1 /* 2 * EAP peer state machines (RFC 4137) 3 * Copyright (c) 2004-2010, Jouni Malinen <j (at) w1.fi> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Alternatively, this software may be distributed under the terms of BSD 10 * license. 11 * 12 * See README and COPYING for more details. 13 * 14 * This file implements the Peer State Machine as defined in RFC 4137. The used 15 * states and state transitions match mostly with the RFC. However, there are 16 * couple of additional transitions for working around small issues noticed 17 * during testing. These exceptions are explained in comments within the 18 * functions in this file. The method functions, m.func(), are similar to the 19 * ones used in RFC 4137, but some small changes have used here to optimize 20 * operations and to add functionality needed for fast re-authentication 21 * (session resumption). 22 */ 23 24 #include "includes.h" 25 26 #include "common.h" 27 #include "pcsc_funcs.h" 28 #include "state_machine.h" 29 #include "crypto/crypto.h" 30 #include "crypto/tls.h" 31 #include "common/wpa_ctrl.h" 32 #include "eap_common/eap_wsc_common.h" 33 #include "eap_i.h" 34 #include "eap_config.h" 35 36 #define STATE_MACHINE_DATA struct eap_sm 37 #define STATE_MACHINE_DEBUG_PREFIX "EAP" 38 39 #define EAP_MAX_AUTH_ROUNDS 50 40 #define EAP_CLIENT_TIMEOUT_DEFAULT 60 41 42 43 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 44 EapType method); 45 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); 46 static void eap_sm_processIdentity(struct eap_sm *sm, 47 const struct wpabuf *req); 48 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); 49 static struct wpabuf * eap_sm_buildNotify(int id); 50 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); 51 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 52 static const char * eap_sm_method_state_txt(EapMethodState state); 53 static const char * eap_sm_decision_txt(EapDecision decision); 54 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 55 56 57 58 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) 59 { 60 return sm->eapol_cb->get_bool(sm->eapol_ctx, var); 61 } 62 63 64 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, 65 Boolean value) 66 { 67 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); 68 } 69 70 71 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) 72 { 73 return sm->eapol_cb->get_int(sm->eapol_ctx, var); 74 } 75 76 77 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, 78 unsigned int value) 79 { 80 sm->eapol_cb->set_int(sm->eapol_ctx, var, value); 81 } 82 83 84 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) 85 { 86 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); 87 } 88 89 90 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) 91 { 92 if (sm->m == NULL || sm->eap_method_priv == NULL) 93 return; 94 95 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " 96 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); 97 sm->m->deinit(sm, sm->eap_method_priv); 98 sm->eap_method_priv = NULL; 99 sm->m = NULL; 100 } 101 102 103 /** 104 * eap_allowed_method - Check whether EAP method is allowed 105 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 106 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types 107 * @method: EAP type 108 * Returns: 1 = allowed EAP method, 0 = not allowed 109 */ 110 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) 111 { 112 struct eap_peer_config *config = eap_get_config(sm); 113 int i; 114 struct eap_method_type *m; 115 116 if (config == NULL || config->eap_methods == NULL) 117 return 1; 118 119 m = config->eap_methods; 120 for (i = 0; m[i].vendor != EAP_VENDOR_IETF || 121 m[i].method != EAP_TYPE_NONE; i++) { 122 if (m[i].vendor == vendor && m[i].method == method) 123 return 1; 124 } 125 return 0; 126 } 127 128 129 /* 130 * This state initializes state machine variables when the machine is 131 * activated (portEnabled = TRUE). This is also used when re-starting 132 * authentication (eapRestart == TRUE). 133 */ 134 SM_STATE(EAP, INITIALIZE) 135 { 136 SM_ENTRY(EAP, INITIALIZE); 137 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && 138 sm->m->has_reauth_data(sm, sm->eap_method_priv) && 139 !sm->prev_failure) { 140 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " 141 "fast reauthentication"); 142 sm->m->deinit_for_reauth(sm, sm->eap_method_priv); 143 } else { 144 eap_deinit_prev_method(sm, "INITIALIZE"); 145 } 146 sm->selectedMethod = EAP_TYPE_NONE; 147 sm->methodState = METHOD_NONE; 148 sm->allowNotifications = TRUE; 149 sm->decision = DECISION_FAIL; 150 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 151 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 152 eapol_set_bool(sm, EAPOL_eapFail, FALSE); 153 os_free(sm->eapKeyData); 154 sm->eapKeyData = NULL; 155 sm->eapKeyAvailable = FALSE; 156 eapol_set_bool(sm, EAPOL_eapRestart, FALSE); 157 sm->lastId = -1; /* new session - make sure this does not match with 158 * the first EAP-Packet */ 159 /* 160 * RFC 4137 does not reset eapResp and eapNoResp here. However, this 161 * seemed to be able to trigger cases where both were set and if EAPOL 162 * state machine uses eapNoResp first, it may end up not sending a real 163 * reply correctly. This occurred when the workaround in FAIL state set 164 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do 165 * something else(?) 166 */ 167 eapol_set_bool(sm, EAPOL_eapResp, FALSE); 168 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); 169 sm->num_rounds = 0; 170 sm->prev_failure = 0; 171 } 172 173 174 /* 175 * This state is reached whenever service from the lower layer is interrupted 176 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE 177 * occurs when the port becomes enabled. 178 */ 179 SM_STATE(EAP, DISABLED) 180 { 181 SM_ENTRY(EAP, DISABLED); 182 sm->num_rounds = 0; 183 } 184 185 186 /* 187 * The state machine spends most of its time here, waiting for something to 188 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and 189 * SEND_RESPONSE states. 190 */ 191 SM_STATE(EAP, IDLE) 192 { 193 SM_ENTRY(EAP, IDLE); 194 } 195 196 197 /* 198 * This state is entered when an EAP packet is received (eapReq == TRUE) to 199 * parse the packet header. 200 */ 201 SM_STATE(EAP, RECEIVED) 202 { 203 const struct wpabuf *eapReqData; 204 205 SM_ENTRY(EAP, RECEIVED); 206 eapReqData = eapol_get_eapReqData(sm); 207 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ 208 eap_sm_parseEapReq(sm, eapReqData); 209 sm->num_rounds++; 210 } 211 212 213 /* 214 * This state is entered when a request for a new type comes in. Either the 215 * correct method is started, or a Nak response is built. 216 */ 217 SM_STATE(EAP, GET_METHOD) 218 { 219 int reinit; 220 EapType method; 221 222 SM_ENTRY(EAP, GET_METHOD); 223 224 if (sm->reqMethod == EAP_TYPE_EXPANDED) 225 method = sm->reqVendorMethod; 226 else 227 method = sm->reqMethod; 228 229 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { 230 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", 231 sm->reqVendor, method); 232 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 233 "vendor=%u method=%u -> NAK", 234 sm->reqVendor, method); 235 goto nak; 236 } 237 238 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 239 "vendor=%u method=%u", sm->reqVendor, method); 240 241 /* 242 * RFC 4137 does not define specific operation for fast 243 * re-authentication (session resumption). The design here is to allow 244 * the previously used method data to be maintained for 245 * re-authentication if the method support session resumption. 246 * Otherwise, the previously used method data is freed and a new method 247 * is allocated here. 248 */ 249 if (sm->fast_reauth && 250 sm->m && sm->m->vendor == sm->reqVendor && 251 sm->m->method == method && 252 sm->m->has_reauth_data && 253 sm->m->has_reauth_data(sm, sm->eap_method_priv)) { 254 wpa_printf(MSG_DEBUG, "EAP: Using previous method data" 255 " for fast re-authentication"); 256 reinit = 1; 257 } else { 258 eap_deinit_prev_method(sm, "GET_METHOD"); 259 reinit = 0; 260 } 261 262 sm->selectedMethod = sm->reqMethod; 263 if (sm->m == NULL) 264 sm->m = eap_peer_get_eap_method(sm->reqVendor, method); 265 if (!sm->m) { 266 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " 267 "vendor %d method %d", 268 sm->reqVendor, method); 269 goto nak; 270 } 271 272 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 273 274 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " 275 "vendor %u method %u (%s)", 276 sm->reqVendor, method, sm->m->name); 277 if (reinit) 278 sm->eap_method_priv = sm->m->init_for_reauth( 279 sm, sm->eap_method_priv); 280 else 281 sm->eap_method_priv = sm->m->init(sm); 282 283 if (sm->eap_method_priv == NULL) { 284 struct eap_peer_config *config = eap_get_config(sm); 285 wpa_msg(sm->msg_ctx, MSG_INFO, 286 "EAP: Failed to initialize EAP method: vendor %u " 287 "method %u (%s)", 288 sm->reqVendor, method, sm->m->name); 289 sm->m = NULL; 290 sm->methodState = METHOD_NONE; 291 sm->selectedMethod = EAP_TYPE_NONE; 292 if (sm->reqMethod == EAP_TYPE_TLS && config && 293 (config->pending_req_pin || 294 config->pending_req_passphrase)) { 295 /* 296 * Return without generating Nak in order to allow 297 * entering of PIN code or passphrase to retry the 298 * current EAP packet. 299 */ 300 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " 301 "request - skip Nak"); 302 return; 303 } 304 305 goto nak; 306 } 307 308 sm->methodState = METHOD_INIT; 309 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD 310 "EAP vendor %u method %u (%s) selected", 311 sm->reqVendor, method, sm->m->name); 312 return; 313 314 nak: 315 wpabuf_free(sm->eapRespData); 316 sm->eapRespData = NULL; 317 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); 318 } 319 320 321 /* 322 * The method processing happens here. The request from the authenticator is 323 * processed, and an appropriate response packet is built. 324 */ 325 SM_STATE(EAP, METHOD) 326 { 327 struct wpabuf *eapReqData; 328 struct eap_method_ret ret; 329 330 SM_ENTRY(EAP, METHOD); 331 if (sm->m == NULL) { 332 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); 333 return; 334 } 335 336 eapReqData = eapol_get_eapReqData(sm); 337 338 /* 339 * Get ignore, methodState, decision, allowNotifications, and 340 * eapRespData. RFC 4137 uses three separate method procedure (check, 341 * process, and buildResp) in this state. These have been combined into 342 * a single function call to m->process() in order to optimize EAP 343 * method implementation interface a bit. These procedures are only 344 * used from within this METHOD state, so there is no need to keep 345 * these as separate C functions. 346 * 347 * The RFC 4137 procedures return values as follows: 348 * ignore = m.check(eapReqData) 349 * (methodState, decision, allowNotifications) = m.process(eapReqData) 350 * eapRespData = m.buildResp(reqId) 351 */ 352 os_memset(&ret, 0, sizeof(ret)); 353 ret.ignore = sm->ignore; 354 ret.methodState = sm->methodState; 355 ret.decision = sm->decision; 356 ret.allowNotifications = sm->allowNotifications; 357 wpabuf_free(sm->eapRespData); 358 sm->eapRespData = NULL; 359 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, 360 eapReqData); 361 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " 362 "methodState=%s decision=%s", 363 ret.ignore ? "TRUE" : "FALSE", 364 eap_sm_method_state_txt(ret.methodState), 365 eap_sm_decision_txt(ret.decision)); 366 367 sm->ignore = ret.ignore; 368 if (sm->ignore) 369 return; 370 sm->methodState = ret.methodState; 371 sm->decision = ret.decision; 372 sm->allowNotifications = ret.allowNotifications; 373 374 if (sm->m->isKeyAvailable && sm->m->getKey && 375 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { 376 os_free(sm->eapKeyData); 377 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, 378 &sm->eapKeyDataLen); 379 } 380 } 381 382 383 /* 384 * This state signals the lower layer that a response packet is ready to be 385 * sent. 386 */ 387 SM_STATE(EAP, SEND_RESPONSE) 388 { 389 SM_ENTRY(EAP, SEND_RESPONSE); 390 wpabuf_free(sm->lastRespData); 391 if (sm->eapRespData) { 392 if (sm->workaround) 393 os_memcpy(sm->last_md5, sm->req_md5, 16); 394 sm->lastId = sm->reqId; 395 sm->lastRespData = wpabuf_dup(sm->eapRespData); 396 eapol_set_bool(sm, EAPOL_eapResp, TRUE); 397 } else 398 sm->lastRespData = NULL; 399 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 400 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 401 } 402 403 404 /* 405 * This state signals the lower layer that the request was discarded, and no 406 * response packet will be sent at this time. 407 */ 408 SM_STATE(EAP, DISCARD) 409 { 410 SM_ENTRY(EAP, DISCARD); 411 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 412 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 413 } 414 415 416 /* 417 * Handles requests for Identity method and builds a response. 418 */ 419 SM_STATE(EAP, IDENTITY) 420 { 421 const struct wpabuf *eapReqData; 422 423 SM_ENTRY(EAP, IDENTITY); 424 eapReqData = eapol_get_eapReqData(sm); 425 eap_sm_processIdentity(sm, eapReqData); 426 wpabuf_free(sm->eapRespData); 427 sm->eapRespData = NULL; 428 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); 429 } 430 431 432 /* 433 * Handles requests for Notification method and builds a response. 434 */ 435 SM_STATE(EAP, NOTIFICATION) 436 { 437 const struct wpabuf *eapReqData; 438 439 SM_ENTRY(EAP, NOTIFICATION); 440 eapReqData = eapol_get_eapReqData(sm); 441 eap_sm_processNotify(sm, eapReqData); 442 wpabuf_free(sm->eapRespData); 443 sm->eapRespData = NULL; 444 sm->eapRespData = eap_sm_buildNotify(sm->reqId); 445 } 446 447 448 /* 449 * This state retransmits the previous response packet. 450 */ 451 SM_STATE(EAP, RETRANSMIT) 452 { 453 SM_ENTRY(EAP, RETRANSMIT); 454 wpabuf_free(sm->eapRespData); 455 if (sm->lastRespData) 456 sm->eapRespData = wpabuf_dup(sm->lastRespData); 457 else 458 sm->eapRespData = NULL; 459 } 460 461 462 /* 463 * This state is entered in case of a successful completion of authentication 464 * and state machine waits here until port is disabled or EAP authentication is 465 * restarted. 466 */ 467 SM_STATE(EAP, SUCCESS) 468 { 469 SM_ENTRY(EAP, SUCCESS); 470 if (sm->eapKeyData != NULL) 471 sm->eapKeyAvailable = TRUE; 472 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 473 474 /* 475 * RFC 4137 does not clear eapReq here, but this seems to be required 476 * to avoid processing the same request twice when state machine is 477 * initialized. 478 */ 479 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 480 481 /* 482 * RFC 4137 does not set eapNoResp here, but this seems to be required 483 * to get EAPOL Supplicant backend state machine into SUCCESS state. In 484 * addition, either eapResp or eapNoResp is required to be set after 485 * processing the received EAP frame. 486 */ 487 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 488 489 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 490 "EAP authentication completed successfully"); 491 } 492 493 494 /* 495 * This state is entered in case of a failure and state machine waits here 496 * until port is disabled or EAP authentication is restarted. 497 */ 498 SM_STATE(EAP, FAILURE) 499 { 500 SM_ENTRY(EAP, FAILURE); 501 eapol_set_bool(sm, EAPOL_eapFail, TRUE); 502 503 /* 504 * RFC 4137 does not clear eapReq here, but this seems to be required 505 * to avoid processing the same request twice when state machine is 506 * initialized. 507 */ 508 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 509 510 /* 511 * RFC 4137 does not set eapNoResp here. However, either eapResp or 512 * eapNoResp is required to be set after processing the received EAP 513 * frame. 514 */ 515 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 516 517 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE 518 "EAP authentication failed"); 519 520 sm->prev_failure = 1; 521 } 522 523 524 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) 525 { 526 /* 527 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending 528 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and 529 * RFC 4137 require that reqId == lastId. In addition, it looks like 530 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. 531 * 532 * Accept this kind of Id if EAP workarounds are enabled. These are 533 * unauthenticated plaintext messages, so this should have minimal 534 * security implications (bit easier to fake EAP-Success/Failure). 535 */ 536 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || 537 reqId == ((lastId + 2) & 0xff))) { 538 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " 539 "identifier field in EAP Success: " 540 "reqId=%d lastId=%d (these are supposed to be " 541 "same)", reqId, lastId); 542 return 1; 543 } 544 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " 545 "lastId=%d", reqId, lastId); 546 return 0; 547 } 548 549 550 /* 551 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions 552 */ 553 554 static void eap_peer_sm_step_idle(struct eap_sm *sm) 555 { 556 /* 557 * The first three transitions are from RFC 4137. The last two are 558 * local additions to handle special cases with LEAP and PEAP server 559 * not sending EAP-Success in some cases. 560 */ 561 if (eapol_get_bool(sm, EAPOL_eapReq)) 562 SM_ENTER(EAP, RECEIVED); 563 else if ((eapol_get_bool(sm, EAPOL_altAccept) && 564 sm->decision != DECISION_FAIL) || 565 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 566 sm->decision == DECISION_UNCOND_SUCC)) 567 SM_ENTER(EAP, SUCCESS); 568 else if (eapol_get_bool(sm, EAPOL_altReject) || 569 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 570 sm->decision != DECISION_UNCOND_SUCC) || 571 (eapol_get_bool(sm, EAPOL_altAccept) && 572 sm->methodState != METHOD_CONT && 573 sm->decision == DECISION_FAIL)) 574 SM_ENTER(EAP, FAILURE); 575 else if (sm->selectedMethod == EAP_TYPE_LEAP && 576 sm->leap_done && sm->decision != DECISION_FAIL && 577 sm->methodState == METHOD_DONE) 578 SM_ENTER(EAP, SUCCESS); 579 else if (sm->selectedMethod == EAP_TYPE_PEAP && 580 sm->peap_done && sm->decision != DECISION_FAIL && 581 sm->methodState == METHOD_DONE) 582 SM_ENTER(EAP, SUCCESS); 583 } 584 585 586 static int eap_peer_req_is_duplicate(struct eap_sm *sm) 587 { 588 int duplicate; 589 590 duplicate = (sm->reqId == sm->lastId) && sm->rxReq; 591 if (sm->workaround && duplicate && 592 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { 593 /* 594 * RFC 4137 uses (reqId == lastId) as the only verification for 595 * duplicate EAP requests. However, this misses cases where the 596 * AS is incorrectly using the same id again; and 597 * unfortunately, such implementations exist. Use MD5 hash as 598 * an extra verification for the packets being duplicate to 599 * workaround these issues. 600 */ 601 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " 602 "EAP packets were not identical"); 603 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " 604 "duplicate packet"); 605 duplicate = 0; 606 } 607 608 return duplicate; 609 } 610 611 612 static void eap_peer_sm_step_received(struct eap_sm *sm) 613 { 614 int duplicate = eap_peer_req_is_duplicate(sm); 615 616 /* 617 * Two special cases below for LEAP are local additions to work around 618 * odd LEAP behavior (EAP-Success in the middle of authentication and 619 * then swapped roles). Other transitions are based on RFC 4137. 620 */ 621 if (sm->rxSuccess && sm->decision != DECISION_FAIL && 622 (sm->reqId == sm->lastId || 623 eap_success_workaround(sm, sm->reqId, sm->lastId))) 624 SM_ENTER(EAP, SUCCESS); 625 else if (sm->methodState != METHOD_CONT && 626 ((sm->rxFailure && 627 sm->decision != DECISION_UNCOND_SUCC) || 628 (sm->rxSuccess && sm->decision == DECISION_FAIL && 629 (sm->selectedMethod != EAP_TYPE_LEAP || 630 sm->methodState != METHOD_MAY_CONT))) && 631 (sm->reqId == sm->lastId || 632 eap_success_workaround(sm, sm->reqId, sm->lastId))) 633 SM_ENTER(EAP, FAILURE); 634 else if (sm->rxReq && duplicate) 635 SM_ENTER(EAP, RETRANSMIT); 636 else if (sm->rxReq && !duplicate && 637 sm->reqMethod == EAP_TYPE_NOTIFICATION && 638 sm->allowNotifications) 639 SM_ENTER(EAP, NOTIFICATION); 640 else if (sm->rxReq && !duplicate && 641 sm->selectedMethod == EAP_TYPE_NONE && 642 sm->reqMethod == EAP_TYPE_IDENTITY) 643 SM_ENTER(EAP, IDENTITY); 644 else if (sm->rxReq && !duplicate && 645 sm->selectedMethod == EAP_TYPE_NONE && 646 sm->reqMethod != EAP_TYPE_IDENTITY && 647 sm->reqMethod != EAP_TYPE_NOTIFICATION) 648 SM_ENTER(EAP, GET_METHOD); 649 else if (sm->rxReq && !duplicate && 650 sm->reqMethod == sm->selectedMethod && 651 sm->methodState != METHOD_DONE) 652 SM_ENTER(EAP, METHOD); 653 else if (sm->selectedMethod == EAP_TYPE_LEAP && 654 (sm->rxSuccess || sm->rxResp)) 655 SM_ENTER(EAP, METHOD); 656 else 657 SM_ENTER(EAP, DISCARD); 658 } 659 660 661 static void eap_peer_sm_step_local(struct eap_sm *sm) 662 { 663 switch (sm->EAP_state) { 664 case EAP_INITIALIZE: 665 SM_ENTER(EAP, IDLE); 666 break; 667 case EAP_DISABLED: 668 if (eapol_get_bool(sm, EAPOL_portEnabled) && 669 !sm->force_disabled) 670 SM_ENTER(EAP, INITIALIZE); 671 break; 672 case EAP_IDLE: 673 eap_peer_sm_step_idle(sm); 674 break; 675 case EAP_RECEIVED: 676 eap_peer_sm_step_received(sm); 677 break; 678 case EAP_GET_METHOD: 679 if (sm->selectedMethod == sm->reqMethod) 680 SM_ENTER(EAP, METHOD); 681 else 682 SM_ENTER(EAP, SEND_RESPONSE); 683 break; 684 case EAP_METHOD: 685 if (sm->ignore) 686 SM_ENTER(EAP, DISCARD); 687 else 688 SM_ENTER(EAP, SEND_RESPONSE); 689 break; 690 case EAP_SEND_RESPONSE: 691 SM_ENTER(EAP, IDLE); 692 break; 693 case EAP_DISCARD: 694 SM_ENTER(EAP, IDLE); 695 break; 696 case EAP_IDENTITY: 697 SM_ENTER(EAP, SEND_RESPONSE); 698 break; 699 case EAP_NOTIFICATION: 700 SM_ENTER(EAP, SEND_RESPONSE); 701 break; 702 case EAP_RETRANSMIT: 703 SM_ENTER(EAP, SEND_RESPONSE); 704 break; 705 case EAP_SUCCESS: 706 break; 707 case EAP_FAILURE: 708 break; 709 } 710 } 711 712 713 SM_STEP(EAP) 714 { 715 /* Global transitions */ 716 if (eapol_get_bool(sm, EAPOL_eapRestart) && 717 eapol_get_bool(sm, EAPOL_portEnabled)) 718 SM_ENTER_GLOBAL(EAP, INITIALIZE); 719 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) 720 SM_ENTER_GLOBAL(EAP, DISABLED); 721 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { 722 /* RFC 4137 does not place any limit on number of EAP messages 723 * in an authentication session. However, some error cases have 724 * ended up in a state were EAP messages were sent between the 725 * peer and server in a loop (e.g., TLS ACK frame in both 726 * direction). Since this is quite undesired outcome, limit the 727 * total number of EAP round-trips and abort authentication if 728 * this limit is exceeded. 729 */ 730 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { 731 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " 732 "authentication rounds - abort", 733 EAP_MAX_AUTH_ROUNDS); 734 sm->num_rounds++; 735 SM_ENTER_GLOBAL(EAP, FAILURE); 736 } 737 } else { 738 /* Local transitions */ 739 eap_peer_sm_step_local(sm); 740 } 741 } 742 743 744 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 745 EapType method) 746 { 747 if (!eap_allowed_method(sm, vendor, method)) { 748 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " 749 "vendor %u method %u", vendor, method); 750 return FALSE; 751 } 752 if (eap_peer_get_eap_method(vendor, method)) 753 return TRUE; 754 wpa_printf(MSG_DEBUG, "EAP: not included in build: " 755 "vendor %u method %u", vendor, method); 756 return FALSE; 757 } 758 759 760 static struct wpabuf * eap_sm_build_expanded_nak( 761 struct eap_sm *sm, int id, const struct eap_method *methods, 762 size_t count) 763 { 764 struct wpabuf *resp; 765 int found = 0; 766 const struct eap_method *m; 767 768 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); 769 770 /* RFC 3748 - 5.3.2: Expanded Nak */ 771 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 772 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); 773 if (resp == NULL) 774 return NULL; 775 776 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 777 wpabuf_put_be32(resp, EAP_TYPE_NAK); 778 779 for (m = methods; m; m = m->next) { 780 if (sm->reqVendor == m->vendor && 781 sm->reqVendorMethod == m->method) 782 continue; /* do not allow the current method again */ 783 if (eap_allowed_method(sm, m->vendor, m->method)) { 784 wpa_printf(MSG_DEBUG, "EAP: allowed type: " 785 "vendor=%u method=%u", 786 m->vendor, m->method); 787 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 788 wpabuf_put_be24(resp, m->vendor); 789 wpabuf_put_be32(resp, m->method); 790 791 found++; 792 } 793 } 794 if (!found) { 795 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); 796 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 797 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 798 wpabuf_put_be32(resp, EAP_TYPE_NONE); 799 } 800 801 eap_update_len(resp); 802 803 return resp; 804 } 805 806 807 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) 808 { 809 struct wpabuf *resp; 810 u8 *start; 811 int found = 0, expanded_found = 0; 812 size_t count; 813 const struct eap_method *methods, *m; 814 815 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " 816 "vendor=%u method=%u not allowed)", sm->reqMethod, 817 sm->reqVendor, sm->reqVendorMethod); 818 methods = eap_peer_get_methods(&count); 819 if (methods == NULL) 820 return NULL; 821 if (sm->reqMethod == EAP_TYPE_EXPANDED) 822 return eap_sm_build_expanded_nak(sm, id, methods, count); 823 824 /* RFC 3748 - 5.3.1: Legacy Nak */ 825 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, 826 sizeof(struct eap_hdr) + 1 + count + 1, 827 EAP_CODE_RESPONSE, id); 828 if (resp == NULL) 829 return NULL; 830 831 start = wpabuf_put(resp, 0); 832 for (m = methods; m; m = m->next) { 833 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) 834 continue; /* do not allow the current method again */ 835 if (eap_allowed_method(sm, m->vendor, m->method)) { 836 if (m->vendor != EAP_VENDOR_IETF) { 837 if (expanded_found) 838 continue; 839 expanded_found = 1; 840 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 841 } else 842 wpabuf_put_u8(resp, m->method); 843 found++; 844 } 845 } 846 if (!found) 847 wpabuf_put_u8(resp, EAP_TYPE_NONE); 848 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); 849 850 eap_update_len(resp); 851 852 return resp; 853 } 854 855 856 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) 857 { 858 const struct eap_hdr *hdr = wpabuf_head(req); 859 const u8 *pos = (const u8 *) (hdr + 1); 860 pos++; 861 862 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED 863 "EAP authentication started"); 864 865 /* 866 * RFC 3748 - 5.1: Identity 867 * Data field may contain a displayable message in UTF-8. If this 868 * includes NUL-character, only the data before that should be 869 * displayed. Some EAP implementasitons may piggy-back additional 870 * options after the NUL. 871 */ 872 /* TODO: could save displayable message so that it can be shown to the 873 * user in case of interaction is required */ 874 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", 875 pos, be_to_host16(hdr->length) - 5); 876 } 877 878 879 #ifdef PCSC_FUNCS 880 static int eap_sm_imsi_identity(struct eap_sm *sm, 881 struct eap_peer_config *conf) 882 { 883 int aka = 0; 884 char imsi[100]; 885 size_t imsi_len; 886 struct eap_method_type *m = conf->eap_methods; 887 int i; 888 889 imsi_len = sizeof(imsi); 890 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { 891 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); 892 return -1; 893 } 894 895 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); 896 897 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || 898 m[i].method != EAP_TYPE_NONE); i++) { 899 if (m[i].vendor == EAP_VENDOR_IETF && 900 m[i].method == EAP_TYPE_AKA) { 901 aka = 1; 902 break; 903 } 904 } 905 906 os_free(conf->identity); 907 conf->identity = os_malloc(1 + imsi_len); 908 if (conf->identity == NULL) { 909 wpa_printf(MSG_WARNING, "Failed to allocate buffer for " 910 "IMSI-based identity"); 911 return -1; 912 } 913 914 conf->identity[0] = aka ? '0' : '1'; 915 os_memcpy(conf->identity + 1, imsi, imsi_len); 916 conf->identity_len = 1 + imsi_len; 917 918 return 0; 919 } 920 #endif /* PCSC_FUNCS */ 921 922 923 static int eap_sm_set_scard_pin(struct eap_sm *sm, 924 struct eap_peer_config *conf) 925 { 926 #ifdef PCSC_FUNCS 927 if (scard_set_pin(sm->scard_ctx, conf->pin)) { 928 /* 929 * Make sure the same PIN is not tried again in order to avoid 930 * blocking SIM. 931 */ 932 os_free(conf->pin); 933 conf->pin = NULL; 934 935 wpa_printf(MSG_WARNING, "PIN validation failed"); 936 eap_sm_request_pin(sm); 937 return -1; 938 } 939 return 0; 940 #else /* PCSC_FUNCS */ 941 return -1; 942 #endif /* PCSC_FUNCS */ 943 } 944 945 static int eap_sm_get_scard_identity(struct eap_sm *sm, 946 struct eap_peer_config *conf) 947 { 948 #ifdef PCSC_FUNCS 949 if (eap_sm_set_scard_pin(sm, conf)) 950 return -1; 951 952 return eap_sm_imsi_identity(sm, conf); 953 #else /* PCSC_FUNCS */ 954 return -1; 955 #endif /* PCSC_FUNCS */ 956 } 957 958 959 /** 960 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network 961 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 962 * @id: EAP identifier for the packet 963 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) 964 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on 965 * failure 966 * 967 * This function allocates and builds an EAP-Identity/Response packet for the 968 * current network. The caller is responsible for freeing the returned data. 969 */ 970 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) 971 { 972 struct eap_peer_config *config = eap_get_config(sm); 973 struct wpabuf *resp; 974 const u8 *identity; 975 size_t identity_len; 976 977 if (config == NULL) { 978 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " 979 "was not available"); 980 return NULL; 981 } 982 983 if (sm->m && sm->m->get_identity && 984 (identity = sm->m->get_identity(sm, sm->eap_method_priv, 985 &identity_len)) != NULL) { 986 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " 987 "identity", identity, identity_len); 988 } else if (!encrypted && config->anonymous_identity) { 989 identity = config->anonymous_identity; 990 identity_len = config->anonymous_identity_len; 991 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", 992 identity, identity_len); 993 } else { 994 identity = config->identity; 995 identity_len = config->identity_len; 996 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", 997 identity, identity_len); 998 } 999 1000 if (identity == NULL) { 1001 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " 1002 "configuration was not available"); 1003 if (config->pcsc) { 1004 if (eap_sm_get_scard_identity(sm, config) < 0) 1005 return NULL; 1006 identity = config->identity; 1007 identity_len = config->identity_len; 1008 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " 1009 "IMSI", identity, identity_len); 1010 } else { 1011 eap_sm_request_identity(sm); 1012 return NULL; 1013 } 1014 } else if (config->pcsc) { 1015 if (eap_sm_set_scard_pin(sm, config) < 0) 1016 return NULL; 1017 } 1018 1019 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, 1020 EAP_CODE_RESPONSE, id); 1021 if (resp == NULL) 1022 return NULL; 1023 1024 wpabuf_put_data(resp, identity, identity_len); 1025 1026 return resp; 1027 } 1028 1029 1030 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) 1031 { 1032 const u8 *pos; 1033 char *msg; 1034 size_t i, msg_len; 1035 1036 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, 1037 &msg_len); 1038 if (pos == NULL) 1039 return; 1040 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", 1041 pos, msg_len); 1042 1043 msg = os_malloc(msg_len + 1); 1044 if (msg == NULL) 1045 return; 1046 for (i = 0; i < msg_len; i++) 1047 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; 1048 msg[msg_len] = '\0'; 1049 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", 1050 WPA_EVENT_EAP_NOTIFICATION, msg); 1051 os_free(msg); 1052 } 1053 1054 1055 static struct wpabuf * eap_sm_buildNotify(int id) 1056 { 1057 struct wpabuf *resp; 1058 1059 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); 1060 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, 1061 EAP_CODE_RESPONSE, id); 1062 if (resp == NULL) 1063 return NULL; 1064 1065 return resp; 1066 } 1067 1068 1069 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) 1070 { 1071 const struct eap_hdr *hdr; 1072 size_t plen; 1073 const u8 *pos; 1074 1075 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; 1076 sm->reqId = 0; 1077 sm->reqMethod = EAP_TYPE_NONE; 1078 sm->reqVendor = EAP_VENDOR_IETF; 1079 sm->reqVendorMethod = EAP_TYPE_NONE; 1080 1081 if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) 1082 return; 1083 1084 hdr = wpabuf_head(req); 1085 plen = be_to_host16(hdr->length); 1086 if (plen > wpabuf_len(req)) { 1087 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " 1088 "(len=%lu plen=%lu)", 1089 (unsigned long) wpabuf_len(req), 1090 (unsigned long) plen); 1091 return; 1092 } 1093 1094 sm->reqId = hdr->identifier; 1095 1096 if (sm->workaround) { 1097 const u8 *addr[1]; 1098 addr[0] = wpabuf_head(req); 1099 md5_vector(1, addr, &plen, sm->req_md5); 1100 } 1101 1102 switch (hdr->code) { 1103 case EAP_CODE_REQUEST: 1104 if (plen < sizeof(*hdr) + 1) { 1105 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " 1106 "no Type field"); 1107 return; 1108 } 1109 sm->rxReq = TRUE; 1110 pos = (const u8 *) (hdr + 1); 1111 sm->reqMethod = *pos++; 1112 if (sm->reqMethod == EAP_TYPE_EXPANDED) { 1113 if (plen < sizeof(*hdr) + 8) { 1114 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " 1115 "expanded EAP-Packet (plen=%lu)", 1116 (unsigned long) plen); 1117 return; 1118 } 1119 sm->reqVendor = WPA_GET_BE24(pos); 1120 pos += 3; 1121 sm->reqVendorMethod = WPA_GET_BE32(pos); 1122 } 1123 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " 1124 "method=%u vendor=%u vendorMethod=%u", 1125 sm->reqId, sm->reqMethod, sm->reqVendor, 1126 sm->reqVendorMethod); 1127 break; 1128 case EAP_CODE_RESPONSE: 1129 if (sm->selectedMethod == EAP_TYPE_LEAP) { 1130 /* 1131 * LEAP differs from RFC 4137 by using reversed roles 1132 * for mutual authentication and because of this, we 1133 * need to accept EAP-Response frames if LEAP is used. 1134 */ 1135 if (plen < sizeof(*hdr) + 1) { 1136 wpa_printf(MSG_DEBUG, "EAP: Too short " 1137 "EAP-Response - no Type field"); 1138 return; 1139 } 1140 sm->rxResp = TRUE; 1141 pos = (const u8 *) (hdr + 1); 1142 sm->reqMethod = *pos; 1143 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " 1144 "LEAP method=%d id=%d", 1145 sm->reqMethod, sm->reqId); 1146 break; 1147 } 1148 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); 1149 break; 1150 case EAP_CODE_SUCCESS: 1151 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); 1152 sm->rxSuccess = TRUE; 1153 break; 1154 case EAP_CODE_FAILURE: 1155 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); 1156 sm->rxFailure = TRUE; 1157 break; 1158 default: 1159 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " 1160 "code %d", hdr->code); 1161 break; 1162 } 1163 } 1164 1165 1166 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev, 1167 union tls_event_data *data) 1168 { 1169 struct eap_sm *sm = ctx; 1170 char *hash_hex = NULL; 1171 1172 switch (ev) { 1173 case TLS_CERT_CHAIN_FAILURE: 1174 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR 1175 "reason=%d depth=%d subject='%s' err='%s'", 1176 data->cert_fail.reason, 1177 data->cert_fail.depth, 1178 data->cert_fail.subject, 1179 data->cert_fail.reason_txt); 1180 break; 1181 case TLS_PEER_CERTIFICATE: 1182 if (!sm->eapol_cb->notify_cert) 1183 break; 1184 1185 if (data->peer_cert.hash) { 1186 size_t len = data->peer_cert.hash_len * 2 + 1; 1187 hash_hex = os_malloc(len); 1188 if (hash_hex) { 1189 wpa_snprintf_hex(hash_hex, len, 1190 data->peer_cert.hash, 1191 data->peer_cert.hash_len); 1192 } 1193 } 1194 1195 sm->eapol_cb->notify_cert(sm->eapol_ctx, 1196 data->peer_cert.depth, 1197 data->peer_cert.subject, 1198 hash_hex, data->peer_cert.cert); 1199 break; 1200 } 1201 1202 os_free(hash_hex); 1203 } 1204 1205 1206 /** 1207 * eap_peer_sm_init - Allocate and initialize EAP peer state machine 1208 * @eapol_ctx: Context data to be used with eapol_cb calls 1209 * @eapol_cb: Pointer to EAPOL callback functions 1210 * @msg_ctx: Context data for wpa_msg() calls 1211 * @conf: EAP configuration 1212 * Returns: Pointer to the allocated EAP state machine or %NULL on failure 1213 * 1214 * This function allocates and initializes an EAP state machine. In addition, 1215 * this initializes TLS library for the new EAP state machine. eapol_cb pointer 1216 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP 1217 * state machine. Consequently, the caller must make sure that this data 1218 * structure remains alive while the EAP state machine is active. 1219 */ 1220 struct eap_sm * eap_peer_sm_init(void *eapol_ctx, 1221 struct eapol_callbacks *eapol_cb, 1222 void *msg_ctx, struct eap_config *conf) 1223 { 1224 struct eap_sm *sm; 1225 struct tls_config tlsconf; 1226 1227 sm = os_zalloc(sizeof(*sm)); 1228 if (sm == NULL) 1229 return NULL; 1230 sm->eapol_ctx = eapol_ctx; 1231 sm->eapol_cb = eapol_cb; 1232 sm->msg_ctx = msg_ctx; 1233 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 1234 sm->wps = conf->wps; 1235 1236 os_memset(&tlsconf, 0, sizeof(tlsconf)); 1237 tlsconf.opensc_engine_path = conf->opensc_engine_path; 1238 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; 1239 tlsconf.pkcs11_module_path = conf->pkcs11_module_path; 1240 #ifdef CONFIG_FIPS 1241 tlsconf.fips_mode = 1; 1242 #endif /* CONFIG_FIPS */ 1243 tlsconf.event_cb = eap_peer_sm_tls_event; 1244 tlsconf.cb_ctx = sm; 1245 sm->ssl_ctx = tls_init(&tlsconf); 1246 if (sm->ssl_ctx == NULL) { 1247 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " 1248 "context."); 1249 os_free(sm); 1250 return NULL; 1251 } 1252 1253 return sm; 1254 } 1255 1256 1257 /** 1258 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine 1259 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1260 * 1261 * This function deinitializes EAP state machine and frees all allocated 1262 * resources. 1263 */ 1264 void eap_peer_sm_deinit(struct eap_sm *sm) 1265 { 1266 if (sm == NULL) 1267 return; 1268 eap_deinit_prev_method(sm, "EAP deinit"); 1269 eap_sm_abort(sm); 1270 tls_deinit(sm->ssl_ctx); 1271 os_free(sm); 1272 } 1273 1274 1275 /** 1276 * eap_peer_sm_step - Step EAP peer state machine 1277 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1278 * Returns: 1 if EAP state was changed or 0 if not 1279 * 1280 * This function advances EAP state machine to a new state to match with the 1281 * current variables. This should be called whenever variables used by the EAP 1282 * state machine have changed. 1283 */ 1284 int eap_peer_sm_step(struct eap_sm *sm) 1285 { 1286 int res = 0; 1287 do { 1288 sm->changed = FALSE; 1289 SM_STEP_RUN(EAP); 1290 if (sm->changed) 1291 res = 1; 1292 } while (sm->changed); 1293 return res; 1294 } 1295 1296 1297 /** 1298 * eap_sm_abort - Abort EAP authentication 1299 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1300 * 1301 * Release system resources that have been allocated for the authentication 1302 * session without fully deinitializing the EAP state machine. 1303 */ 1304 void eap_sm_abort(struct eap_sm *sm) 1305 { 1306 wpabuf_free(sm->lastRespData); 1307 sm->lastRespData = NULL; 1308 wpabuf_free(sm->eapRespData); 1309 sm->eapRespData = NULL; 1310 os_free(sm->eapKeyData); 1311 sm->eapKeyData = NULL; 1312 1313 /* This is not clearly specified in the EAP statemachines draft, but 1314 * it seems necessary to make sure that some of the EAPOL variables get 1315 * cleared for the next authentication. */ 1316 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 1317 } 1318 1319 1320 #ifdef CONFIG_CTRL_IFACE 1321 static const char * eap_sm_state_txt(int state) 1322 { 1323 switch (state) { 1324 case EAP_INITIALIZE: 1325 return "INITIALIZE"; 1326 case EAP_DISABLED: 1327 return "DISABLED"; 1328 case EAP_IDLE: 1329 return "IDLE"; 1330 case EAP_RECEIVED: 1331 return "RECEIVED"; 1332 case EAP_GET_METHOD: 1333 return "GET_METHOD"; 1334 case EAP_METHOD: 1335 return "METHOD"; 1336 case EAP_SEND_RESPONSE: 1337 return "SEND_RESPONSE"; 1338 case EAP_DISCARD: 1339 return "DISCARD"; 1340 case EAP_IDENTITY: 1341 return "IDENTITY"; 1342 case EAP_NOTIFICATION: 1343 return "NOTIFICATION"; 1344 case EAP_RETRANSMIT: 1345 return "RETRANSMIT"; 1346 case EAP_SUCCESS: 1347 return "SUCCESS"; 1348 case EAP_FAILURE: 1349 return "FAILURE"; 1350 default: 1351 return "UNKNOWN"; 1352 } 1353 } 1354 #endif /* CONFIG_CTRL_IFACE */ 1355 1356 1357 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1358 static const char * eap_sm_method_state_txt(EapMethodState state) 1359 { 1360 switch (state) { 1361 case METHOD_NONE: 1362 return "NONE"; 1363 case METHOD_INIT: 1364 return "INIT"; 1365 case METHOD_CONT: 1366 return "CONT"; 1367 case METHOD_MAY_CONT: 1368 return "MAY_CONT"; 1369 case METHOD_DONE: 1370 return "DONE"; 1371 default: 1372 return "UNKNOWN"; 1373 } 1374 } 1375 1376 1377 static const char * eap_sm_decision_txt(EapDecision decision) 1378 { 1379 switch (decision) { 1380 case DECISION_FAIL: 1381 return "FAIL"; 1382 case DECISION_COND_SUCC: 1383 return "COND_SUCC"; 1384 case DECISION_UNCOND_SUCC: 1385 return "UNCOND_SUCC"; 1386 default: 1387 return "UNKNOWN"; 1388 } 1389 } 1390 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1391 1392 1393 #ifdef CONFIG_CTRL_IFACE 1394 1395 /** 1396 * eap_sm_get_status - Get EAP state machine status 1397 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1398 * @buf: Buffer for status information 1399 * @buflen: Maximum buffer length 1400 * @verbose: Whether to include verbose status information 1401 * Returns: Number of bytes written to buf. 1402 * 1403 * Query EAP state machine for status information. This function fills in a 1404 * text area with current status information from the EAPOL state machine. If 1405 * the buffer (buf) is not large enough, status information will be truncated 1406 * to fit the buffer. 1407 */ 1408 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) 1409 { 1410 int len, ret; 1411 1412 if (sm == NULL) 1413 return 0; 1414 1415 len = os_snprintf(buf, buflen, 1416 "EAP state=%s\n", 1417 eap_sm_state_txt(sm->EAP_state)); 1418 if (len < 0 || (size_t) len >= buflen) 1419 return 0; 1420 1421 if (sm->selectedMethod != EAP_TYPE_NONE) { 1422 const char *name; 1423 if (sm->m) { 1424 name = sm->m->name; 1425 } else { 1426 const struct eap_method *m = 1427 eap_peer_get_eap_method(EAP_VENDOR_IETF, 1428 sm->selectedMethod); 1429 if (m) 1430 name = m->name; 1431 else 1432 name = "?"; 1433 } 1434 ret = os_snprintf(buf + len, buflen - len, 1435 "selectedMethod=%d (EAP-%s)\n", 1436 sm->selectedMethod, name); 1437 if (ret < 0 || (size_t) ret >= buflen - len) 1438 return len; 1439 len += ret; 1440 1441 if (sm->m && sm->m->get_status) { 1442 len += sm->m->get_status(sm, sm->eap_method_priv, 1443 buf + len, buflen - len, 1444 verbose); 1445 } 1446 } 1447 1448 if (verbose) { 1449 ret = os_snprintf(buf + len, buflen - len, 1450 "reqMethod=%d\n" 1451 "methodState=%s\n" 1452 "decision=%s\n" 1453 "ClientTimeout=%d\n", 1454 sm->reqMethod, 1455 eap_sm_method_state_txt(sm->methodState), 1456 eap_sm_decision_txt(sm->decision), 1457 sm->ClientTimeout); 1458 if (ret < 0 || (size_t) ret >= buflen - len) 1459 return len; 1460 len += ret; 1461 } 1462 1463 return len; 1464 } 1465 #endif /* CONFIG_CTRL_IFACE */ 1466 1467 1468 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1469 typedef enum { 1470 TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD, 1471 TYPE_PASSPHRASE 1472 } eap_ctrl_req_type; 1473 1474 static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type, 1475 const char *msg, size_t msglen) 1476 { 1477 struct eap_peer_config *config; 1478 char *field, *txt, *tmp; 1479 1480 if (sm == NULL) 1481 return; 1482 config = eap_get_config(sm); 1483 if (config == NULL) 1484 return; 1485 1486 switch (type) { 1487 case TYPE_IDENTITY: 1488 field = "IDENTITY"; 1489 txt = "Identity"; 1490 config->pending_req_identity++; 1491 break; 1492 case TYPE_PASSWORD: 1493 field = "PASSWORD"; 1494 txt = "Password"; 1495 config->pending_req_password++; 1496 break; 1497 case TYPE_NEW_PASSWORD: 1498 field = "NEW_PASSWORD"; 1499 txt = "New Password"; 1500 config->pending_req_new_password++; 1501 break; 1502 case TYPE_PIN: 1503 field = "PIN"; 1504 txt = "PIN"; 1505 config->pending_req_pin++; 1506 break; 1507 case TYPE_OTP: 1508 field = "OTP"; 1509 if (msg) { 1510 tmp = os_malloc(msglen + 3); 1511 if (tmp == NULL) 1512 return; 1513 tmp[0] = '['; 1514 os_memcpy(tmp + 1, msg, msglen); 1515 tmp[msglen + 1] = ']'; 1516 tmp[msglen + 2] = '\0'; 1517 txt = tmp; 1518 os_free(config->pending_req_otp); 1519 config->pending_req_otp = tmp; 1520 config->pending_req_otp_len = msglen + 3; 1521 } else { 1522 if (config->pending_req_otp == NULL) 1523 return; 1524 txt = config->pending_req_otp; 1525 } 1526 break; 1527 case TYPE_PASSPHRASE: 1528 field = "PASSPHRASE"; 1529 txt = "Private key passphrase"; 1530 config->pending_req_passphrase++; 1531 break; 1532 default: 1533 return; 1534 } 1535 1536 if (sm->eapol_cb->eap_param_needed) 1537 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); 1538 } 1539 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1540 #define eap_sm_request(sm, type, msg, msglen) do { } while (0) 1541 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1542 1543 const char * eap_sm_get_method_name(struct eap_sm *sm) 1544 { 1545 if (sm->m == NULL) 1546 return "UNKNOWN"; 1547 return sm->m->name; 1548 } 1549 1550 1551 /** 1552 * eap_sm_request_identity - Request identity from user (ctrl_iface) 1553 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1554 * 1555 * EAP methods can call this function to request identity information for the 1556 * current network. This is normally called when the identity is not included 1557 * in the network configuration. The request will be sent to monitor programs 1558 * through the control interface. 1559 */ 1560 void eap_sm_request_identity(struct eap_sm *sm) 1561 { 1562 eap_sm_request(sm, TYPE_IDENTITY, NULL, 0); 1563 } 1564 1565 1566 /** 1567 * eap_sm_request_password - Request password from user (ctrl_iface) 1568 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1569 * 1570 * EAP methods can call this function to request password information for the 1571 * current network. This is normally called when the password is not included 1572 * in the network configuration. The request will be sent to monitor programs 1573 * through the control interface. 1574 */ 1575 void eap_sm_request_password(struct eap_sm *sm) 1576 { 1577 eap_sm_request(sm, TYPE_PASSWORD, NULL, 0); 1578 } 1579 1580 1581 /** 1582 * eap_sm_request_new_password - Request new password from user (ctrl_iface) 1583 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1584 * 1585 * EAP methods can call this function to request new password information for 1586 * the current network. This is normally called when the EAP method indicates 1587 * that the current password has expired and password change is required. The 1588 * request will be sent to monitor programs through the control interface. 1589 */ 1590 void eap_sm_request_new_password(struct eap_sm *sm) 1591 { 1592 eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0); 1593 } 1594 1595 1596 /** 1597 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) 1598 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1599 * 1600 * EAP methods can call this function to request SIM or smart card PIN 1601 * information for the current network. This is normally called when the PIN is 1602 * not included in the network configuration. The request will be sent to 1603 * monitor programs through the control interface. 1604 */ 1605 void eap_sm_request_pin(struct eap_sm *sm) 1606 { 1607 eap_sm_request(sm, TYPE_PIN, NULL, 0); 1608 } 1609 1610 1611 /** 1612 * eap_sm_request_otp - Request one time password from user (ctrl_iface) 1613 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1614 * @msg: Message to be displayed to the user when asking for OTP 1615 * @msg_len: Length of the user displayable message 1616 * 1617 * EAP methods can call this function to request open time password (OTP) for 1618 * the current network. The request will be sent to monitor programs through 1619 * the control interface. 1620 */ 1621 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) 1622 { 1623 eap_sm_request(sm, TYPE_OTP, msg, msg_len); 1624 } 1625 1626 1627 /** 1628 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) 1629 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1630 * 1631 * EAP methods can call this function to request passphrase for a private key 1632 * for the current network. This is normally called when the passphrase is not 1633 * included in the network configuration. The request will be sent to monitor 1634 * programs through the control interface. 1635 */ 1636 void eap_sm_request_passphrase(struct eap_sm *sm) 1637 { 1638 eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0); 1639 } 1640 1641 1642 /** 1643 * eap_sm_notify_ctrl_attached - Notification of attached monitor 1644 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1645 * 1646 * Notify EAP state machines that a monitor was attached to the control 1647 * interface to trigger re-sending of pending requests for user input. 1648 */ 1649 void eap_sm_notify_ctrl_attached(struct eap_sm *sm) 1650 { 1651 struct eap_peer_config *config = eap_get_config(sm); 1652 1653 if (config == NULL) 1654 return; 1655 1656 /* Re-send any pending requests for user data since a new control 1657 * interface was added. This handles cases where the EAP authentication 1658 * starts immediately after system startup when the user interface is 1659 * not yet running. */ 1660 if (config->pending_req_identity) 1661 eap_sm_request_identity(sm); 1662 if (config->pending_req_password) 1663 eap_sm_request_password(sm); 1664 if (config->pending_req_new_password) 1665 eap_sm_request_new_password(sm); 1666 if (config->pending_req_otp) 1667 eap_sm_request_otp(sm, NULL, 0); 1668 if (config->pending_req_pin) 1669 eap_sm_request_pin(sm); 1670 if (config->pending_req_passphrase) 1671 eap_sm_request_passphrase(sm); 1672 } 1673 1674 1675 static int eap_allowed_phase2_type(int vendor, int type) 1676 { 1677 if (vendor != EAP_VENDOR_IETF) 1678 return 0; 1679 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && 1680 type != EAP_TYPE_FAST; 1681 } 1682 1683 1684 /** 1685 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name 1686 * @name: EAP method name, e.g., MD5 1687 * @vendor: Buffer for returning EAP Vendor-Id 1688 * Returns: EAP method type or %EAP_TYPE_NONE if not found 1689 * 1690 * This function maps EAP type names into EAP type numbers that are allowed for 1691 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with 1692 * EAP-PEAP, EAP-TTLS, and EAP-FAST. 1693 */ 1694 u32 eap_get_phase2_type(const char *name, int *vendor) 1695 { 1696 int v; 1697 u8 type = eap_peer_get_type(name, &v); 1698 if (eap_allowed_phase2_type(v, type)) { 1699 *vendor = v; 1700 return type; 1701 } 1702 *vendor = EAP_VENDOR_IETF; 1703 return EAP_TYPE_NONE; 1704 } 1705 1706 1707 /** 1708 * eap_get_phase2_types - Get list of allowed EAP phase 2 types 1709 * @config: Pointer to a network configuration 1710 * @count: Pointer to a variable to be filled with number of returned EAP types 1711 * Returns: Pointer to allocated type list or %NULL on failure 1712 * 1713 * This function generates an array of allowed EAP phase 2 (tunneled) types for 1714 * the given network configuration. 1715 */ 1716 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, 1717 size_t *count) 1718 { 1719 struct eap_method_type *buf; 1720 u32 method; 1721 int vendor; 1722 size_t mcount; 1723 const struct eap_method *methods, *m; 1724 1725 methods = eap_peer_get_methods(&mcount); 1726 if (methods == NULL) 1727 return NULL; 1728 *count = 0; 1729 buf = os_malloc(mcount * sizeof(struct eap_method_type)); 1730 if (buf == NULL) 1731 return NULL; 1732 1733 for (m = methods; m; m = m->next) { 1734 vendor = m->vendor; 1735 method = m->method; 1736 if (eap_allowed_phase2_type(vendor, method)) { 1737 if (vendor == EAP_VENDOR_IETF && 1738 method == EAP_TYPE_TLS && config && 1739 config->private_key2 == NULL) 1740 continue; 1741 buf[*count].vendor = vendor; 1742 buf[*count].method = method; 1743 (*count)++; 1744 } 1745 } 1746 1747 return buf; 1748 } 1749 1750 1751 /** 1752 * eap_set_fast_reauth - Update fast_reauth setting 1753 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1754 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled 1755 */ 1756 void eap_set_fast_reauth(struct eap_sm *sm, int enabled) 1757 { 1758 sm->fast_reauth = enabled; 1759 } 1760 1761 1762 /** 1763 * eap_set_workaround - Update EAP workarounds setting 1764 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1765 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds 1766 */ 1767 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) 1768 { 1769 sm->workaround = workaround; 1770 } 1771 1772 1773 /** 1774 * eap_get_config - Get current network configuration 1775 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1776 * Returns: Pointer to the current network configuration or %NULL if not found 1777 * 1778 * EAP peer methods should avoid using this function if they can use other 1779 * access functions, like eap_get_config_identity() and 1780 * eap_get_config_password(), that do not require direct access to 1781 * struct eap_peer_config. 1782 */ 1783 struct eap_peer_config * eap_get_config(struct eap_sm *sm) 1784 { 1785 return sm->eapol_cb->get_config(sm->eapol_ctx); 1786 } 1787 1788 1789 /** 1790 * eap_get_config_identity - Get identity from the network configuration 1791 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1792 * @len: Buffer for the length of the identity 1793 * Returns: Pointer to the identity or %NULL if not found 1794 */ 1795 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) 1796 { 1797 struct eap_peer_config *config = eap_get_config(sm); 1798 if (config == NULL) 1799 return NULL; 1800 *len = config->identity_len; 1801 return config->identity; 1802 } 1803 1804 1805 /** 1806 * eap_get_config_password - Get password from the network configuration 1807 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1808 * @len: Buffer for the length of the password 1809 * Returns: Pointer to the password or %NULL if not found 1810 */ 1811 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) 1812 { 1813 struct eap_peer_config *config = eap_get_config(sm); 1814 if (config == NULL) 1815 return NULL; 1816 *len = config->password_len; 1817 return config->password; 1818 } 1819 1820 1821 /** 1822 * eap_get_config_password2 - Get password from the network configuration 1823 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1824 * @len: Buffer for the length of the password 1825 * @hash: Buffer for returning whether the password is stored as a 1826 * NtPasswordHash instead of plaintext password; can be %NULL if this 1827 * information is not needed 1828 * Returns: Pointer to the password or %NULL if not found 1829 */ 1830 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) 1831 { 1832 struct eap_peer_config *config = eap_get_config(sm); 1833 if (config == NULL) 1834 return NULL; 1835 *len = config->password_len; 1836 if (hash) 1837 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); 1838 return config->password; 1839 } 1840 1841 1842 /** 1843 * eap_get_config_new_password - Get new password from network configuration 1844 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1845 * @len: Buffer for the length of the new password 1846 * Returns: Pointer to the new password or %NULL if not found 1847 */ 1848 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) 1849 { 1850 struct eap_peer_config *config = eap_get_config(sm); 1851 if (config == NULL) 1852 return NULL; 1853 *len = config->new_password_len; 1854 return config->new_password; 1855 } 1856 1857 1858 /** 1859 * eap_get_config_otp - Get one-time password from the network configuration 1860 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1861 * @len: Buffer for the length of the one-time password 1862 * Returns: Pointer to the one-time password or %NULL if not found 1863 */ 1864 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) 1865 { 1866 struct eap_peer_config *config = eap_get_config(sm); 1867 if (config == NULL) 1868 return NULL; 1869 *len = config->otp_len; 1870 return config->otp; 1871 } 1872 1873 1874 /** 1875 * eap_clear_config_otp - Clear used one-time password 1876 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1877 * 1878 * This function clears a used one-time password (OTP) from the current network 1879 * configuration. This should be called when the OTP has been used and is not 1880 * needed anymore. 1881 */ 1882 void eap_clear_config_otp(struct eap_sm *sm) 1883 { 1884 struct eap_peer_config *config = eap_get_config(sm); 1885 if (config == NULL) 1886 return; 1887 os_memset(config->otp, 0, config->otp_len); 1888 os_free(config->otp); 1889 config->otp = NULL; 1890 config->otp_len = 0; 1891 } 1892 1893 1894 /** 1895 * eap_get_config_phase1 - Get phase1 data from the network configuration 1896 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1897 * Returns: Pointer to the phase1 data or %NULL if not found 1898 */ 1899 const char * eap_get_config_phase1(struct eap_sm *sm) 1900 { 1901 struct eap_peer_config *config = eap_get_config(sm); 1902 if (config == NULL) 1903 return NULL; 1904 return config->phase1; 1905 } 1906 1907 1908 /** 1909 * eap_get_config_phase2 - Get phase2 data from the network configuration 1910 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1911 * Returns: Pointer to the phase1 data or %NULL if not found 1912 */ 1913 const char * eap_get_config_phase2(struct eap_sm *sm) 1914 { 1915 struct eap_peer_config *config = eap_get_config(sm); 1916 if (config == NULL) 1917 return NULL; 1918 return config->phase2; 1919 } 1920 1921 1922 int eap_get_config_fragment_size(struct eap_sm *sm) 1923 { 1924 struct eap_peer_config *config = eap_get_config(sm); 1925 if (config == NULL) 1926 return -1; 1927 return config->fragment_size; 1928 } 1929 1930 1931 /** 1932 * eap_key_available - Get key availability (eapKeyAvailable variable) 1933 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1934 * Returns: 1 if EAP keying material is available, 0 if not 1935 */ 1936 int eap_key_available(struct eap_sm *sm) 1937 { 1938 return sm ? sm->eapKeyAvailable : 0; 1939 } 1940 1941 1942 /** 1943 * eap_notify_success - Notify EAP state machine about external success trigger 1944 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1945 * 1946 * This function is called when external event, e.g., successful completion of 1947 * WPA-PSK key handshake, is indicating that EAP state machine should move to 1948 * success state. This is mainly used with security modes that do not use EAP 1949 * state machine (e.g., WPA-PSK). 1950 */ 1951 void eap_notify_success(struct eap_sm *sm) 1952 { 1953 if (sm) { 1954 sm->decision = DECISION_COND_SUCC; 1955 sm->EAP_state = EAP_SUCCESS; 1956 } 1957 } 1958 1959 1960 /** 1961 * eap_notify_lower_layer_success - Notification of lower layer success 1962 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1963 * 1964 * Notify EAP state machines that a lower layer has detected a successful 1965 * authentication. This is used to recover from dropped EAP-Success messages. 1966 */ 1967 void eap_notify_lower_layer_success(struct eap_sm *sm) 1968 { 1969 if (sm == NULL) 1970 return; 1971 1972 if (eapol_get_bool(sm, EAPOL_eapSuccess) || 1973 sm->decision == DECISION_FAIL || 1974 (sm->methodState != METHOD_MAY_CONT && 1975 sm->methodState != METHOD_DONE)) 1976 return; 1977 1978 if (sm->eapKeyData != NULL) 1979 sm->eapKeyAvailable = TRUE; 1980 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 1981 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 1982 "EAP authentication completed successfully (based on lower " 1983 "layer success)"); 1984 } 1985 1986 1987 /** 1988 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine 1989 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1990 * @len: Pointer to variable that will be set to number of bytes in the key 1991 * Returns: Pointer to the EAP keying data or %NULL on failure 1992 * 1993 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The 1994 * key is available only after a successful authentication. EAP state machine 1995 * continues to manage the key data and the caller must not change or free the 1996 * returned data. 1997 */ 1998 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) 1999 { 2000 if (sm == NULL || sm->eapKeyData == NULL) { 2001 *len = 0; 2002 return NULL; 2003 } 2004 2005 *len = sm->eapKeyDataLen; 2006 return sm->eapKeyData; 2007 } 2008 2009 2010 /** 2011 * eap_get_eapKeyData - Get EAP response data 2012 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2013 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure 2014 * 2015 * Fetch EAP response (eapRespData) from the EAP state machine. This data is 2016 * available when EAP state machine has processed an incoming EAP request. The 2017 * EAP state machine does not maintain a reference to the response after this 2018 * function is called and the caller is responsible for freeing the data. 2019 */ 2020 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) 2021 { 2022 struct wpabuf *resp; 2023 2024 if (sm == NULL || sm->eapRespData == NULL) 2025 return NULL; 2026 2027 resp = sm->eapRespData; 2028 sm->eapRespData = NULL; 2029 2030 return resp; 2031 } 2032 2033 2034 /** 2035 * eap_sm_register_scard_ctx - Notification of smart card context 2036 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2037 * @ctx: Context data for smart card operations 2038 * 2039 * Notify EAP state machines of context data for smart card operations. This 2040 * context data will be used as a parameter for scard_*() functions. 2041 */ 2042 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) 2043 { 2044 if (sm) 2045 sm->scard_ctx = ctx; 2046 } 2047 2048 2049 /** 2050 * eap_set_config_blob - Set or add a named configuration blob 2051 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2052 * @blob: New value for the blob 2053 * 2054 * Adds a new configuration blob or replaces the current value of an existing 2055 * blob. 2056 */ 2057 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) 2058 { 2059 #ifndef CONFIG_NO_CONFIG_BLOBS 2060 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); 2061 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2062 } 2063 2064 2065 /** 2066 * eap_get_config_blob - Get a named configuration blob 2067 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2068 * @name: Name of the blob 2069 * Returns: Pointer to blob data or %NULL if not found 2070 */ 2071 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, 2072 const char *name) 2073 { 2074 #ifndef CONFIG_NO_CONFIG_BLOBS 2075 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); 2076 #else /* CONFIG_NO_CONFIG_BLOBS */ 2077 return NULL; 2078 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2079 } 2080 2081 2082 /** 2083 * eap_set_force_disabled - Set force_disabled flag 2084 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2085 * @disabled: 1 = EAP disabled, 0 = EAP enabled 2086 * 2087 * This function is used to force EAP state machine to be disabled when it is 2088 * not in use (e.g., with WPA-PSK or plaintext connections). 2089 */ 2090 void eap_set_force_disabled(struct eap_sm *sm, int disabled) 2091 { 2092 sm->force_disabled = disabled; 2093 } 2094 2095 2096 /** 2097 * eap_notify_pending - Notify that EAP method is ready to re-process a request 2098 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2099 * 2100 * An EAP method can perform a pending operation (e.g., to get a response from 2101 * an external process). Once the response is available, this function can be 2102 * used to request EAPOL state machine to retry delivering the previously 2103 * received (and still unanswered) EAP request to EAP state machine. 2104 */ 2105 void eap_notify_pending(struct eap_sm *sm) 2106 { 2107 sm->eapol_cb->notify_pending(sm->eapol_ctx); 2108 } 2109 2110 2111 /** 2112 * eap_invalidate_cached_session - Mark cached session data invalid 2113 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2114 */ 2115 void eap_invalidate_cached_session(struct eap_sm *sm) 2116 { 2117 if (sm) 2118 eap_deinit_prev_method(sm, "invalidate"); 2119 } 2120 2121 2122 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) 2123 { 2124 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2125 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2126 return 0; /* Not a WPS Enrollee */ 2127 2128 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) 2129 return 0; /* Not using PBC */ 2130 2131 return 1; 2132 } 2133 2134 2135 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) 2136 { 2137 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2138 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2139 return 0; /* Not a WPS Enrollee */ 2140 2141 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) 2142 return 0; /* Not using PIN */ 2143 2144 return 1; 2145 } 2146