Home | History | Annotate | Download | only in AST
      1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr class and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Expr.h"
     15 #include "clang/AST/ExprCXX.h"
     16 #include "clang/AST/APValue.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclCXX.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/RecordLayout.h"
     22 #include "clang/AST/StmtVisitor.h"
     23 #include "clang/Lex/LiteralSupport.h"
     24 #include "clang/Lex/Lexer.h"
     25 #include "clang/Sema/SemaDiagnostic.h"
     26 #include "clang/Basic/Builtins.h"
     27 #include "clang/Basic/SourceManager.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include <algorithm>
     32 using namespace clang;
     33 
     34 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
     35 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
     36 /// but also int expressions which are produced by things like comparisons in
     37 /// C.
     38 bool Expr::isKnownToHaveBooleanValue() const {
     39   const Expr *E = IgnoreParens();
     40 
     41   // If this value has _Bool type, it is obvious 0/1.
     42   if (E->getType()->isBooleanType()) return true;
     43   // If this is a non-scalar-integer type, we don't care enough to try.
     44   if (!E->getType()->isIntegralOrEnumerationType()) return false;
     45 
     46   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
     47     switch (UO->getOpcode()) {
     48     case UO_Plus:
     49       return UO->getSubExpr()->isKnownToHaveBooleanValue();
     50     default:
     51       return false;
     52     }
     53   }
     54 
     55   // Only look through implicit casts.  If the user writes
     56   // '(int) (a && b)' treat it as an arbitrary int.
     57   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
     58     return CE->getSubExpr()->isKnownToHaveBooleanValue();
     59 
     60   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
     61     switch (BO->getOpcode()) {
     62     default: return false;
     63     case BO_LT:   // Relational operators.
     64     case BO_GT:
     65     case BO_LE:
     66     case BO_GE:
     67     case BO_EQ:   // Equality operators.
     68     case BO_NE:
     69     case BO_LAnd: // AND operator.
     70     case BO_LOr:  // Logical OR operator.
     71       return true;
     72 
     73     case BO_And:  // Bitwise AND operator.
     74     case BO_Xor:  // Bitwise XOR operator.
     75     case BO_Or:   // Bitwise OR operator.
     76       // Handle things like (x==2)|(y==12).
     77       return BO->getLHS()->isKnownToHaveBooleanValue() &&
     78              BO->getRHS()->isKnownToHaveBooleanValue();
     79 
     80     case BO_Comma:
     81     case BO_Assign:
     82       return BO->getRHS()->isKnownToHaveBooleanValue();
     83     }
     84   }
     85 
     86   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
     87     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
     88            CO->getFalseExpr()->isKnownToHaveBooleanValue();
     89 
     90   return false;
     91 }
     92 
     93 // Amusing macro metaprogramming hack: check whether a class provides
     94 // a more specific implementation of getExprLoc().
     95 namespace {
     96   /// This implementation is used when a class provides a custom
     97   /// implementation of getExprLoc.
     98   template <class E, class T>
     99   SourceLocation getExprLocImpl(const Expr *expr,
    100                                 SourceLocation (T::*v)() const) {
    101     return static_cast<const E*>(expr)->getExprLoc();
    102   }
    103 
    104   /// This implementation is used when a class doesn't provide
    105   /// a custom implementation of getExprLoc.  Overload resolution
    106   /// should pick it over the implementation above because it's
    107   /// more specialized according to function template partial ordering.
    108   template <class E>
    109   SourceLocation getExprLocImpl(const Expr *expr,
    110                                 SourceLocation (Expr::*v)() const) {
    111     return static_cast<const E*>(expr)->getSourceRange().getBegin();
    112   }
    113 }
    114 
    115 SourceLocation Expr::getExprLoc() const {
    116   switch (getStmtClass()) {
    117   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
    118 #define ABSTRACT_STMT(type)
    119 #define STMT(type, base) \
    120   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
    121 #define EXPR(type, base) \
    122   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
    123 #include "clang/AST/StmtNodes.inc"
    124   }
    125   llvm_unreachable("unknown statement kind");
    126   return SourceLocation();
    127 }
    128 
    129 //===----------------------------------------------------------------------===//
    130 // Primary Expressions.
    131 //===----------------------------------------------------------------------===//
    132 
    133 void ExplicitTemplateArgumentList::initializeFrom(
    134                                       const TemplateArgumentListInfo &Info) {
    135   LAngleLoc = Info.getLAngleLoc();
    136   RAngleLoc = Info.getRAngleLoc();
    137   NumTemplateArgs = Info.size();
    138 
    139   TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
    140   for (unsigned i = 0; i != NumTemplateArgs; ++i)
    141     new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
    142 }
    143 
    144 void ExplicitTemplateArgumentList::initializeFrom(
    145                                           const TemplateArgumentListInfo &Info,
    146                                                   bool &Dependent,
    147                                                   bool &InstantiationDependent,
    148                                        bool &ContainsUnexpandedParameterPack) {
    149   LAngleLoc = Info.getLAngleLoc();
    150   RAngleLoc = Info.getRAngleLoc();
    151   NumTemplateArgs = Info.size();
    152 
    153   TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
    154   for (unsigned i = 0; i != NumTemplateArgs; ++i) {
    155     Dependent = Dependent || Info[i].getArgument().isDependent();
    156     InstantiationDependent = InstantiationDependent ||
    157                              Info[i].getArgument().isInstantiationDependent();
    158     ContainsUnexpandedParameterPack
    159       = ContainsUnexpandedParameterPack ||
    160         Info[i].getArgument().containsUnexpandedParameterPack();
    161 
    162     new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
    163   }
    164 }
    165 
    166 void ExplicitTemplateArgumentList::copyInto(
    167                                       TemplateArgumentListInfo &Info) const {
    168   Info.setLAngleLoc(LAngleLoc);
    169   Info.setRAngleLoc(RAngleLoc);
    170   for (unsigned I = 0; I != NumTemplateArgs; ++I)
    171     Info.addArgument(getTemplateArgs()[I]);
    172 }
    173 
    174 std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
    175   return sizeof(ExplicitTemplateArgumentList) +
    176          sizeof(TemplateArgumentLoc) * NumTemplateArgs;
    177 }
    178 
    179 std::size_t ExplicitTemplateArgumentList::sizeFor(
    180                                       const TemplateArgumentListInfo &Info) {
    181   return sizeFor(Info.size());
    182 }
    183 
    184 /// \brief Compute the type-, value-, and instantiation-dependence of a
    185 /// declaration reference
    186 /// based on the declaration being referenced.
    187 static void computeDeclRefDependence(NamedDecl *D, QualType T,
    188                                      bool &TypeDependent,
    189                                      bool &ValueDependent,
    190                                      bool &InstantiationDependent) {
    191   TypeDependent = false;
    192   ValueDependent = false;
    193   InstantiationDependent = false;
    194 
    195   // (TD) C++ [temp.dep.expr]p3:
    196   //   An id-expression is type-dependent if it contains:
    197   //
    198   // and
    199   //
    200   // (VD) C++ [temp.dep.constexpr]p2:
    201   //  An identifier is value-dependent if it is:
    202 
    203   //  (TD)  - an identifier that was declared with dependent type
    204   //  (VD)  - a name declared with a dependent type,
    205   if (T->isDependentType()) {
    206     TypeDependent = true;
    207     ValueDependent = true;
    208     InstantiationDependent = true;
    209     return;
    210   } else if (T->isInstantiationDependentType()) {
    211     InstantiationDependent = true;
    212   }
    213 
    214   //  (TD)  - a conversion-function-id that specifies a dependent type
    215   if (D->getDeclName().getNameKind()
    216                                 == DeclarationName::CXXConversionFunctionName) {
    217     QualType T = D->getDeclName().getCXXNameType();
    218     if (T->isDependentType()) {
    219       TypeDependent = true;
    220       ValueDependent = true;
    221       InstantiationDependent = true;
    222       return;
    223     }
    224 
    225     if (T->isInstantiationDependentType())
    226       InstantiationDependent = true;
    227   }
    228 
    229   //  (VD)  - the name of a non-type template parameter,
    230   if (isa<NonTypeTemplateParmDecl>(D)) {
    231     ValueDependent = true;
    232     InstantiationDependent = true;
    233     return;
    234   }
    235 
    236   //  (VD) - a constant with integral or enumeration type and is
    237   //         initialized with an expression that is value-dependent.
    238   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    239     if (Var->getType()->isIntegralOrEnumerationType() &&
    240         Var->getType().getCVRQualifiers() == Qualifiers::Const) {
    241       if (const Expr *Init = Var->getAnyInitializer())
    242         if (Init->isValueDependent()) {
    243           ValueDependent = true;
    244           InstantiationDependent = true;
    245         }
    246     }
    247 
    248     // (VD) - FIXME: Missing from the standard:
    249     //      -  a member function or a static data member of the current
    250     //         instantiation
    251     else if (Var->isStaticDataMember() &&
    252              Var->getDeclContext()->isDependentContext()) {
    253       ValueDependent = true;
    254       InstantiationDependent = true;
    255     }
    256 
    257     return;
    258   }
    259 
    260   // (VD) - FIXME: Missing from the standard:
    261   //      -  a member function or a static data member of the current
    262   //         instantiation
    263   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
    264     ValueDependent = true;
    265     InstantiationDependent = true;
    266     return;
    267   }
    268 }
    269 
    270 void DeclRefExpr::computeDependence() {
    271   bool TypeDependent = false;
    272   bool ValueDependent = false;
    273   bool InstantiationDependent = false;
    274   computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent,
    275                            InstantiationDependent);
    276 
    277   // (TD) C++ [temp.dep.expr]p3:
    278   //   An id-expression is type-dependent if it contains:
    279   //
    280   // and
    281   //
    282   // (VD) C++ [temp.dep.constexpr]p2:
    283   //  An identifier is value-dependent if it is:
    284   if (!TypeDependent && !ValueDependent &&
    285       hasExplicitTemplateArgs() &&
    286       TemplateSpecializationType::anyDependentTemplateArguments(
    287                                                             getTemplateArgs(),
    288                                                        getNumTemplateArgs(),
    289                                                       InstantiationDependent)) {
    290     TypeDependent = true;
    291     ValueDependent = true;
    292     InstantiationDependent = true;
    293   }
    294 
    295   ExprBits.TypeDependent = TypeDependent;
    296   ExprBits.ValueDependent = ValueDependent;
    297   ExprBits.InstantiationDependent = InstantiationDependent;
    298 
    299   // Is the declaration a parameter pack?
    300   if (getDecl()->isParameterPack())
    301     ExprBits.ContainsUnexpandedParameterPack = true;
    302 }
    303 
    304 DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
    305                          ValueDecl *D, const DeclarationNameInfo &NameInfo,
    306                          NamedDecl *FoundD,
    307                          const TemplateArgumentListInfo *TemplateArgs,
    308                          QualType T, ExprValueKind VK)
    309   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
    310     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
    311   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
    312   if (QualifierLoc)
    313     getInternalQualifierLoc() = QualifierLoc;
    314   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
    315   if (FoundD)
    316     getInternalFoundDecl() = FoundD;
    317   DeclRefExprBits.HasExplicitTemplateArgs = TemplateArgs ? 1 : 0;
    318   if (TemplateArgs) {
    319     bool Dependent = false;
    320     bool InstantiationDependent = false;
    321     bool ContainsUnexpandedParameterPack = false;
    322     getExplicitTemplateArgs().initializeFrom(*TemplateArgs, Dependent,
    323                                              InstantiationDependent,
    324                                              ContainsUnexpandedParameterPack);
    325     if (InstantiationDependent)
    326       setInstantiationDependent(true);
    327   }
    328 
    329   computeDependence();
    330 }
    331 
    332 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
    333                                  NestedNameSpecifierLoc QualifierLoc,
    334                                  ValueDecl *D,
    335                                  SourceLocation NameLoc,
    336                                  QualType T,
    337                                  ExprValueKind VK,
    338                                  NamedDecl *FoundD,
    339                                  const TemplateArgumentListInfo *TemplateArgs) {
    340   return Create(Context, QualifierLoc, D,
    341                 DeclarationNameInfo(D->getDeclName(), NameLoc),
    342                 T, VK, FoundD, TemplateArgs);
    343 }
    344 
    345 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
    346                                  NestedNameSpecifierLoc QualifierLoc,
    347                                  ValueDecl *D,
    348                                  const DeclarationNameInfo &NameInfo,
    349                                  QualType T,
    350                                  ExprValueKind VK,
    351                                  NamedDecl *FoundD,
    352                                  const TemplateArgumentListInfo *TemplateArgs) {
    353   // Filter out cases where the found Decl is the same as the value refenenced.
    354   if (D == FoundD)
    355     FoundD = 0;
    356 
    357   std::size_t Size = sizeof(DeclRefExpr);
    358   if (QualifierLoc != 0)
    359     Size += sizeof(NestedNameSpecifierLoc);
    360   if (FoundD)
    361     Size += sizeof(NamedDecl *);
    362   if (TemplateArgs)
    363     Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
    364 
    365   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    366   return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, FoundD, TemplateArgs,
    367                                T, VK);
    368 }
    369 
    370 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
    371                                       bool HasQualifier,
    372                                       bool HasFoundDecl,
    373                                       bool HasExplicitTemplateArgs,
    374                                       unsigned NumTemplateArgs) {
    375   std::size_t Size = sizeof(DeclRefExpr);
    376   if (HasQualifier)
    377     Size += sizeof(NestedNameSpecifierLoc);
    378   if (HasFoundDecl)
    379     Size += sizeof(NamedDecl *);
    380   if (HasExplicitTemplateArgs)
    381     Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
    382 
    383   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    384   return new (Mem) DeclRefExpr(EmptyShell());
    385 }
    386 
    387 SourceRange DeclRefExpr::getSourceRange() const {
    388   SourceRange R = getNameInfo().getSourceRange();
    389   if (hasQualifier())
    390     R.setBegin(getQualifierLoc().getBeginLoc());
    391   if (hasExplicitTemplateArgs())
    392     R.setEnd(getRAngleLoc());
    393   return R;
    394 }
    395 
    396 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
    397 // expr" policy instead.
    398 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
    399   ASTContext &Context = CurrentDecl->getASTContext();
    400 
    401   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    402     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
    403       return FD->getNameAsString();
    404 
    405     llvm::SmallString<256> Name;
    406     llvm::raw_svector_ostream Out(Name);
    407 
    408     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    409       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
    410         Out << "virtual ";
    411       if (MD->isStatic())
    412         Out << "static ";
    413     }
    414 
    415     PrintingPolicy Policy(Context.getLangOptions());
    416 
    417     std::string Proto = FD->getQualifiedNameAsString(Policy);
    418 
    419     const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
    420     const FunctionProtoType *FT = 0;
    421     if (FD->hasWrittenPrototype())
    422       FT = dyn_cast<FunctionProtoType>(AFT);
    423 
    424     Proto += "(";
    425     if (FT) {
    426       llvm::raw_string_ostream POut(Proto);
    427       for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
    428         if (i) POut << ", ";
    429         std::string Param;
    430         FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
    431         POut << Param;
    432       }
    433 
    434       if (FT->isVariadic()) {
    435         if (FD->getNumParams()) POut << ", ";
    436         POut << "...";
    437       }
    438     }
    439     Proto += ")";
    440 
    441     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    442       Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
    443       if (ThisQuals.hasConst())
    444         Proto += " const";
    445       if (ThisQuals.hasVolatile())
    446         Proto += " volatile";
    447     }
    448 
    449     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
    450       AFT->getResultType().getAsStringInternal(Proto, Policy);
    451 
    452     Out << Proto;
    453 
    454     Out.flush();
    455     return Name.str().str();
    456   }
    457   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    458     llvm::SmallString<256> Name;
    459     llvm::raw_svector_ostream Out(Name);
    460     Out << (MD->isInstanceMethod() ? '-' : '+');
    461     Out << '[';
    462 
    463     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
    464     // a null check to avoid a crash.
    465     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
    466       Out << ID;
    467 
    468     if (const ObjCCategoryImplDecl *CID =
    469         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
    470       Out << '(' << CID << ')';
    471 
    472     Out <<  ' ';
    473     Out << MD->getSelector().getAsString();
    474     Out <<  ']';
    475 
    476     Out.flush();
    477     return Name.str().str();
    478   }
    479   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
    480     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    481     return "top level";
    482   }
    483   return "";
    484 }
    485 
    486 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
    487   if (hasAllocation())
    488     C.Deallocate(pVal);
    489 
    490   BitWidth = Val.getBitWidth();
    491   unsigned NumWords = Val.getNumWords();
    492   const uint64_t* Words = Val.getRawData();
    493   if (NumWords > 1) {
    494     pVal = new (C) uint64_t[NumWords];
    495     std::copy(Words, Words + NumWords, pVal);
    496   } else if (NumWords == 1)
    497     VAL = Words[0];
    498   else
    499     VAL = 0;
    500 }
    501 
    502 IntegerLiteral *
    503 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
    504                        QualType type, SourceLocation l) {
    505   return new (C) IntegerLiteral(C, V, type, l);
    506 }
    507 
    508 IntegerLiteral *
    509 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
    510   return new (C) IntegerLiteral(Empty);
    511 }
    512 
    513 FloatingLiteral *
    514 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
    515                         bool isexact, QualType Type, SourceLocation L) {
    516   return new (C) FloatingLiteral(C, V, isexact, Type, L);
    517 }
    518 
    519 FloatingLiteral *
    520 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
    521   return new (C) FloatingLiteral(Empty);
    522 }
    523 
    524 /// getValueAsApproximateDouble - This returns the value as an inaccurate
    525 /// double.  Note that this may cause loss of precision, but is useful for
    526 /// debugging dumps, etc.
    527 double FloatingLiteral::getValueAsApproximateDouble() const {
    528   llvm::APFloat V = getValue();
    529   bool ignored;
    530   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
    531             &ignored);
    532   return V.convertToDouble();
    533 }
    534 
    535 StringLiteral *StringLiteral::Create(ASTContext &C, llvm::StringRef Str,
    536                                      bool Wide,
    537                                      bool Pascal, QualType Ty,
    538                                      const SourceLocation *Loc,
    539                                      unsigned NumStrs) {
    540   // Allocate enough space for the StringLiteral plus an array of locations for
    541   // any concatenated string tokens.
    542   void *Mem = C.Allocate(sizeof(StringLiteral)+
    543                          sizeof(SourceLocation)*(NumStrs-1),
    544                          llvm::alignOf<StringLiteral>());
    545   StringLiteral *SL = new (Mem) StringLiteral(Ty);
    546 
    547   // OPTIMIZE: could allocate this appended to the StringLiteral.
    548   char *AStrData = new (C, 1) char[Str.size()];
    549   memcpy(AStrData, Str.data(), Str.size());
    550   SL->StrData = AStrData;
    551   SL->ByteLength = Str.size();
    552   SL->IsWide = Wide;
    553   SL->IsPascal = Pascal;
    554   SL->TokLocs[0] = Loc[0];
    555   SL->NumConcatenated = NumStrs;
    556 
    557   if (NumStrs != 1)
    558     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
    559   return SL;
    560 }
    561 
    562 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
    563   void *Mem = C.Allocate(sizeof(StringLiteral)+
    564                          sizeof(SourceLocation)*(NumStrs-1),
    565                          llvm::alignOf<StringLiteral>());
    566   StringLiteral *SL = new (Mem) StringLiteral(QualType());
    567   SL->StrData = 0;
    568   SL->ByteLength = 0;
    569   SL->NumConcatenated = NumStrs;
    570   return SL;
    571 }
    572 
    573 void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
    574   char *AStrData = new (C, 1) char[Str.size()];
    575   memcpy(AStrData, Str.data(), Str.size());
    576   StrData = AStrData;
    577   ByteLength = Str.size();
    578 }
    579 
    580 /// getLocationOfByte - Return a source location that points to the specified
    581 /// byte of this string literal.
    582 ///
    583 /// Strings are amazingly complex.  They can be formed from multiple tokens and
    584 /// can have escape sequences in them in addition to the usual trigraph and
    585 /// escaped newline business.  This routine handles this complexity.
    586 ///
    587 SourceLocation StringLiteral::
    588 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
    589                   const LangOptions &Features, const TargetInfo &Target) const {
    590   assert(!isWide() && "This doesn't work for wide strings yet");
    591 
    592   // Loop over all of the tokens in this string until we find the one that
    593   // contains the byte we're looking for.
    594   unsigned TokNo = 0;
    595   while (1) {
    596     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
    597     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
    598 
    599     // Get the spelling of the string so that we can get the data that makes up
    600     // the string literal, not the identifier for the macro it is potentially
    601     // expanded through.
    602     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
    603 
    604     // Re-lex the token to get its length and original spelling.
    605     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
    606     bool Invalid = false;
    607     llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
    608     if (Invalid)
    609       return StrTokSpellingLoc;
    610 
    611     const char *StrData = Buffer.data()+LocInfo.second;
    612 
    613     // Create a langops struct and enable trigraphs.  This is sufficient for
    614     // relexing tokens.
    615     LangOptions LangOpts;
    616     LangOpts.Trigraphs = true;
    617 
    618     // Create a lexer starting at the beginning of this token.
    619     Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
    620                    Buffer.end());
    621     Token TheTok;
    622     TheLexer.LexFromRawLexer(TheTok);
    623 
    624     // Use the StringLiteralParser to compute the length of the string in bytes.
    625     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
    626     unsigned TokNumBytes = SLP.GetStringLength();
    627 
    628     // If the byte is in this token, return the location of the byte.
    629     if (ByteNo < TokNumBytes ||
    630         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
    631       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
    632 
    633       // Now that we know the offset of the token in the spelling, use the
    634       // preprocessor to get the offset in the original source.
    635       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
    636     }
    637 
    638     // Move to the next string token.
    639     ++TokNo;
    640     ByteNo -= TokNumBytes;
    641   }
    642 }
    643 
    644 
    645 
    646 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
    647 /// corresponds to, e.g. "sizeof" or "[pre]++".
    648 const char *UnaryOperator::getOpcodeStr(Opcode Op) {
    649   switch (Op) {
    650   default: assert(0 && "Unknown unary operator");
    651   case UO_PostInc: return "++";
    652   case UO_PostDec: return "--";
    653   case UO_PreInc:  return "++";
    654   case UO_PreDec:  return "--";
    655   case UO_AddrOf:  return "&";
    656   case UO_Deref:   return "*";
    657   case UO_Plus:    return "+";
    658   case UO_Minus:   return "-";
    659   case UO_Not:     return "~";
    660   case UO_LNot:    return "!";
    661   case UO_Real:    return "__real";
    662   case UO_Imag:    return "__imag";
    663   case UO_Extension: return "__extension__";
    664   }
    665 }
    666 
    667 UnaryOperatorKind
    668 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
    669   switch (OO) {
    670   default: assert(false && "No unary operator for overloaded function");
    671   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
    672   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
    673   case OO_Amp:        return UO_AddrOf;
    674   case OO_Star:       return UO_Deref;
    675   case OO_Plus:       return UO_Plus;
    676   case OO_Minus:      return UO_Minus;
    677   case OO_Tilde:      return UO_Not;
    678   case OO_Exclaim:    return UO_LNot;
    679   }
    680 }
    681 
    682 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
    683   switch (Opc) {
    684   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
    685   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
    686   case UO_AddrOf: return OO_Amp;
    687   case UO_Deref: return OO_Star;
    688   case UO_Plus: return OO_Plus;
    689   case UO_Minus: return OO_Minus;
    690   case UO_Not: return OO_Tilde;
    691   case UO_LNot: return OO_Exclaim;
    692   default: return OO_None;
    693   }
    694 }
    695 
    696 
    697 //===----------------------------------------------------------------------===//
    698 // Postfix Operators.
    699 //===----------------------------------------------------------------------===//
    700 
    701 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
    702                    Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
    703                    SourceLocation rparenloc)
    704   : Expr(SC, t, VK, OK_Ordinary,
    705          fn->isTypeDependent(),
    706          fn->isValueDependent(),
    707          fn->isInstantiationDependent(),
    708          fn->containsUnexpandedParameterPack()),
    709     NumArgs(numargs) {
    710 
    711   SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
    712   SubExprs[FN] = fn;
    713   for (unsigned i = 0; i != numargs; ++i) {
    714     if (args[i]->isTypeDependent())
    715       ExprBits.TypeDependent = true;
    716     if (args[i]->isValueDependent())
    717       ExprBits.ValueDependent = true;
    718     if (args[i]->isInstantiationDependent())
    719       ExprBits.InstantiationDependent = true;
    720     if (args[i]->containsUnexpandedParameterPack())
    721       ExprBits.ContainsUnexpandedParameterPack = true;
    722 
    723     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
    724   }
    725 
    726   CallExprBits.NumPreArgs = NumPreArgs;
    727   RParenLoc = rparenloc;
    728 }
    729 
    730 CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
    731                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
    732   : Expr(CallExprClass, t, VK, OK_Ordinary,
    733          fn->isTypeDependent(),
    734          fn->isValueDependent(),
    735          fn->isInstantiationDependent(),
    736          fn->containsUnexpandedParameterPack()),
    737     NumArgs(numargs) {
    738 
    739   SubExprs = new (C) Stmt*[numargs+PREARGS_START];
    740   SubExprs[FN] = fn;
    741   for (unsigned i = 0; i != numargs; ++i) {
    742     if (args[i]->isTypeDependent())
    743       ExprBits.TypeDependent = true;
    744     if (args[i]->isValueDependent())
    745       ExprBits.ValueDependent = true;
    746     if (args[i]->isInstantiationDependent())
    747       ExprBits.InstantiationDependent = true;
    748     if (args[i]->containsUnexpandedParameterPack())
    749       ExprBits.ContainsUnexpandedParameterPack = true;
    750 
    751     SubExprs[i+PREARGS_START] = args[i];
    752   }
    753 
    754   CallExprBits.NumPreArgs = 0;
    755   RParenLoc = rparenloc;
    756 }
    757 
    758 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
    759   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
    760   // FIXME: Why do we allocate this?
    761   SubExprs = new (C) Stmt*[PREARGS_START];
    762   CallExprBits.NumPreArgs = 0;
    763 }
    764 
    765 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
    766                    EmptyShell Empty)
    767   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
    768   // FIXME: Why do we allocate this?
    769   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
    770   CallExprBits.NumPreArgs = NumPreArgs;
    771 }
    772 
    773 Decl *CallExpr::getCalleeDecl() {
    774   Expr *CEE = getCallee()->IgnoreParenCasts();
    775   // If we're calling a dereference, look at the pointer instead.
    776   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
    777     if (BO->isPtrMemOp())
    778       CEE = BO->getRHS()->IgnoreParenCasts();
    779   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
    780     if (UO->getOpcode() == UO_Deref)
    781       CEE = UO->getSubExpr()->IgnoreParenCasts();
    782   }
    783   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
    784     return DRE->getDecl();
    785   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
    786     return ME->getMemberDecl();
    787 
    788   return 0;
    789 }
    790 
    791 FunctionDecl *CallExpr::getDirectCallee() {
    792   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
    793 }
    794 
    795 /// setNumArgs - This changes the number of arguments present in this call.
    796 /// Any orphaned expressions are deleted by this, and any new operands are set
    797 /// to null.
    798 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
    799   // No change, just return.
    800   if (NumArgs == getNumArgs()) return;
    801 
    802   // If shrinking # arguments, just delete the extras and forgot them.
    803   if (NumArgs < getNumArgs()) {
    804     this->NumArgs = NumArgs;
    805     return;
    806   }
    807 
    808   // Otherwise, we are growing the # arguments.  New an bigger argument array.
    809   unsigned NumPreArgs = getNumPreArgs();
    810   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
    811   // Copy over args.
    812   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
    813     NewSubExprs[i] = SubExprs[i];
    814   // Null out new args.
    815   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
    816        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
    817     NewSubExprs[i] = 0;
    818 
    819   if (SubExprs) C.Deallocate(SubExprs);
    820   SubExprs = NewSubExprs;
    821   this->NumArgs = NumArgs;
    822 }
    823 
    824 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
    825 /// not, return 0.
    826 unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
    827   // All simple function calls (e.g. func()) are implicitly cast to pointer to
    828   // function. As a result, we try and obtain the DeclRefExpr from the
    829   // ImplicitCastExpr.
    830   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
    831   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
    832     return 0;
    833 
    834   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
    835   if (!DRE)
    836     return 0;
    837 
    838   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
    839   if (!FDecl)
    840     return 0;
    841 
    842   if (!FDecl->getIdentifier())
    843     return 0;
    844 
    845   return FDecl->getBuiltinID();
    846 }
    847 
    848 QualType CallExpr::getCallReturnType() const {
    849   QualType CalleeType = getCallee()->getType();
    850   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
    851     CalleeType = FnTypePtr->getPointeeType();
    852   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
    853     CalleeType = BPT->getPointeeType();
    854   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
    855     // This should never be overloaded and so should never return null.
    856     CalleeType = Expr::findBoundMemberType(getCallee());
    857 
    858   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
    859   return FnType->getResultType();
    860 }
    861 
    862 SourceRange CallExpr::getSourceRange() const {
    863   if (isa<CXXOperatorCallExpr>(this))
    864     return cast<CXXOperatorCallExpr>(this)->getSourceRange();
    865 
    866   SourceLocation begin = getCallee()->getLocStart();
    867   if (begin.isInvalid() && getNumArgs() > 0)
    868     begin = getArg(0)->getLocStart();
    869   SourceLocation end = getRParenLoc();
    870   if (end.isInvalid() && getNumArgs() > 0)
    871     end = getArg(getNumArgs() - 1)->getLocEnd();
    872   return SourceRange(begin, end);
    873 }
    874 
    875 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
    876                                    SourceLocation OperatorLoc,
    877                                    TypeSourceInfo *tsi,
    878                                    OffsetOfNode* compsPtr, unsigned numComps,
    879                                    Expr** exprsPtr, unsigned numExprs,
    880                                    SourceLocation RParenLoc) {
    881   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
    882                          sizeof(OffsetOfNode) * numComps +
    883                          sizeof(Expr*) * numExprs);
    884 
    885   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
    886                                 exprsPtr, numExprs, RParenLoc);
    887 }
    888 
    889 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
    890                                         unsigned numComps, unsigned numExprs) {
    891   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
    892                          sizeof(OffsetOfNode) * numComps +
    893                          sizeof(Expr*) * numExprs);
    894   return new (Mem) OffsetOfExpr(numComps, numExprs);
    895 }
    896 
    897 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
    898                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
    899                            OffsetOfNode* compsPtr, unsigned numComps,
    900                            Expr** exprsPtr, unsigned numExprs,
    901                            SourceLocation RParenLoc)
    902   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
    903          /*TypeDependent=*/false,
    904          /*ValueDependent=*/tsi->getType()->isDependentType(),
    905          tsi->getType()->isInstantiationDependentType(),
    906          tsi->getType()->containsUnexpandedParameterPack()),
    907     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
    908     NumComps(numComps), NumExprs(numExprs)
    909 {
    910   for(unsigned i = 0; i < numComps; ++i) {
    911     setComponent(i, compsPtr[i]);
    912   }
    913 
    914   for(unsigned i = 0; i < numExprs; ++i) {
    915     if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
    916       ExprBits.ValueDependent = true;
    917     if (exprsPtr[i]->containsUnexpandedParameterPack())
    918       ExprBits.ContainsUnexpandedParameterPack = true;
    919 
    920     setIndexExpr(i, exprsPtr[i]);
    921   }
    922 }
    923 
    924 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
    925   assert(getKind() == Field || getKind() == Identifier);
    926   if (getKind() == Field)
    927     return getField()->getIdentifier();
    928 
    929   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
    930 }
    931 
    932 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
    933                                NestedNameSpecifierLoc QualifierLoc,
    934                                ValueDecl *memberdecl,
    935                                DeclAccessPair founddecl,
    936                                DeclarationNameInfo nameinfo,
    937                                const TemplateArgumentListInfo *targs,
    938                                QualType ty,
    939                                ExprValueKind vk,
    940                                ExprObjectKind ok) {
    941   std::size_t Size = sizeof(MemberExpr);
    942 
    943   bool hasQualOrFound = (QualifierLoc ||
    944                          founddecl.getDecl() != memberdecl ||
    945                          founddecl.getAccess() != memberdecl->getAccess());
    946   if (hasQualOrFound)
    947     Size += sizeof(MemberNameQualifier);
    948 
    949   if (targs)
    950     Size += ExplicitTemplateArgumentList::sizeFor(*targs);
    951 
    952   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
    953   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
    954                                        ty, vk, ok);
    955 
    956   if (hasQualOrFound) {
    957     // FIXME: Wrong. We should be looking at the member declaration we found.
    958     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
    959       E->setValueDependent(true);
    960       E->setTypeDependent(true);
    961       E->setInstantiationDependent(true);
    962     }
    963     else if (QualifierLoc &&
    964              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
    965       E->setInstantiationDependent(true);
    966 
    967     E->HasQualifierOrFoundDecl = true;
    968 
    969     MemberNameQualifier *NQ = E->getMemberQualifier();
    970     NQ->QualifierLoc = QualifierLoc;
    971     NQ->FoundDecl = founddecl;
    972   }
    973 
    974   if (targs) {
    975     bool Dependent = false;
    976     bool InstantiationDependent = false;
    977     bool ContainsUnexpandedParameterPack = false;
    978     E->HasExplicitTemplateArgumentList = true;
    979     E->getExplicitTemplateArgs().initializeFrom(*targs, Dependent,
    980                                                 InstantiationDependent,
    981                                               ContainsUnexpandedParameterPack);
    982     if (InstantiationDependent)
    983       E->setInstantiationDependent(true);
    984   }
    985 
    986   return E;
    987 }
    988 
    989 SourceRange MemberExpr::getSourceRange() const {
    990   SourceLocation StartLoc;
    991   if (isImplicitAccess()) {
    992     if (hasQualifier())
    993       StartLoc = getQualifierLoc().getBeginLoc();
    994     else
    995       StartLoc = MemberLoc;
    996   } else {
    997     // FIXME: We don't want this to happen. Rather, we should be able to
    998     // detect all kinds of implicit accesses more cleanly.
    999     StartLoc = getBase()->getLocStart();
   1000     if (StartLoc.isInvalid())
   1001       StartLoc = MemberLoc;
   1002   }
   1003 
   1004   SourceLocation EndLoc =
   1005     HasExplicitTemplateArgumentList? getRAngleLoc()
   1006                                    : getMemberNameInfo().getEndLoc();
   1007 
   1008   return SourceRange(StartLoc, EndLoc);
   1009 }
   1010 
   1011 const char *CastExpr::getCastKindName() const {
   1012   switch (getCastKind()) {
   1013   case CK_Dependent:
   1014     return "Dependent";
   1015   case CK_BitCast:
   1016     return "BitCast";
   1017   case CK_LValueBitCast:
   1018     return "LValueBitCast";
   1019   case CK_LValueToRValue:
   1020     return "LValueToRValue";
   1021   case CK_GetObjCProperty:
   1022     return "GetObjCProperty";
   1023   case CK_NoOp:
   1024     return "NoOp";
   1025   case CK_BaseToDerived:
   1026     return "BaseToDerived";
   1027   case CK_DerivedToBase:
   1028     return "DerivedToBase";
   1029   case CK_UncheckedDerivedToBase:
   1030     return "UncheckedDerivedToBase";
   1031   case CK_Dynamic:
   1032     return "Dynamic";
   1033   case CK_ToUnion:
   1034     return "ToUnion";
   1035   case CK_ArrayToPointerDecay:
   1036     return "ArrayToPointerDecay";
   1037   case CK_FunctionToPointerDecay:
   1038     return "FunctionToPointerDecay";
   1039   case CK_NullToMemberPointer:
   1040     return "NullToMemberPointer";
   1041   case CK_NullToPointer:
   1042     return "NullToPointer";
   1043   case CK_BaseToDerivedMemberPointer:
   1044     return "BaseToDerivedMemberPointer";
   1045   case CK_DerivedToBaseMemberPointer:
   1046     return "DerivedToBaseMemberPointer";
   1047   case CK_UserDefinedConversion:
   1048     return "UserDefinedConversion";
   1049   case CK_ConstructorConversion:
   1050     return "ConstructorConversion";
   1051   case CK_IntegralToPointer:
   1052     return "IntegralToPointer";
   1053   case CK_PointerToIntegral:
   1054     return "PointerToIntegral";
   1055   case CK_PointerToBoolean:
   1056     return "PointerToBoolean";
   1057   case CK_ToVoid:
   1058     return "ToVoid";
   1059   case CK_VectorSplat:
   1060     return "VectorSplat";
   1061   case CK_IntegralCast:
   1062     return "IntegralCast";
   1063   case CK_IntegralToBoolean:
   1064     return "IntegralToBoolean";
   1065   case CK_IntegralToFloating:
   1066     return "IntegralToFloating";
   1067   case CK_FloatingToIntegral:
   1068     return "FloatingToIntegral";
   1069   case CK_FloatingCast:
   1070     return "FloatingCast";
   1071   case CK_FloatingToBoolean:
   1072     return "FloatingToBoolean";
   1073   case CK_MemberPointerToBoolean:
   1074     return "MemberPointerToBoolean";
   1075   case CK_AnyPointerToObjCPointerCast:
   1076     return "AnyPointerToObjCPointerCast";
   1077   case CK_AnyPointerToBlockPointerCast:
   1078     return "AnyPointerToBlockPointerCast";
   1079   case CK_ObjCObjectLValueCast:
   1080     return "ObjCObjectLValueCast";
   1081   case CK_FloatingRealToComplex:
   1082     return "FloatingRealToComplex";
   1083   case CK_FloatingComplexToReal:
   1084     return "FloatingComplexToReal";
   1085   case CK_FloatingComplexToBoolean:
   1086     return "FloatingComplexToBoolean";
   1087   case CK_FloatingComplexCast:
   1088     return "FloatingComplexCast";
   1089   case CK_FloatingComplexToIntegralComplex:
   1090     return "FloatingComplexToIntegralComplex";
   1091   case CK_IntegralRealToComplex:
   1092     return "IntegralRealToComplex";
   1093   case CK_IntegralComplexToReal:
   1094     return "IntegralComplexToReal";
   1095   case CK_IntegralComplexToBoolean:
   1096     return "IntegralComplexToBoolean";
   1097   case CK_IntegralComplexCast:
   1098     return "IntegralComplexCast";
   1099   case CK_IntegralComplexToFloatingComplex:
   1100     return "IntegralComplexToFloatingComplex";
   1101   case CK_ObjCConsumeObject:
   1102     return "ObjCConsumeObject";
   1103   case CK_ObjCProduceObject:
   1104     return "ObjCProduceObject";
   1105   case CK_ObjCReclaimReturnedObject:
   1106     return "ObjCReclaimReturnedObject";
   1107   }
   1108 
   1109   llvm_unreachable("Unhandled cast kind!");
   1110   return 0;
   1111 }
   1112 
   1113 Expr *CastExpr::getSubExprAsWritten() {
   1114   Expr *SubExpr = 0;
   1115   CastExpr *E = this;
   1116   do {
   1117     SubExpr = E->getSubExpr();
   1118 
   1119     // Skip through reference binding to temporary.
   1120     if (MaterializeTemporaryExpr *Materialize
   1121                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
   1122       SubExpr = Materialize->GetTemporaryExpr();
   1123 
   1124     // Skip any temporary bindings; they're implicit.
   1125     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
   1126       SubExpr = Binder->getSubExpr();
   1127 
   1128     // Conversions by constructor and conversion functions have a
   1129     // subexpression describing the call; strip it off.
   1130     if (E->getCastKind() == CK_ConstructorConversion)
   1131       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
   1132     else if (E->getCastKind() == CK_UserDefinedConversion)
   1133       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
   1134 
   1135     // If the subexpression we're left with is an implicit cast, look
   1136     // through that, too.
   1137   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
   1138 
   1139   return SubExpr;
   1140 }
   1141 
   1142 CXXBaseSpecifier **CastExpr::path_buffer() {
   1143   switch (getStmtClass()) {
   1144 #define ABSTRACT_STMT(x)
   1145 #define CASTEXPR(Type, Base) \
   1146   case Stmt::Type##Class: \
   1147     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
   1148 #define STMT(Type, Base)
   1149 #include "clang/AST/StmtNodes.inc"
   1150   default:
   1151     llvm_unreachable("non-cast expressions not possible here");
   1152     return 0;
   1153   }
   1154 }
   1155 
   1156 void CastExpr::setCastPath(const CXXCastPath &Path) {
   1157   assert(Path.size() == path_size());
   1158   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
   1159 }
   1160 
   1161 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
   1162                                            CastKind Kind, Expr *Operand,
   1163                                            const CXXCastPath *BasePath,
   1164                                            ExprValueKind VK) {
   1165   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1166   void *Buffer =
   1167     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1168   ImplicitCastExpr *E =
   1169     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
   1170   if (PathSize) E->setCastPath(*BasePath);
   1171   return E;
   1172 }
   1173 
   1174 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
   1175                                                 unsigned PathSize) {
   1176   void *Buffer =
   1177     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1178   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
   1179 }
   1180 
   1181 
   1182 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
   1183                                        ExprValueKind VK, CastKind K, Expr *Op,
   1184                                        const CXXCastPath *BasePath,
   1185                                        TypeSourceInfo *WrittenTy,
   1186                                        SourceLocation L, SourceLocation R) {
   1187   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1188   void *Buffer =
   1189     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1190   CStyleCastExpr *E =
   1191     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
   1192   if (PathSize) E->setCastPath(*BasePath);
   1193   return E;
   1194 }
   1195 
   1196 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
   1197   void *Buffer =
   1198     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
   1199   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
   1200 }
   1201 
   1202 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1203 /// corresponds to, e.g. "<<=".
   1204 const char *BinaryOperator::getOpcodeStr(Opcode Op) {
   1205   switch (Op) {
   1206   case BO_PtrMemD:   return ".*";
   1207   case BO_PtrMemI:   return "->*";
   1208   case BO_Mul:       return "*";
   1209   case BO_Div:       return "/";
   1210   case BO_Rem:       return "%";
   1211   case BO_Add:       return "+";
   1212   case BO_Sub:       return "-";
   1213   case BO_Shl:       return "<<";
   1214   case BO_Shr:       return ">>";
   1215   case BO_LT:        return "<";
   1216   case BO_GT:        return ">";
   1217   case BO_LE:        return "<=";
   1218   case BO_GE:        return ">=";
   1219   case BO_EQ:        return "==";
   1220   case BO_NE:        return "!=";
   1221   case BO_And:       return "&";
   1222   case BO_Xor:       return "^";
   1223   case BO_Or:        return "|";
   1224   case BO_LAnd:      return "&&";
   1225   case BO_LOr:       return "||";
   1226   case BO_Assign:    return "=";
   1227   case BO_MulAssign: return "*=";
   1228   case BO_DivAssign: return "/=";
   1229   case BO_RemAssign: return "%=";
   1230   case BO_AddAssign: return "+=";
   1231   case BO_SubAssign: return "-=";
   1232   case BO_ShlAssign: return "<<=";
   1233   case BO_ShrAssign: return ">>=";
   1234   case BO_AndAssign: return "&=";
   1235   case BO_XorAssign: return "^=";
   1236   case BO_OrAssign:  return "|=";
   1237   case BO_Comma:     return ",";
   1238   }
   1239 
   1240   return "";
   1241 }
   1242 
   1243 BinaryOperatorKind
   1244 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
   1245   switch (OO) {
   1246   default: assert(false && "Not an overloadable binary operator");
   1247   case OO_Plus: return BO_Add;
   1248   case OO_Minus: return BO_Sub;
   1249   case OO_Star: return BO_Mul;
   1250   case OO_Slash: return BO_Div;
   1251   case OO_Percent: return BO_Rem;
   1252   case OO_Caret: return BO_Xor;
   1253   case OO_Amp: return BO_And;
   1254   case OO_Pipe: return BO_Or;
   1255   case OO_Equal: return BO_Assign;
   1256   case OO_Less: return BO_LT;
   1257   case OO_Greater: return BO_GT;
   1258   case OO_PlusEqual: return BO_AddAssign;
   1259   case OO_MinusEqual: return BO_SubAssign;
   1260   case OO_StarEqual: return BO_MulAssign;
   1261   case OO_SlashEqual: return BO_DivAssign;
   1262   case OO_PercentEqual: return BO_RemAssign;
   1263   case OO_CaretEqual: return BO_XorAssign;
   1264   case OO_AmpEqual: return BO_AndAssign;
   1265   case OO_PipeEqual: return BO_OrAssign;
   1266   case OO_LessLess: return BO_Shl;
   1267   case OO_GreaterGreater: return BO_Shr;
   1268   case OO_LessLessEqual: return BO_ShlAssign;
   1269   case OO_GreaterGreaterEqual: return BO_ShrAssign;
   1270   case OO_EqualEqual: return BO_EQ;
   1271   case OO_ExclaimEqual: return BO_NE;
   1272   case OO_LessEqual: return BO_LE;
   1273   case OO_GreaterEqual: return BO_GE;
   1274   case OO_AmpAmp: return BO_LAnd;
   1275   case OO_PipePipe: return BO_LOr;
   1276   case OO_Comma: return BO_Comma;
   1277   case OO_ArrowStar: return BO_PtrMemI;
   1278   }
   1279 }
   1280 
   1281 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
   1282   static const OverloadedOperatorKind OverOps[] = {
   1283     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
   1284     OO_Star, OO_Slash, OO_Percent,
   1285     OO_Plus, OO_Minus,
   1286     OO_LessLess, OO_GreaterGreater,
   1287     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
   1288     OO_EqualEqual, OO_ExclaimEqual,
   1289     OO_Amp,
   1290     OO_Caret,
   1291     OO_Pipe,
   1292     OO_AmpAmp,
   1293     OO_PipePipe,
   1294     OO_Equal, OO_StarEqual,
   1295     OO_SlashEqual, OO_PercentEqual,
   1296     OO_PlusEqual, OO_MinusEqual,
   1297     OO_LessLessEqual, OO_GreaterGreaterEqual,
   1298     OO_AmpEqual, OO_CaretEqual,
   1299     OO_PipeEqual,
   1300     OO_Comma
   1301   };
   1302   return OverOps[Opc];
   1303 }
   1304 
   1305 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
   1306                            Expr **initExprs, unsigned numInits,
   1307                            SourceLocation rbraceloc)
   1308   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
   1309          false, false),
   1310     InitExprs(C, numInits),
   1311     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
   1312     HadArrayRangeDesignator(false)
   1313 {
   1314   for (unsigned I = 0; I != numInits; ++I) {
   1315     if (initExprs[I]->isTypeDependent())
   1316       ExprBits.TypeDependent = true;
   1317     if (initExprs[I]->isValueDependent())
   1318       ExprBits.ValueDependent = true;
   1319     if (initExprs[I]->isInstantiationDependent())
   1320       ExprBits.InstantiationDependent = true;
   1321     if (initExprs[I]->containsUnexpandedParameterPack())
   1322       ExprBits.ContainsUnexpandedParameterPack = true;
   1323   }
   1324 
   1325   InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
   1326 }
   1327 
   1328 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
   1329   if (NumInits > InitExprs.size())
   1330     InitExprs.reserve(C, NumInits);
   1331 }
   1332 
   1333 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
   1334   InitExprs.resize(C, NumInits, 0);
   1335 }
   1336 
   1337 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
   1338   if (Init >= InitExprs.size()) {
   1339     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
   1340     InitExprs.back() = expr;
   1341     return 0;
   1342   }
   1343 
   1344   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
   1345   InitExprs[Init] = expr;
   1346   return Result;
   1347 }
   1348 
   1349 void InitListExpr::setArrayFiller(Expr *filler) {
   1350   ArrayFillerOrUnionFieldInit = filler;
   1351   // Fill out any "holes" in the array due to designated initializers.
   1352   Expr **inits = getInits();
   1353   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
   1354     if (inits[i] == 0)
   1355       inits[i] = filler;
   1356 }
   1357 
   1358 SourceRange InitListExpr::getSourceRange() const {
   1359   if (SyntacticForm)
   1360     return SyntacticForm->getSourceRange();
   1361   SourceLocation Beg = LBraceLoc, End = RBraceLoc;
   1362   if (Beg.isInvalid()) {
   1363     // Find the first non-null initializer.
   1364     for (InitExprsTy::const_iterator I = InitExprs.begin(),
   1365                                      E = InitExprs.end();
   1366       I != E; ++I) {
   1367       if (Stmt *S = *I) {
   1368         Beg = S->getLocStart();
   1369         break;
   1370       }
   1371     }
   1372   }
   1373   if (End.isInvalid()) {
   1374     // Find the first non-null initializer from the end.
   1375     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
   1376                                              E = InitExprs.rend();
   1377       I != E; ++I) {
   1378       if (Stmt *S = *I) {
   1379         End = S->getSourceRange().getEnd();
   1380         break;
   1381       }
   1382     }
   1383   }
   1384   return SourceRange(Beg, End);
   1385 }
   1386 
   1387 /// getFunctionType - Return the underlying function type for this block.
   1388 ///
   1389 const FunctionType *BlockExpr::getFunctionType() const {
   1390   return getType()->getAs<BlockPointerType>()->
   1391                     getPointeeType()->getAs<FunctionType>();
   1392 }
   1393 
   1394 SourceLocation BlockExpr::getCaretLocation() const {
   1395   return TheBlock->getCaretLocation();
   1396 }
   1397 const Stmt *BlockExpr::getBody() const {
   1398   return TheBlock->getBody();
   1399 }
   1400 Stmt *BlockExpr::getBody() {
   1401   return TheBlock->getBody();
   1402 }
   1403 
   1404 
   1405 //===----------------------------------------------------------------------===//
   1406 // Generic Expression Routines
   1407 //===----------------------------------------------------------------------===//
   1408 
   1409 /// isUnusedResultAWarning - Return true if this immediate expression should
   1410 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
   1411 /// with location to warn on and the source range[s] to report with the
   1412 /// warning.
   1413 bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
   1414                                   SourceRange &R2, ASTContext &Ctx) const {
   1415   // Don't warn if the expr is type dependent. The type could end up
   1416   // instantiating to void.
   1417   if (isTypeDependent())
   1418     return false;
   1419 
   1420   switch (getStmtClass()) {
   1421   default:
   1422     if (getType()->isVoidType())
   1423       return false;
   1424     Loc = getExprLoc();
   1425     R1 = getSourceRange();
   1426     return true;
   1427   case ParenExprClass:
   1428     return cast<ParenExpr>(this)->getSubExpr()->
   1429       isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1430   case GenericSelectionExprClass:
   1431     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   1432       isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1433   case UnaryOperatorClass: {
   1434     const UnaryOperator *UO = cast<UnaryOperator>(this);
   1435 
   1436     switch (UO->getOpcode()) {
   1437     default: break;
   1438     case UO_PostInc:
   1439     case UO_PostDec:
   1440     case UO_PreInc:
   1441     case UO_PreDec:                 // ++/--
   1442       return false;  // Not a warning.
   1443     case UO_Deref:
   1444       // Dereferencing a volatile pointer is a side-effect.
   1445       if (Ctx.getCanonicalType(getType()).isVolatileQualified())
   1446         return false;
   1447       break;
   1448     case UO_Real:
   1449     case UO_Imag:
   1450       // accessing a piece of a volatile complex is a side-effect.
   1451       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
   1452           .isVolatileQualified())
   1453         return false;
   1454       break;
   1455     case UO_Extension:
   1456       return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1457     }
   1458     Loc = UO->getOperatorLoc();
   1459     R1 = UO->getSubExpr()->getSourceRange();
   1460     return true;
   1461   }
   1462   case BinaryOperatorClass: {
   1463     const BinaryOperator *BO = cast<BinaryOperator>(this);
   1464     switch (BO->getOpcode()) {
   1465       default:
   1466         break;
   1467       // Consider the RHS of comma for side effects. LHS was checked by
   1468       // Sema::CheckCommaOperands.
   1469       case BO_Comma:
   1470         // ((foo = <blah>), 0) is an idiom for hiding the result (and
   1471         // lvalue-ness) of an assignment written in a macro.
   1472         if (IntegerLiteral *IE =
   1473               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
   1474           if (IE->getValue() == 0)
   1475             return false;
   1476         return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1477       // Consider '||', '&&' to have side effects if the LHS or RHS does.
   1478       case BO_LAnd:
   1479       case BO_LOr:
   1480         if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
   1481             !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
   1482           return false;
   1483         break;
   1484     }
   1485     if (BO->isAssignmentOp())
   1486       return false;
   1487     Loc = BO->getOperatorLoc();
   1488     R1 = BO->getLHS()->getSourceRange();
   1489     R2 = BO->getRHS()->getSourceRange();
   1490     return true;
   1491   }
   1492   case CompoundAssignOperatorClass:
   1493   case VAArgExprClass:
   1494     return false;
   1495 
   1496   case ConditionalOperatorClass: {
   1497     // If only one of the LHS or RHS is a warning, the operator might
   1498     // be being used for control flow. Only warn if both the LHS and
   1499     // RHS are warnings.
   1500     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
   1501     if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
   1502       return false;
   1503     if (!Exp->getLHS())
   1504       return true;
   1505     return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1506   }
   1507 
   1508   case MemberExprClass:
   1509     // If the base pointer or element is to a volatile pointer/field, accessing
   1510     // it is a side effect.
   1511     if (Ctx.getCanonicalType(getType()).isVolatileQualified())
   1512       return false;
   1513     Loc = cast<MemberExpr>(this)->getMemberLoc();
   1514     R1 = SourceRange(Loc, Loc);
   1515     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
   1516     return true;
   1517 
   1518   case ArraySubscriptExprClass:
   1519     // If the base pointer or element is to a volatile pointer/field, accessing
   1520     // it is a side effect.
   1521     if (Ctx.getCanonicalType(getType()).isVolatileQualified())
   1522       return false;
   1523     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
   1524     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
   1525     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
   1526     return true;
   1527 
   1528   case CallExprClass:
   1529   case CXXOperatorCallExprClass:
   1530   case CXXMemberCallExprClass: {
   1531     // If this is a direct call, get the callee.
   1532     const CallExpr *CE = cast<CallExpr>(this);
   1533     if (const Decl *FD = CE->getCalleeDecl()) {
   1534       // If the callee has attribute pure, const, or warn_unused_result, warn
   1535       // about it. void foo() { strlen("bar"); } should warn.
   1536       //
   1537       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
   1538       // updated to match for QoI.
   1539       if (FD->getAttr<WarnUnusedResultAttr>() ||
   1540           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
   1541         Loc = CE->getCallee()->getLocStart();
   1542         R1 = CE->getCallee()->getSourceRange();
   1543 
   1544         if (unsigned NumArgs = CE->getNumArgs())
   1545           R2 = SourceRange(CE->getArg(0)->getLocStart(),
   1546                            CE->getArg(NumArgs-1)->getLocEnd());
   1547         return true;
   1548       }
   1549     }
   1550     return false;
   1551   }
   1552 
   1553   case CXXTemporaryObjectExprClass:
   1554   case CXXConstructExprClass:
   1555     return false;
   1556 
   1557   case ObjCMessageExprClass: {
   1558     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
   1559     if (Ctx.getLangOptions().ObjCAutoRefCount &&
   1560         ME->isInstanceMessage() &&
   1561         !ME->getType()->isVoidType() &&
   1562         ME->getSelector().getIdentifierInfoForSlot(0) &&
   1563         ME->getSelector().getIdentifierInfoForSlot(0)
   1564                                                ->getName().startswith("init")) {
   1565       Loc = getExprLoc();
   1566       R1 = ME->getSourceRange();
   1567       return true;
   1568     }
   1569 
   1570     const ObjCMethodDecl *MD = ME->getMethodDecl();
   1571     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
   1572       Loc = getExprLoc();
   1573       return true;
   1574     }
   1575     return false;
   1576   }
   1577 
   1578   case ObjCPropertyRefExprClass:
   1579     Loc = getExprLoc();
   1580     R1 = getSourceRange();
   1581     return true;
   1582 
   1583   case StmtExprClass: {
   1584     // Statement exprs don't logically have side effects themselves, but are
   1585     // sometimes used in macros in ways that give them a type that is unused.
   1586     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
   1587     // however, if the result of the stmt expr is dead, we don't want to emit a
   1588     // warning.
   1589     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
   1590     if (!CS->body_empty()) {
   1591       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
   1592         return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1593       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
   1594         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
   1595           return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
   1596     }
   1597 
   1598     if (getType()->isVoidType())
   1599       return false;
   1600     Loc = cast<StmtExpr>(this)->getLParenLoc();
   1601     R1 = getSourceRange();
   1602     return true;
   1603   }
   1604   case CStyleCastExprClass:
   1605     // If this is an explicit cast to void, allow it.  People do this when they
   1606     // think they know what they're doing :).
   1607     if (getType()->isVoidType())
   1608       return false;
   1609     Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
   1610     R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
   1611     return true;
   1612   case CXXFunctionalCastExprClass: {
   1613     if (getType()->isVoidType())
   1614       return false;
   1615     const CastExpr *CE = cast<CastExpr>(this);
   1616 
   1617     // If this is a cast to void or a constructor conversion, check the operand.
   1618     // Otherwise, the result of the cast is unused.
   1619     if (CE->getCastKind() == CK_ToVoid ||
   1620         CE->getCastKind() == CK_ConstructorConversion)
   1621       return (cast<CastExpr>(this)->getSubExpr()
   1622               ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1623     Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
   1624     R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
   1625     return true;
   1626   }
   1627 
   1628   case ImplicitCastExprClass:
   1629     // Check the operand, since implicit casts are inserted by Sema
   1630     return (cast<ImplicitCastExpr>(this)
   1631             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1632 
   1633   case CXXDefaultArgExprClass:
   1634     return (cast<CXXDefaultArgExpr>(this)
   1635             ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1636 
   1637   case CXXNewExprClass:
   1638     // FIXME: In theory, there might be new expressions that don't have side
   1639     // effects (e.g. a placement new with an uninitialized POD).
   1640   case CXXDeleteExprClass:
   1641     return false;
   1642   case CXXBindTemporaryExprClass:
   1643     return (cast<CXXBindTemporaryExpr>(this)
   1644             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1645   case ExprWithCleanupsClass:
   1646     return (cast<ExprWithCleanups>(this)
   1647             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
   1648   }
   1649 }
   1650 
   1651 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
   1652 /// returns true, if it is; false otherwise.
   1653 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
   1654   const Expr *E = IgnoreParens();
   1655   switch (E->getStmtClass()) {
   1656   default:
   1657     return false;
   1658   case ObjCIvarRefExprClass:
   1659     return true;
   1660   case Expr::UnaryOperatorClass:
   1661     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   1662   case ImplicitCastExprClass:
   1663     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   1664   case MaterializeTemporaryExprClass:
   1665     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
   1666                                                       ->isOBJCGCCandidate(Ctx);
   1667   case CStyleCastExprClass:
   1668     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   1669   case DeclRefExprClass: {
   1670     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
   1671     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1672       if (VD->hasGlobalStorage())
   1673         return true;
   1674       QualType T = VD->getType();
   1675       // dereferencing to a  pointer is always a gc'able candidate,
   1676       // unless it is __weak.
   1677       return T->isPointerType() &&
   1678              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
   1679     }
   1680     return false;
   1681   }
   1682   case MemberExprClass: {
   1683     const MemberExpr *M = cast<MemberExpr>(E);
   1684     return M->getBase()->isOBJCGCCandidate(Ctx);
   1685   }
   1686   case ArraySubscriptExprClass:
   1687     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
   1688   }
   1689 }
   1690 
   1691 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
   1692   if (isTypeDependent())
   1693     return false;
   1694   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
   1695 }
   1696 
   1697 QualType Expr::findBoundMemberType(const Expr *expr) {
   1698   assert(expr->getType()->isSpecificPlaceholderType(BuiltinType::BoundMember));
   1699 
   1700   // Bound member expressions are always one of these possibilities:
   1701   //   x->m      x.m      x->*y      x.*y
   1702   // (possibly parenthesized)
   1703 
   1704   expr = expr->IgnoreParens();
   1705   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
   1706     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
   1707     return mem->getMemberDecl()->getType();
   1708   }
   1709 
   1710   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
   1711     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
   1712                       ->getPointeeType();
   1713     assert(type->isFunctionType());
   1714     return type;
   1715   }
   1716 
   1717   assert(isa<UnresolvedMemberExpr>(expr));
   1718   return QualType();
   1719 }
   1720 
   1721 static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
   1722                                           Expr::CanThrowResult CT2) {
   1723   // CanThrowResult constants are ordered so that the maximum is the correct
   1724   // merge result.
   1725   return CT1 > CT2 ? CT1 : CT2;
   1726 }
   1727 
   1728 static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
   1729   Expr *E = const_cast<Expr*>(CE);
   1730   Expr::CanThrowResult R = Expr::CT_Cannot;
   1731   for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
   1732     R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
   1733   }
   1734   return R;
   1735 }
   1736 
   1737 static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E,
   1738                                            const Decl *D,
   1739                                            bool NullThrows = true) {
   1740   if (!D)
   1741     return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
   1742 
   1743   // See if we can get a function type from the decl somehow.
   1744   const ValueDecl *VD = dyn_cast<ValueDecl>(D);
   1745   if (!VD) // If we have no clue what we're calling, assume the worst.
   1746     return Expr::CT_Can;
   1747 
   1748   // As an extension, we assume that __attribute__((nothrow)) functions don't
   1749   // throw.
   1750   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
   1751     return Expr::CT_Cannot;
   1752 
   1753   QualType T = VD->getType();
   1754   const FunctionProtoType *FT;
   1755   if ((FT = T->getAs<FunctionProtoType>())) {
   1756   } else if (const PointerType *PT = T->getAs<PointerType>())
   1757     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
   1758   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
   1759     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
   1760   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
   1761     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
   1762   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
   1763     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
   1764 
   1765   if (!FT)
   1766     return Expr::CT_Can;
   1767 
   1768   if (FT->getExceptionSpecType() == EST_Delayed) {
   1769     assert(isa<CXXConstructorDecl>(D) &&
   1770            "only constructor exception specs can be unknown");
   1771     Ctx.getDiagnostics().Report(E->getLocStart(),
   1772                                 diag::err_exception_spec_unknown)
   1773       << E->getSourceRange();
   1774     return Expr::CT_Can;
   1775   }
   1776 
   1777   return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
   1778 }
   1779 
   1780 static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
   1781   if (DC->isTypeDependent())
   1782     return Expr::CT_Dependent;
   1783 
   1784   if (!DC->getTypeAsWritten()->isReferenceType())
   1785     return Expr::CT_Cannot;
   1786 
   1787   if (DC->getSubExpr()->isTypeDependent())
   1788     return Expr::CT_Dependent;
   1789 
   1790   return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
   1791 }
   1792 
   1793 static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
   1794                                            const CXXTypeidExpr *DC) {
   1795   if (DC->isTypeOperand())
   1796     return Expr::CT_Cannot;
   1797 
   1798   Expr *Op = DC->getExprOperand();
   1799   if (Op->isTypeDependent())
   1800     return Expr::CT_Dependent;
   1801 
   1802   const RecordType *RT = Op->getType()->getAs<RecordType>();
   1803   if (!RT)
   1804     return Expr::CT_Cannot;
   1805 
   1806   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
   1807     return Expr::CT_Cannot;
   1808 
   1809   if (Op->Classify(C).isPRValue())
   1810     return Expr::CT_Cannot;
   1811 
   1812   return Expr::CT_Can;
   1813 }
   1814 
   1815 Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
   1816   // C++ [expr.unary.noexcept]p3:
   1817   //   [Can throw] if in a potentially-evaluated context the expression would
   1818   //   contain:
   1819   switch (getStmtClass()) {
   1820   case CXXThrowExprClass:
   1821     //   - a potentially evaluated throw-expression
   1822     return CT_Can;
   1823 
   1824   case CXXDynamicCastExprClass: {
   1825     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
   1826     //     where T is a reference type, that requires a run-time check
   1827     CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
   1828     if (CT == CT_Can)
   1829       return CT;
   1830     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1831   }
   1832 
   1833   case CXXTypeidExprClass:
   1834     //   - a potentially evaluated typeid expression applied to a glvalue
   1835     //     expression whose type is a polymorphic class type
   1836     return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
   1837 
   1838     //   - a potentially evaluated call to a function, member function, function
   1839     //     pointer, or member function pointer that does not have a non-throwing
   1840     //     exception-specification
   1841   case CallExprClass:
   1842   case CXXOperatorCallExprClass:
   1843   case CXXMemberCallExprClass: {
   1844     const CallExpr *CE = cast<CallExpr>(this);
   1845     CanThrowResult CT;
   1846     if (isTypeDependent())
   1847       CT = CT_Dependent;
   1848     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
   1849       CT = CT_Cannot;
   1850     else
   1851       CT = CanCalleeThrow(C, this, CE->getCalleeDecl());
   1852     if (CT == CT_Can)
   1853       return CT;
   1854     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1855   }
   1856 
   1857   case CXXConstructExprClass:
   1858   case CXXTemporaryObjectExprClass: {
   1859     CanThrowResult CT = CanCalleeThrow(C, this,
   1860         cast<CXXConstructExpr>(this)->getConstructor());
   1861     if (CT == CT_Can)
   1862       return CT;
   1863     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1864   }
   1865 
   1866   case CXXNewExprClass: {
   1867     CanThrowResult CT;
   1868     if (isTypeDependent())
   1869       CT = CT_Dependent;
   1870     else
   1871       CT = MergeCanThrow(
   1872         CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()),
   1873         CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getConstructor(),
   1874                        /*NullThrows*/false));
   1875     if (CT == CT_Can)
   1876       return CT;
   1877     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1878   }
   1879 
   1880   case CXXDeleteExprClass: {
   1881     CanThrowResult CT;
   1882     QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType();
   1883     if (DTy.isNull() || DTy->isDependentType()) {
   1884       CT = CT_Dependent;
   1885     } else {
   1886       CT = CanCalleeThrow(C, this,
   1887                           cast<CXXDeleteExpr>(this)->getOperatorDelete());
   1888       if (const RecordType *RT = DTy->getAs<RecordType>()) {
   1889         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1890         CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor()));
   1891       }
   1892       if (CT == CT_Can)
   1893         return CT;
   1894     }
   1895     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1896   }
   1897 
   1898   case CXXBindTemporaryExprClass: {
   1899     // The bound temporary has to be destroyed again, which might throw.
   1900     CanThrowResult CT = CanCalleeThrow(C, this,
   1901       cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
   1902     if (CT == CT_Can)
   1903       return CT;
   1904     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1905   }
   1906 
   1907     // ObjC message sends are like function calls, but never have exception
   1908     // specs.
   1909   case ObjCMessageExprClass:
   1910   case ObjCPropertyRefExprClass:
   1911     return CT_Can;
   1912 
   1913     // Many other things have subexpressions, so we have to test those.
   1914     // Some are simple:
   1915   case ParenExprClass:
   1916   case MemberExprClass:
   1917   case CXXReinterpretCastExprClass:
   1918   case CXXConstCastExprClass:
   1919   case ConditionalOperatorClass:
   1920   case CompoundLiteralExprClass:
   1921   case ExtVectorElementExprClass:
   1922   case InitListExprClass:
   1923   case DesignatedInitExprClass:
   1924   case ParenListExprClass:
   1925   case VAArgExprClass:
   1926   case CXXDefaultArgExprClass:
   1927   case ExprWithCleanupsClass:
   1928   case ObjCIvarRefExprClass:
   1929   case ObjCIsaExprClass:
   1930   case ShuffleVectorExprClass:
   1931     return CanSubExprsThrow(C, this);
   1932 
   1933     // Some might be dependent for other reasons.
   1934   case UnaryOperatorClass:
   1935   case ArraySubscriptExprClass:
   1936   case ImplicitCastExprClass:
   1937   case CStyleCastExprClass:
   1938   case CXXStaticCastExprClass:
   1939   case CXXFunctionalCastExprClass:
   1940   case BinaryOperatorClass:
   1941   case CompoundAssignOperatorClass:
   1942   case MaterializeTemporaryExprClass: {
   1943     CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
   1944     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
   1945   }
   1946 
   1947     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
   1948   case StmtExprClass:
   1949     return CT_Can;
   1950 
   1951   case ChooseExprClass:
   1952     if (isTypeDependent() || isValueDependent())
   1953       return CT_Dependent;
   1954     return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
   1955 
   1956   case GenericSelectionExprClass:
   1957     if (cast<GenericSelectionExpr>(this)->isResultDependent())
   1958       return CT_Dependent;
   1959     return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
   1960 
   1961     // Some expressions are always dependent.
   1962   case DependentScopeDeclRefExprClass:
   1963   case CXXUnresolvedConstructExprClass:
   1964   case CXXDependentScopeMemberExprClass:
   1965     return CT_Dependent;
   1966 
   1967   default:
   1968     // All other expressions don't have subexpressions, or else they are
   1969     // unevaluated.
   1970     return CT_Cannot;
   1971   }
   1972 }
   1973 
   1974 Expr* Expr::IgnoreParens() {
   1975   Expr* E = this;
   1976   while (true) {
   1977     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   1978       E = P->getSubExpr();
   1979       continue;
   1980     }
   1981     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   1982       if (P->getOpcode() == UO_Extension) {
   1983         E = P->getSubExpr();
   1984         continue;
   1985       }
   1986     }
   1987     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   1988       if (!P->isResultDependent()) {
   1989         E = P->getResultExpr();
   1990         continue;
   1991       }
   1992     }
   1993     return E;
   1994   }
   1995 }
   1996 
   1997 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
   1998 /// or CastExprs or ImplicitCastExprs, returning their operand.
   1999 Expr *Expr::IgnoreParenCasts() {
   2000   Expr *E = this;
   2001   while (true) {
   2002     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   2003       E = P->getSubExpr();
   2004       continue;
   2005     }
   2006     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2007       E = P->getSubExpr();
   2008       continue;
   2009     }
   2010     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2011       if (P->getOpcode() == UO_Extension) {
   2012         E = P->getSubExpr();
   2013         continue;
   2014       }
   2015     }
   2016     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2017       if (!P->isResultDependent()) {
   2018         E = P->getResultExpr();
   2019         continue;
   2020       }
   2021     }
   2022     if (MaterializeTemporaryExpr *Materialize
   2023                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2024       E = Materialize->GetTemporaryExpr();
   2025       continue;
   2026     }
   2027 
   2028     return E;
   2029   }
   2030 }
   2031 
   2032 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
   2033 /// casts.  This is intended purely as a temporary workaround for code
   2034 /// that hasn't yet been rewritten to do the right thing about those
   2035 /// casts, and may disappear along with the last internal use.
   2036 Expr *Expr::IgnoreParenLValueCasts() {
   2037   Expr *E = this;
   2038   while (true) {
   2039     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2040       E = P->getSubExpr();
   2041       continue;
   2042     } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2043       if (P->getCastKind() == CK_LValueToRValue) {
   2044         E = P->getSubExpr();
   2045         continue;
   2046       }
   2047     } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2048       if (P->getOpcode() == UO_Extension) {
   2049         E = P->getSubExpr();
   2050         continue;
   2051       }
   2052     } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2053       if (!P->isResultDependent()) {
   2054         E = P->getResultExpr();
   2055         continue;
   2056       }
   2057     } else if (MaterializeTemporaryExpr *Materialize
   2058                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2059       E = Materialize->GetTemporaryExpr();
   2060       continue;
   2061     }
   2062     break;
   2063   }
   2064   return E;
   2065 }
   2066 
   2067 Expr *Expr::IgnoreParenImpCasts() {
   2068   Expr *E = this;
   2069   while (true) {
   2070     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2071       E = P->getSubExpr();
   2072       continue;
   2073     }
   2074     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
   2075       E = P->getSubExpr();
   2076       continue;
   2077     }
   2078     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2079       if (P->getOpcode() == UO_Extension) {
   2080         E = P->getSubExpr();
   2081         continue;
   2082       }
   2083     }
   2084     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2085       if (!P->isResultDependent()) {
   2086         E = P->getResultExpr();
   2087         continue;
   2088       }
   2089     }
   2090     if (MaterializeTemporaryExpr *Materialize
   2091                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2092       E = Materialize->GetTemporaryExpr();
   2093       continue;
   2094     }
   2095     return E;
   2096   }
   2097 }
   2098 
   2099 Expr *Expr::IgnoreConversionOperator() {
   2100   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
   2101     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
   2102       return MCE->getImplicitObjectArgument();
   2103   }
   2104   return this;
   2105 }
   2106 
   2107 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
   2108 /// value (including ptr->int casts of the same size).  Strip off any
   2109 /// ParenExpr or CastExprs, returning their operand.
   2110 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
   2111   Expr *E = this;
   2112   while (true) {
   2113     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
   2114       E = P->getSubExpr();
   2115       continue;
   2116     }
   2117 
   2118     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2119       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
   2120       // ptr<->int casts of the same width.  We also ignore all identity casts.
   2121       Expr *SE = P->getSubExpr();
   2122 
   2123       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
   2124         E = SE;
   2125         continue;
   2126       }
   2127 
   2128       if ((E->getType()->isPointerType() ||
   2129            E->getType()->isIntegralType(Ctx)) &&
   2130           (SE->getType()->isPointerType() ||
   2131            SE->getType()->isIntegralType(Ctx)) &&
   2132           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
   2133         E = SE;
   2134         continue;
   2135       }
   2136     }
   2137 
   2138     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2139       if (P->getOpcode() == UO_Extension) {
   2140         E = P->getSubExpr();
   2141         continue;
   2142       }
   2143     }
   2144 
   2145     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2146       if (!P->isResultDependent()) {
   2147         E = P->getResultExpr();
   2148         continue;
   2149       }
   2150     }
   2151 
   2152     return E;
   2153   }
   2154 }
   2155 
   2156 bool Expr::isDefaultArgument() const {
   2157   const Expr *E = this;
   2158   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2159     E = M->GetTemporaryExpr();
   2160 
   2161   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   2162     E = ICE->getSubExprAsWritten();
   2163 
   2164   return isa<CXXDefaultArgExpr>(E);
   2165 }
   2166 
   2167 /// \brief Skip over any no-op casts and any temporary-binding
   2168 /// expressions.
   2169 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
   2170   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2171     E = M->GetTemporaryExpr();
   2172 
   2173   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2174     if (ICE->getCastKind() == CK_NoOp)
   2175       E = ICE->getSubExpr();
   2176     else
   2177       break;
   2178   }
   2179 
   2180   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
   2181     E = BE->getSubExpr();
   2182 
   2183   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2184     if (ICE->getCastKind() == CK_NoOp)
   2185       E = ICE->getSubExpr();
   2186     else
   2187       break;
   2188   }
   2189 
   2190   return E->IgnoreParens();
   2191 }
   2192 
   2193 /// isTemporaryObject - Determines if this expression produces a
   2194 /// temporary of the given class type.
   2195 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
   2196   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
   2197     return false;
   2198 
   2199   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
   2200 
   2201   // Temporaries are by definition pr-values of class type.
   2202   if (!E->Classify(C).isPRValue()) {
   2203     // In this context, property reference is a message call and is pr-value.
   2204     if (!isa<ObjCPropertyRefExpr>(E))
   2205       return false;
   2206   }
   2207 
   2208   // Black-list a few cases which yield pr-values of class type that don't
   2209   // refer to temporaries of that type:
   2210 
   2211   // - implicit derived-to-base conversions
   2212   if (isa<ImplicitCastExpr>(E)) {
   2213     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
   2214     case CK_DerivedToBase:
   2215     case CK_UncheckedDerivedToBase:
   2216       return false;
   2217     default:
   2218       break;
   2219     }
   2220   }
   2221 
   2222   // - member expressions (all)
   2223   if (isa<MemberExpr>(E))
   2224     return false;
   2225 
   2226   // - opaque values (all)
   2227   if (isa<OpaqueValueExpr>(E))
   2228     return false;
   2229 
   2230   return true;
   2231 }
   2232 
   2233 bool Expr::isImplicitCXXThis() const {
   2234   const Expr *E = this;
   2235 
   2236   // Strip away parentheses and casts we don't care about.
   2237   while (true) {
   2238     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
   2239       E = Paren->getSubExpr();
   2240       continue;
   2241     }
   2242 
   2243     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2244       if (ICE->getCastKind() == CK_NoOp ||
   2245           ICE->getCastKind() == CK_LValueToRValue ||
   2246           ICE->getCastKind() == CK_DerivedToBase ||
   2247           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
   2248         E = ICE->getSubExpr();
   2249         continue;
   2250       }
   2251     }
   2252 
   2253     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
   2254       if (UnOp->getOpcode() == UO_Extension) {
   2255         E = UnOp->getSubExpr();
   2256         continue;
   2257       }
   2258     }
   2259 
   2260     if (const MaterializeTemporaryExpr *M
   2261                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2262       E = M->GetTemporaryExpr();
   2263       continue;
   2264     }
   2265 
   2266     break;
   2267   }
   2268 
   2269   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
   2270     return This->isImplicit();
   2271 
   2272   return false;
   2273 }
   2274 
   2275 /// hasAnyTypeDependentArguments - Determines if any of the expressions
   2276 /// in Exprs is type-dependent.
   2277 bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
   2278   for (unsigned I = 0; I < NumExprs; ++I)
   2279     if (Exprs[I]->isTypeDependent())
   2280       return true;
   2281 
   2282   return false;
   2283 }
   2284 
   2285 /// hasAnyValueDependentArguments - Determines if any of the expressions
   2286 /// in Exprs is value-dependent.
   2287 bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
   2288   for (unsigned I = 0; I < NumExprs; ++I)
   2289     if (Exprs[I]->isValueDependent())
   2290       return true;
   2291 
   2292   return false;
   2293 }
   2294 
   2295 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
   2296   // This function is attempting whether an expression is an initializer
   2297   // which can be evaluated at compile-time.  isEvaluatable handles most
   2298   // of the cases, but it can't deal with some initializer-specific
   2299   // expressions, and it can't deal with aggregates; we deal with those here,
   2300   // and fall back to isEvaluatable for the other cases.
   2301 
   2302   // If we ever capture reference-binding directly in the AST, we can
   2303   // kill the second parameter.
   2304 
   2305   if (IsForRef) {
   2306     EvalResult Result;
   2307     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
   2308   }
   2309 
   2310   switch (getStmtClass()) {
   2311   default: break;
   2312   case StringLiteralClass:
   2313   case ObjCStringLiteralClass:
   2314   case ObjCEncodeExprClass:
   2315     return true;
   2316   case CXXTemporaryObjectExprClass:
   2317   case CXXConstructExprClass: {
   2318     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   2319 
   2320     // Only if it's
   2321     // 1) an application of the trivial default constructor or
   2322     if (!CE->getConstructor()->isTrivial()) return false;
   2323     if (!CE->getNumArgs()) return true;
   2324 
   2325     // 2) an elidable trivial copy construction of an operand which is
   2326     //    itself a constant initializer.  Note that we consider the
   2327     //    operand on its own, *not* as a reference binding.
   2328     return CE->isElidable() &&
   2329            CE->getArg(0)->isConstantInitializer(Ctx, false);
   2330   }
   2331   case CompoundLiteralExprClass: {
   2332     // This handles gcc's extension that allows global initializers like
   2333     // "struct x {int x;} x = (struct x) {};".
   2334     // FIXME: This accepts other cases it shouldn't!
   2335     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
   2336     return Exp->isConstantInitializer(Ctx, false);
   2337   }
   2338   case InitListExprClass: {
   2339     // FIXME: This doesn't deal with fields with reference types correctly.
   2340     // FIXME: This incorrectly allows pointers cast to integers to be assigned
   2341     // to bitfields.
   2342     const InitListExpr *Exp = cast<InitListExpr>(this);
   2343     unsigned numInits = Exp->getNumInits();
   2344     for (unsigned i = 0; i < numInits; i++) {
   2345       if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
   2346         return false;
   2347     }
   2348     return true;
   2349   }
   2350   case ImplicitValueInitExprClass:
   2351     return true;
   2352   case ParenExprClass:
   2353     return cast<ParenExpr>(this)->getSubExpr()
   2354       ->isConstantInitializer(Ctx, IsForRef);
   2355   case GenericSelectionExprClass:
   2356     if (cast<GenericSelectionExpr>(this)->isResultDependent())
   2357       return false;
   2358     return cast<GenericSelectionExpr>(this)->getResultExpr()
   2359       ->isConstantInitializer(Ctx, IsForRef);
   2360   case ChooseExprClass:
   2361     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
   2362       ->isConstantInitializer(Ctx, IsForRef);
   2363   case UnaryOperatorClass: {
   2364     const UnaryOperator* Exp = cast<UnaryOperator>(this);
   2365     if (Exp->getOpcode() == UO_Extension)
   2366       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
   2367     break;
   2368   }
   2369   case BinaryOperatorClass: {
   2370     // Special case &&foo - &&bar.  It would be nice to generalize this somehow
   2371     // but this handles the common case.
   2372     const BinaryOperator *Exp = cast<BinaryOperator>(this);
   2373     if (Exp->getOpcode() == BO_Sub &&
   2374         isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
   2375         isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
   2376       return true;
   2377     break;
   2378   }
   2379   case CXXFunctionalCastExprClass:
   2380   case CXXStaticCastExprClass:
   2381   case ImplicitCastExprClass:
   2382   case CStyleCastExprClass:
   2383     // Handle casts with a destination that's a struct or union; this
   2384     // deals with both the gcc no-op struct cast extension and the
   2385     // cast-to-union extension.
   2386     if (getType()->isRecordType())
   2387       return cast<CastExpr>(this)->getSubExpr()
   2388         ->isConstantInitializer(Ctx, false);
   2389 
   2390     // Integer->integer casts can be handled here, which is important for
   2391     // things like (int)(&&x-&&y).  Scary but true.
   2392     if (getType()->isIntegerType() &&
   2393         cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
   2394       return cast<CastExpr>(this)->getSubExpr()
   2395         ->isConstantInitializer(Ctx, false);
   2396 
   2397     break;
   2398 
   2399   case MaterializeTemporaryExprClass:
   2400     return llvm::cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
   2401                                             ->isConstantInitializer(Ctx, false);
   2402   }
   2403   return isEvaluatable(Ctx);
   2404 }
   2405 
   2406 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
   2407 /// pointer constant or not, as well as the specific kind of constant detected.
   2408 /// Null pointer constants can be integer constant expressions with the
   2409 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
   2410 /// (a GNU extension).
   2411 Expr::NullPointerConstantKind
   2412 Expr::isNullPointerConstant(ASTContext &Ctx,
   2413                             NullPointerConstantValueDependence NPC) const {
   2414   if (isValueDependent()) {
   2415     switch (NPC) {
   2416     case NPC_NeverValueDependent:
   2417       assert(false && "Unexpected value dependent expression!");
   2418       // If the unthinkable happens, fall through to the safest alternative.
   2419 
   2420     case NPC_ValueDependentIsNull:
   2421       if (isTypeDependent() || getType()->isIntegralType(Ctx))
   2422         return NPCK_ZeroInteger;
   2423       else
   2424         return NPCK_NotNull;
   2425 
   2426     case NPC_ValueDependentIsNotNull:
   2427       return NPCK_NotNull;
   2428     }
   2429   }
   2430 
   2431   // Strip off a cast to void*, if it exists. Except in C++.
   2432   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
   2433     if (!Ctx.getLangOptions().CPlusPlus) {
   2434       // Check that it is a cast to void*.
   2435       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
   2436         QualType Pointee = PT->getPointeeType();
   2437         if (!Pointee.hasQualifiers() &&
   2438             Pointee->isVoidType() &&                              // to void*
   2439             CE->getSubExpr()->getType()->isIntegerType())         // from int.
   2440           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   2441       }
   2442     }
   2443   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
   2444     // Ignore the ImplicitCastExpr type entirely.
   2445     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   2446   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
   2447     // Accept ((void*)0) as a null pointer constant, as many other
   2448     // implementations do.
   2449     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   2450   } else if (const GenericSelectionExpr *GE =
   2451                dyn_cast<GenericSelectionExpr>(this)) {
   2452     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
   2453   } else if (const CXXDefaultArgExpr *DefaultArg
   2454                = dyn_cast<CXXDefaultArgExpr>(this)) {
   2455     // See through default argument expressions
   2456     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
   2457   } else if (isa<GNUNullExpr>(this)) {
   2458     // The GNU __null extension is always a null pointer constant.
   2459     return NPCK_GNUNull;
   2460   } else if (const MaterializeTemporaryExpr *M
   2461                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
   2462     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
   2463   }
   2464 
   2465   // C++0x nullptr_t is always a null pointer constant.
   2466   if (getType()->isNullPtrType())
   2467     return NPCK_CXX0X_nullptr;
   2468 
   2469   if (const RecordType *UT = getType()->getAsUnionType())
   2470     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
   2471       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
   2472         const Expr *InitExpr = CLE->getInitializer();
   2473         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
   2474           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
   2475       }
   2476   // This expression must be an integer type.
   2477   if (!getType()->isIntegerType() ||
   2478       (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
   2479     return NPCK_NotNull;
   2480 
   2481   // If we have an integer constant expression, we need to *evaluate* it and
   2482   // test for the value 0.
   2483   llvm::APSInt Result;
   2484   bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
   2485 
   2486   return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
   2487 }
   2488 
   2489 /// \brief If this expression is an l-value for an Objective C
   2490 /// property, find the underlying property reference expression.
   2491 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
   2492   const Expr *E = this;
   2493   while (true) {
   2494     assert((E->getValueKind() == VK_LValue &&
   2495             E->getObjectKind() == OK_ObjCProperty) &&
   2496            "expression is not a property reference");
   2497     E = E->IgnoreParenCasts();
   2498     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   2499       if (BO->getOpcode() == BO_Comma) {
   2500         E = BO->getRHS();
   2501         continue;
   2502       }
   2503     }
   2504 
   2505     break;
   2506   }
   2507 
   2508   return cast<ObjCPropertyRefExpr>(E);
   2509 }
   2510 
   2511 FieldDecl *Expr::getBitField() {
   2512   Expr *E = this->IgnoreParens();
   2513 
   2514   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2515     if (ICE->getCastKind() == CK_LValueToRValue ||
   2516         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
   2517       E = ICE->getSubExpr()->IgnoreParens();
   2518     else
   2519       break;
   2520   }
   2521 
   2522   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
   2523     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
   2524       if (Field->isBitField())
   2525         return Field;
   2526 
   2527   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
   2528     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
   2529       if (Field->isBitField())
   2530         return Field;
   2531 
   2532   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
   2533     if (BinOp->isAssignmentOp() && BinOp->getLHS())
   2534       return BinOp->getLHS()->getBitField();
   2535 
   2536     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
   2537       return BinOp->getRHS()->getBitField();
   2538   }
   2539 
   2540   return 0;
   2541 }
   2542 
   2543 bool Expr::refersToVectorElement() const {
   2544   const Expr *E = this->IgnoreParens();
   2545 
   2546   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2547     if (ICE->getValueKind() != VK_RValue &&
   2548         ICE->getCastKind() == CK_NoOp)
   2549       E = ICE->getSubExpr()->IgnoreParens();
   2550     else
   2551       break;
   2552   }
   2553 
   2554   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
   2555     return ASE->getBase()->getType()->isVectorType();
   2556 
   2557   if (isa<ExtVectorElementExpr>(E))
   2558     return true;
   2559 
   2560   return false;
   2561 }
   2562 
   2563 /// isArrow - Return true if the base expression is a pointer to vector,
   2564 /// return false if the base expression is a vector.
   2565 bool ExtVectorElementExpr::isArrow() const {
   2566   return getBase()->getType()->isPointerType();
   2567 }
   2568 
   2569 unsigned ExtVectorElementExpr::getNumElements() const {
   2570   if (const VectorType *VT = getType()->getAs<VectorType>())
   2571     return VT->getNumElements();
   2572   return 1;
   2573 }
   2574 
   2575 /// containsDuplicateElements - Return true if any element access is repeated.
   2576 bool ExtVectorElementExpr::containsDuplicateElements() const {
   2577   // FIXME: Refactor this code to an accessor on the AST node which returns the
   2578   // "type" of component access, and share with code below and in Sema.
   2579   llvm::StringRef Comp = Accessor->getName();
   2580 
   2581   // Halving swizzles do not contain duplicate elements.
   2582   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
   2583     return false;
   2584 
   2585   // Advance past s-char prefix on hex swizzles.
   2586   if (Comp[0] == 's' || Comp[0] == 'S')
   2587     Comp = Comp.substr(1);
   2588 
   2589   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
   2590     if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
   2591         return true;
   2592 
   2593   return false;
   2594 }
   2595 
   2596 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
   2597 void ExtVectorElementExpr::getEncodedElementAccess(
   2598                                   llvm::SmallVectorImpl<unsigned> &Elts) const {
   2599   llvm::StringRef Comp = Accessor->getName();
   2600   if (Comp[0] == 's' || Comp[0] == 'S')
   2601     Comp = Comp.substr(1);
   2602 
   2603   bool isHi =   Comp == "hi";
   2604   bool isLo =   Comp == "lo";
   2605   bool isEven = Comp == "even";
   2606   bool isOdd  = Comp == "odd";
   2607 
   2608   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
   2609     uint64_t Index;
   2610 
   2611     if (isHi)
   2612       Index = e + i;
   2613     else if (isLo)
   2614       Index = i;
   2615     else if (isEven)
   2616       Index = 2 * i;
   2617     else if (isOdd)
   2618       Index = 2 * i + 1;
   2619     else
   2620       Index = ExtVectorType::getAccessorIdx(Comp[i]);
   2621 
   2622     Elts.push_back(Index);
   2623   }
   2624 }
   2625 
   2626 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   2627                                  ExprValueKind VK,
   2628                                  SourceLocation LBracLoc,
   2629                                  SourceLocation SuperLoc,
   2630                                  bool IsInstanceSuper,
   2631                                  QualType SuperType,
   2632                                  Selector Sel,
   2633                                  SourceLocation SelLoc,
   2634                                  ObjCMethodDecl *Method,
   2635                                  Expr **Args, unsigned NumArgs,
   2636                                  SourceLocation RBracLoc)
   2637   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
   2638          /*TypeDependent=*/false, /*ValueDependent=*/false,
   2639          /*InstantiationDependent=*/false,
   2640          /*ContainsUnexpandedParameterPack=*/false),
   2641     NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
   2642     HasMethod(Method != 0), IsDelegateInitCall(false), SuperLoc(SuperLoc),
   2643     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   2644                                                        : Sel.getAsOpaquePtr())),
   2645     SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   2646 {
   2647   setReceiverPointer(SuperType.getAsOpaquePtr());
   2648   if (NumArgs)
   2649     memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
   2650 }
   2651 
   2652 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   2653                                  ExprValueKind VK,
   2654                                  SourceLocation LBracLoc,
   2655                                  TypeSourceInfo *Receiver,
   2656                                  Selector Sel,
   2657                                  SourceLocation SelLoc,
   2658                                  ObjCMethodDecl *Method,
   2659                                  Expr **Args, unsigned NumArgs,
   2660                                  SourceLocation RBracLoc)
   2661   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
   2662          T->isDependentType(), T->isInstantiationDependentType(),
   2663          T->containsUnexpandedParameterPack()),
   2664     NumArgs(NumArgs), Kind(Class),
   2665     HasMethod(Method != 0), IsDelegateInitCall(false),
   2666     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   2667                                                        : Sel.getAsOpaquePtr())),
   2668     SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   2669 {
   2670   setReceiverPointer(Receiver);
   2671   Expr **MyArgs = getArgs();
   2672   for (unsigned I = 0; I != NumArgs; ++I) {
   2673     if (Args[I]->isTypeDependent())
   2674       ExprBits.TypeDependent = true;
   2675     if (Args[I]->isValueDependent())
   2676       ExprBits.ValueDependent = true;
   2677     if (Args[I]->isInstantiationDependent())
   2678       ExprBits.InstantiationDependent = true;
   2679     if (Args[I]->containsUnexpandedParameterPack())
   2680       ExprBits.ContainsUnexpandedParameterPack = true;
   2681 
   2682     MyArgs[I] = Args[I];
   2683   }
   2684 }
   2685 
   2686 ObjCMessageExpr::ObjCMessageExpr(QualType T,
   2687                                  ExprValueKind VK,
   2688                                  SourceLocation LBracLoc,
   2689                                  Expr *Receiver,
   2690                                  Selector Sel,
   2691                                  SourceLocation SelLoc,
   2692                                  ObjCMethodDecl *Method,
   2693                                  Expr **Args, unsigned NumArgs,
   2694                                  SourceLocation RBracLoc)
   2695   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
   2696          Receiver->isTypeDependent(),
   2697          Receiver->isInstantiationDependent(),
   2698          Receiver->containsUnexpandedParameterPack()),
   2699     NumArgs(NumArgs), Kind(Instance),
   2700     HasMethod(Method != 0), IsDelegateInitCall(false),
   2701     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
   2702                                                        : Sel.getAsOpaquePtr())),
   2703     SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
   2704 {
   2705   setReceiverPointer(Receiver);
   2706   Expr **MyArgs = getArgs();
   2707   for (unsigned I = 0; I != NumArgs; ++I) {
   2708     if (Args[I]->isTypeDependent())
   2709       ExprBits.TypeDependent = true;
   2710     if (Args[I]->isValueDependent())
   2711       ExprBits.ValueDependent = true;
   2712     if (Args[I]->isInstantiationDependent())
   2713       ExprBits.InstantiationDependent = true;
   2714     if (Args[I]->containsUnexpandedParameterPack())
   2715       ExprBits.ContainsUnexpandedParameterPack = true;
   2716 
   2717     MyArgs[I] = Args[I];
   2718   }
   2719 }
   2720 
   2721 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   2722                                          ExprValueKind VK,
   2723                                          SourceLocation LBracLoc,
   2724                                          SourceLocation SuperLoc,
   2725                                          bool IsInstanceSuper,
   2726                                          QualType SuperType,
   2727                                          Selector Sel,
   2728                                          SourceLocation SelLoc,
   2729                                          ObjCMethodDecl *Method,
   2730                                          Expr **Args, unsigned NumArgs,
   2731                                          SourceLocation RBracLoc) {
   2732   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
   2733     NumArgs * sizeof(Expr *);
   2734   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
   2735   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
   2736                                    SuperType, Sel, SelLoc, Method, Args,NumArgs,
   2737                                    RBracLoc);
   2738 }
   2739 
   2740 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   2741                                          ExprValueKind VK,
   2742                                          SourceLocation LBracLoc,
   2743                                          TypeSourceInfo *Receiver,
   2744                                          Selector Sel,
   2745                                          SourceLocation SelLoc,
   2746                                          ObjCMethodDecl *Method,
   2747                                          Expr **Args, unsigned NumArgs,
   2748                                          SourceLocation RBracLoc) {
   2749   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
   2750     NumArgs * sizeof(Expr *);
   2751   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
   2752   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
   2753                                    Method, Args, NumArgs, RBracLoc);
   2754 }
   2755 
   2756 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
   2757                                          ExprValueKind VK,
   2758                                          SourceLocation LBracLoc,
   2759                                          Expr *Receiver,
   2760                                          Selector Sel,
   2761                                          SourceLocation SelLoc,
   2762                                          ObjCMethodDecl *Method,
   2763                                          Expr **Args, unsigned NumArgs,
   2764                                          SourceLocation RBracLoc) {
   2765   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
   2766     NumArgs * sizeof(Expr *);
   2767   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
   2768   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
   2769                                    Method, Args, NumArgs, RBracLoc);
   2770 }
   2771 
   2772 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
   2773                                               unsigned NumArgs) {
   2774   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
   2775     NumArgs * sizeof(Expr *);
   2776   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
   2777   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
   2778 }
   2779 
   2780 SourceRange ObjCMessageExpr::getReceiverRange() const {
   2781   switch (getReceiverKind()) {
   2782   case Instance:
   2783     return getInstanceReceiver()->getSourceRange();
   2784 
   2785   case Class:
   2786     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
   2787 
   2788   case SuperInstance:
   2789   case SuperClass:
   2790     return getSuperLoc();
   2791   }
   2792 
   2793   return SourceLocation();
   2794 }
   2795 
   2796 Selector ObjCMessageExpr::getSelector() const {
   2797   if (HasMethod)
   2798     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
   2799                                                                ->getSelector();
   2800   return Selector(SelectorOrMethod);
   2801 }
   2802 
   2803 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
   2804   switch (getReceiverKind()) {
   2805   case Instance:
   2806     if (const ObjCObjectPointerType *Ptr
   2807           = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
   2808       return Ptr->getInterfaceDecl();
   2809     break;
   2810 
   2811   case Class:
   2812     if (const ObjCObjectType *Ty
   2813           = getClassReceiver()->getAs<ObjCObjectType>())
   2814       return Ty->getInterface();
   2815     break;
   2816 
   2817   case SuperInstance:
   2818     if (const ObjCObjectPointerType *Ptr
   2819           = getSuperType()->getAs<ObjCObjectPointerType>())
   2820       return Ptr->getInterfaceDecl();
   2821     break;
   2822 
   2823   case SuperClass:
   2824     if (const ObjCObjectType *Iface
   2825           = getSuperType()->getAs<ObjCObjectType>())
   2826       return Iface->getInterface();
   2827     break;
   2828   }
   2829 
   2830   return 0;
   2831 }
   2832 
   2833 llvm::StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
   2834   switch (getBridgeKind()) {
   2835   case OBC_Bridge:
   2836     return "__bridge";
   2837   case OBC_BridgeTransfer:
   2838     return "__bridge_transfer";
   2839   case OBC_BridgeRetained:
   2840     return "__bridge_retained";
   2841   }
   2842 
   2843   return "__bridge";
   2844 }
   2845 
   2846 bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
   2847   return getCond()->EvaluateAsInt(C) != 0;
   2848 }
   2849 
   2850 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
   2851                                      QualType Type, SourceLocation BLoc,
   2852                                      SourceLocation RP)
   2853    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
   2854           Type->isDependentType(), Type->isDependentType(),
   2855           Type->isInstantiationDependentType(),
   2856           Type->containsUnexpandedParameterPack()),
   2857      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
   2858 {
   2859   SubExprs = new (C) Stmt*[nexpr];
   2860   for (unsigned i = 0; i < nexpr; i++) {
   2861     if (args[i]->isTypeDependent())
   2862       ExprBits.TypeDependent = true;
   2863     if (args[i]->isValueDependent())
   2864       ExprBits.ValueDependent = true;
   2865     if (args[i]->isInstantiationDependent())
   2866       ExprBits.InstantiationDependent = true;
   2867     if (args[i]->containsUnexpandedParameterPack())
   2868       ExprBits.ContainsUnexpandedParameterPack = true;
   2869 
   2870     SubExprs[i] = args[i];
   2871   }
   2872 }
   2873 
   2874 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
   2875                                  unsigned NumExprs) {
   2876   if (SubExprs) C.Deallocate(SubExprs);
   2877 
   2878   SubExprs = new (C) Stmt* [NumExprs];
   2879   this->NumExprs = NumExprs;
   2880   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
   2881 }
   2882 
   2883 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
   2884                                SourceLocation GenericLoc, Expr *ControllingExpr,
   2885                                TypeSourceInfo **AssocTypes, Expr **AssocExprs,
   2886                                unsigned NumAssocs, SourceLocation DefaultLoc,
   2887                                SourceLocation RParenLoc,
   2888                                bool ContainsUnexpandedParameterPack,
   2889                                unsigned ResultIndex)
   2890   : Expr(GenericSelectionExprClass,
   2891          AssocExprs[ResultIndex]->getType(),
   2892          AssocExprs[ResultIndex]->getValueKind(),
   2893          AssocExprs[ResultIndex]->getObjectKind(),
   2894          AssocExprs[ResultIndex]->isTypeDependent(),
   2895          AssocExprs[ResultIndex]->isValueDependent(),
   2896          AssocExprs[ResultIndex]->isInstantiationDependent(),
   2897          ContainsUnexpandedParameterPack),
   2898     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
   2899     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
   2900     ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
   2901     RParenLoc(RParenLoc) {
   2902   SubExprs[CONTROLLING] = ControllingExpr;
   2903   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
   2904   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
   2905 }
   2906 
   2907 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
   2908                                SourceLocation GenericLoc, Expr *ControllingExpr,
   2909                                TypeSourceInfo **AssocTypes, Expr **AssocExprs,
   2910                                unsigned NumAssocs, SourceLocation DefaultLoc,
   2911                                SourceLocation RParenLoc,
   2912                                bool ContainsUnexpandedParameterPack)
   2913   : Expr(GenericSelectionExprClass,
   2914          Context.DependentTy,
   2915          VK_RValue,
   2916          OK_Ordinary,
   2917          /*isTypeDependent=*/true,
   2918          /*isValueDependent=*/true,
   2919          /*isInstantiationDependent=*/true,
   2920          ContainsUnexpandedParameterPack),
   2921     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
   2922     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
   2923     ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
   2924     RParenLoc(RParenLoc) {
   2925   SubExprs[CONTROLLING] = ControllingExpr;
   2926   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
   2927   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
   2928 }
   2929 
   2930 //===----------------------------------------------------------------------===//
   2931 //  DesignatedInitExpr
   2932 //===----------------------------------------------------------------------===//
   2933 
   2934 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
   2935   assert(Kind == FieldDesignator && "Only valid on a field designator");
   2936   if (Field.NameOrField & 0x01)
   2937     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
   2938   else
   2939     return getField()->getIdentifier();
   2940 }
   2941 
   2942 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
   2943                                        unsigned NumDesignators,
   2944                                        const Designator *Designators,
   2945                                        SourceLocation EqualOrColonLoc,
   2946                                        bool GNUSyntax,
   2947                                        Expr **IndexExprs,
   2948                                        unsigned NumIndexExprs,
   2949                                        Expr *Init)
   2950   : Expr(DesignatedInitExprClass, Ty,
   2951          Init->getValueKind(), Init->getObjectKind(),
   2952          Init->isTypeDependent(), Init->isValueDependent(),
   2953          Init->isInstantiationDependent(),
   2954          Init->containsUnexpandedParameterPack()),
   2955     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
   2956     NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
   2957   this->Designators = new (C) Designator[NumDesignators];
   2958 
   2959   // Record the initializer itself.
   2960   child_range Child = children();
   2961   *Child++ = Init;
   2962 
   2963   // Copy the designators and their subexpressions, computing
   2964   // value-dependence along the way.
   2965   unsigned IndexIdx = 0;
   2966   for (unsigned I = 0; I != NumDesignators; ++I) {
   2967     this->Designators[I] = Designators[I];
   2968 
   2969     if (this->Designators[I].isArrayDesignator()) {
   2970       // Compute type- and value-dependence.
   2971       Expr *Index = IndexExprs[IndexIdx];
   2972       if (Index->isTypeDependent() || Index->isValueDependent())
   2973         ExprBits.ValueDependent = true;
   2974       if (Index->isInstantiationDependent())
   2975         ExprBits.InstantiationDependent = true;
   2976       // Propagate unexpanded parameter packs.
   2977       if (Index->containsUnexpandedParameterPack())
   2978         ExprBits.ContainsUnexpandedParameterPack = true;
   2979 
   2980       // Copy the index expressions into permanent storage.
   2981       *Child++ = IndexExprs[IndexIdx++];
   2982     } else if (this->Designators[I].isArrayRangeDesignator()) {
   2983       // Compute type- and value-dependence.
   2984       Expr *Start = IndexExprs[IndexIdx];
   2985       Expr *End = IndexExprs[IndexIdx + 1];
   2986       if (Start->isTypeDependent() || Start->isValueDependent() ||
   2987           End->isTypeDependent() || End->isValueDependent()) {
   2988         ExprBits.ValueDependent = true;
   2989         ExprBits.InstantiationDependent = true;
   2990       } else if (Start->isInstantiationDependent() ||
   2991                  End->isInstantiationDependent()) {
   2992         ExprBits.InstantiationDependent = true;
   2993       }
   2994 
   2995       // Propagate unexpanded parameter packs.
   2996       if (Start->containsUnexpandedParameterPack() ||
   2997           End->containsUnexpandedParameterPack())
   2998         ExprBits.ContainsUnexpandedParameterPack = true;
   2999 
   3000       // Copy the start/end expressions into permanent storage.
   3001       *Child++ = IndexExprs[IndexIdx++];
   3002       *Child++ = IndexExprs[IndexIdx++];
   3003     }
   3004   }
   3005 
   3006   assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
   3007 }
   3008 
   3009 DesignatedInitExpr *
   3010 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
   3011                            unsigned NumDesignators,
   3012                            Expr **IndexExprs, unsigned NumIndexExprs,
   3013                            SourceLocation ColonOrEqualLoc,
   3014                            bool UsesColonSyntax, Expr *Init) {
   3015   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3016                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
   3017   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
   3018                                       ColonOrEqualLoc, UsesColonSyntax,
   3019                                       IndexExprs, NumIndexExprs, Init);
   3020 }
   3021 
   3022 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
   3023                                                     unsigned NumIndexExprs) {
   3024   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
   3025                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
   3026   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
   3027 }
   3028 
   3029 void DesignatedInitExpr::setDesignators(ASTContext &C,
   3030                                         const Designator *Desigs,
   3031                                         unsigned NumDesigs) {
   3032   Designators = new (C) Designator[NumDesigs];
   3033   NumDesignators = NumDesigs;
   3034   for (unsigned I = 0; I != NumDesigs; ++I)
   3035     Designators[I] = Desigs[I];
   3036 }
   3037 
   3038 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
   3039   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
   3040   if (size() == 1)
   3041     return DIE->getDesignator(0)->getSourceRange();
   3042   return SourceRange(DIE->getDesignator(0)->getStartLocation(),
   3043                      DIE->getDesignator(size()-1)->getEndLocation());
   3044 }
   3045 
   3046 SourceRange DesignatedInitExpr::getSourceRange() const {
   3047   SourceLocation StartLoc;
   3048   Designator &First =
   3049     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
   3050   if (First.isFieldDesignator()) {
   3051     if (GNUSyntax)
   3052       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
   3053     else
   3054       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
   3055   } else
   3056     StartLoc =
   3057       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
   3058   return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
   3059 }
   3060 
   3061 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
   3062   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
   3063   char* Ptr = static_cast<char*>(static_cast<void *>(this));
   3064   Ptr += sizeof(DesignatedInitExpr);
   3065   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3066   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3067 }
   3068 
   3069 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
   3070   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3071          "Requires array range designator");
   3072   char* Ptr = static_cast<char*>(static_cast<void *>(this));
   3073   Ptr += sizeof(DesignatedInitExpr);
   3074   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3075   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
   3076 }
   3077 
   3078 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
   3079   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3080          "Requires array range designator");
   3081   char* Ptr = static_cast<char*>(static_cast<void *>(this));
   3082   Ptr += sizeof(DesignatedInitExpr);
   3083   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
   3084   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
   3085 }
   3086 
   3087 /// \brief Replaces the designator at index @p Idx with the series
   3088 /// of designators in [First, Last).
   3089 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
   3090                                           const Designator *First,
   3091                                           const Designator *Last) {
   3092   unsigned NumNewDesignators = Last - First;
   3093   if (NumNewDesignators == 0) {
   3094     std::copy_backward(Designators + Idx + 1,
   3095                        Designators + NumDesignators,
   3096                        Designators + Idx);
   3097     --NumNewDesignators;
   3098     return;
   3099   } else if (NumNewDesignators == 1) {
   3100     Designators[Idx] = *First;
   3101     return;
   3102   }
   3103 
   3104   Designator *NewDesignators
   3105     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
   3106   std::copy(Designators, Designators + Idx, NewDesignators);
   3107   std::copy(First, Last, NewDesignators + Idx);
   3108   std::copy(Designators + Idx + 1, Designators + NumDesignators,
   3109             NewDesignators + Idx + NumNewDesignators);
   3110   Designators = NewDesignators;
   3111   NumDesignators = NumDesignators - 1 + NumNewDesignators;
   3112 }
   3113 
   3114 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
   3115                              Expr **exprs, unsigned nexprs,
   3116                              SourceLocation rparenloc, QualType T)
   3117   : Expr(ParenListExprClass, T, VK_RValue, OK_Ordinary,
   3118          false, false, false, false),
   3119     NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
   3120   assert(!T.isNull() && "ParenListExpr must have a valid type");
   3121   Exprs = new (C) Stmt*[nexprs];
   3122   for (unsigned i = 0; i != nexprs; ++i) {
   3123     if (exprs[i]->isTypeDependent())
   3124       ExprBits.TypeDependent = true;
   3125     if (exprs[i]->isValueDependent())
   3126       ExprBits.ValueDependent = true;
   3127     if (exprs[i]->isInstantiationDependent())
   3128       ExprBits.InstantiationDependent = true;
   3129     if (exprs[i]->containsUnexpandedParameterPack())
   3130       ExprBits.ContainsUnexpandedParameterPack = true;
   3131 
   3132     Exprs[i] = exprs[i];
   3133   }
   3134 }
   3135 
   3136 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
   3137   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
   3138     e = ewc->getSubExpr();
   3139   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
   3140     e = m->GetTemporaryExpr();
   3141   e = cast<CXXConstructExpr>(e)->getArg(0);
   3142   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
   3143     e = ice->getSubExpr();
   3144   return cast<OpaqueValueExpr>(e);
   3145 }
   3146 
   3147 //===----------------------------------------------------------------------===//
   3148 //  ExprIterator.
   3149 //===----------------------------------------------------------------------===//
   3150 
   3151 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
   3152 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
   3153 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
   3154 const Expr* ConstExprIterator::operator[](size_t idx) const {
   3155   return cast<Expr>(I[idx]);
   3156 }
   3157 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
   3158 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
   3159 
   3160 //===----------------------------------------------------------------------===//
   3161 //  Child Iterators for iterating over subexpressions/substatements
   3162 //===----------------------------------------------------------------------===//
   3163 
   3164 // UnaryExprOrTypeTraitExpr
   3165 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
   3166   // If this is of a type and the type is a VLA type (and not a typedef), the
   3167   // size expression of the VLA needs to be treated as an executable expression.
   3168   // Why isn't this weirdness documented better in StmtIterator?
   3169   if (isArgumentType()) {
   3170     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
   3171                                    getArgumentType().getTypePtr()))
   3172       return child_range(child_iterator(T), child_iterator());
   3173     return child_range();
   3174   }
   3175   return child_range(&Argument.Ex, &Argument.Ex + 1);
   3176 }
   3177 
   3178 // ObjCMessageExpr
   3179 Stmt::child_range ObjCMessageExpr::children() {
   3180   Stmt **begin;
   3181   if (getReceiverKind() == Instance)
   3182     begin = reinterpret_cast<Stmt **>(this + 1);
   3183   else
   3184     begin = reinterpret_cast<Stmt **>(getArgs());
   3185   return child_range(begin,
   3186                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
   3187 }
   3188 
   3189 // Blocks
   3190 BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
   3191                                    SourceLocation l, bool ByRef,
   3192                                    bool constAdded)
   3193   : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false,
   3194          d->isParameterPack()),
   3195     D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
   3196 {
   3197   bool TypeDependent = false;
   3198   bool ValueDependent = false;
   3199   bool InstantiationDependent = false;
   3200   computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent,
   3201                            InstantiationDependent);
   3202   ExprBits.TypeDependent = TypeDependent;
   3203   ExprBits.ValueDependent = ValueDependent;
   3204   ExprBits.InstantiationDependent = InstantiationDependent;
   3205 }
   3206