configuration blob
   2067  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2068  * @name: Name of the blob
   2069  * Returns: Pointer to blob data or %NULL if not found
   2070  */
   2071 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
   2072 						   const char *name)
   2073 {
   2074 #ifndef CONFIG_NO_CONFIG_BLOBS
   2075 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
   2076 #else /* CONFIG_NO_CONFIG_BLOBS */
   2077 	return NULL;
   2078 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2079 }
   2080 
   2081 
   2082 /**
   2083  * eap_set_force_disabled - Set force_disabled flag
   2084  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2085  * @disabled: 1 = EAP disabled, 0 = EAP enabled
   2086  *
   2087  * This function is used to force EAP state machine to be disabled when it is
   2088  * not in use (e.g., with WPA-PSK or plaintext connections).
   2089  */
   2090 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
   2091 {
   2092 	sm->force_disabled = disabled;
   2093 }
   2094 
   2095 
   2096  /**
   2097  * eap_notify_pending - Notify that EAP method is ready to re-process a request
   2098  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2099  *
   2100  * An EAP method can perform a pending operation (e.g., to get a response from
   2101  * an external process). Once the response is available, this function can be
   2102  * used to request EAPOL state machine to retry delivering the previously
   2103  * received (and still unanswered) EAP request to EAP state machine.
   2104  */
   2105 void eap_notify_pending(struct eap_sm *sm)
   2106 {
   2107 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
   2108 }
   2109 
   2110 
   2111 /**
   2112  * eap_invalidate_cached_session - Mark cached session data invalid
   2113  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2114  */
   2115 void eap_invalidate_cached_session(struct eap_sm *sm)
   2116 {
   2117 	if (sm)
   2118 		eap_deinit_prev_method(sm, "invalidate");
   2119 }
   2120 
   2121 
   2122 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
   2123 {
   2124 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2125 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2126 		return 0; /* Not a WPS Enrollee */
   2127 
   2128 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
   2129 		return 0; /* Not using PBC */
   2130 
   2131 	return 1;
   2132 }
   2133 
   2134 
   2135 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
   2136 {
   2137 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2138 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2139 		return 0; /* Not a WPS Enrollee */
   2140 
   2141 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
   2142 		return 0; /* Not using PIN */
   2143 
   2144 	return 1;
   2145 }
   2146