Home | History | Annotate | Download | only in VMCore
      1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Constant* classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Constants.h"
     15 #include "LLVMContextImpl.h"
     16 #include "ConstantFold.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/GlobalValue.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/Operator.h"
     22 #include "llvm/ADT/FoldingSet.h"
     23 #include "llvm/ADT/StringExtras.h"
     24 #include "llvm/ADT/StringMap.h"
     25 #include "llvm/Support/Compiler.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/ManagedStatic.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Support/GetElementPtrTypeIterator.h"
     32 #include "llvm/ADT/DenseMap.h"
     33 #include "llvm/ADT/SmallVector.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include <algorithm>
     36 #include <cstdarg>
     37 using namespace llvm;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                              Constant Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 bool Constant::isNegativeZeroValue() const {
     44   // Floating point values have an explicit -0.0 value.
     45   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     46     return CFP->isZero() && CFP->isNegative();
     47 
     48   // Otherwise, just use +0.0.
     49   return isNullValue();
     50 }
     51 
     52 bool Constant::isNullValue() const {
     53   // 0 is null.
     54   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     55     return CI->isZero();
     56 
     57   // +0.0 is null.
     58   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     59     return CFP->isZero() && !CFP->isNegative();
     60 
     61   // constant zero is zero for aggregates and cpnull is null for pointers.
     62   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
     63 }
     64 
     65 // Constructor to create a '0' constant of arbitrary type...
     66 Constant *Constant::getNullValue(Type *Ty) {
     67   switch (Ty->getTypeID()) {
     68   case Type::IntegerTyID:
     69     return ConstantInt::get(Ty, 0);
     70   case Type::FloatTyID:
     71     return ConstantFP::get(Ty->getContext(),
     72                            APFloat::getZero(APFloat::IEEEsingle));
     73   case Type::DoubleTyID:
     74     return ConstantFP::get(Ty->getContext(),
     75                            APFloat::getZero(APFloat::IEEEdouble));
     76   case Type::X86_FP80TyID:
     77     return ConstantFP::get(Ty->getContext(),
     78                            APFloat::getZero(APFloat::x87DoubleExtended));
     79   case Type::FP128TyID:
     80     return ConstantFP::get(Ty->getContext(),
     81                            APFloat::getZero(APFloat::IEEEquad));
     82   case Type::PPC_FP128TyID:
     83     return ConstantFP::get(Ty->getContext(),
     84                            APFloat(APInt::getNullValue(128)));
     85   case Type::PointerTyID:
     86     return ConstantPointerNull::get(cast<PointerType>(Ty));
     87   case Type::StructTyID:
     88   case Type::ArrayTyID:
     89   case Type::VectorTyID:
     90     return ConstantAggregateZero::get(Ty);
     91   default:
     92     // Function, Label, or Opaque type?
     93     assert(!"Cannot create a null constant of that type!");
     94     return 0;
     95   }
     96 }
     97 
     98 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
     99   Type *ScalarTy = Ty->getScalarType();
    100 
    101   // Create the base integer constant.
    102   Constant *C = ConstantInt::get(Ty->getContext(), V);
    103 
    104   // Convert an integer to a pointer, if necessary.
    105   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
    106     C = ConstantExpr::getIntToPtr(C, PTy);
    107 
    108   // Broadcast a scalar to a vector, if necessary.
    109   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    110     C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
    111 
    112   return C;
    113 }
    114 
    115 Constant *Constant::getAllOnesValue(Type *Ty) {
    116   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
    117     return ConstantInt::get(Ty->getContext(),
    118                             APInt::getAllOnesValue(ITy->getBitWidth()));
    119 
    120   if (Ty->isFloatingPointTy()) {
    121     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
    122                                           !Ty->isPPC_FP128Ty());
    123     return ConstantFP::get(Ty->getContext(), FL);
    124   }
    125 
    126   SmallVector<Constant*, 16> Elts;
    127   VectorType *VTy = cast<VectorType>(Ty);
    128   Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
    129   assert(Elts[0] && "Not a vector integer type!");
    130   return cast<ConstantVector>(ConstantVector::get(Elts));
    131 }
    132 
    133 void Constant::destroyConstantImpl() {
    134   // When a Constant is destroyed, there may be lingering
    135   // references to the constant by other constants in the constant pool.  These
    136   // constants are implicitly dependent on the module that is being deleted,
    137   // but they don't know that.  Because we only find out when the CPV is
    138   // deleted, we must now notify all of our users (that should only be
    139   // Constants) that they are, in fact, invalid now and should be deleted.
    140   //
    141   while (!use_empty()) {
    142     Value *V = use_back();
    143 #ifndef NDEBUG      // Only in -g mode...
    144     if (!isa<Constant>(V)) {
    145       dbgs() << "While deleting: " << *this
    146              << "\n\nUse still stuck around after Def is destroyed: "
    147              << *V << "\n\n";
    148     }
    149 #endif
    150     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    151     Constant *CV = cast<Constant>(V);
    152     CV->destroyConstant();
    153 
    154     // The constant should remove itself from our use list...
    155     assert((use_empty() || use_back() != V) && "Constant not removed!");
    156   }
    157 
    158   // Value has no outstanding references it is safe to delete it now...
    159   delete this;
    160 }
    161 
    162 /// canTrap - Return true if evaluation of this constant could trap.  This is
    163 /// true for things like constant expressions that could divide by zero.
    164 bool Constant::canTrap() const {
    165   assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
    166   // The only thing that could possibly trap are constant exprs.
    167   const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
    168   if (!CE) return false;
    169 
    170   // ConstantExpr traps if any operands can trap.
    171   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    172     if (CE->getOperand(i)->canTrap())
    173       return true;
    174 
    175   // Otherwise, only specific operations can trap.
    176   switch (CE->getOpcode()) {
    177   default:
    178     return false;
    179   case Instruction::UDiv:
    180   case Instruction::SDiv:
    181   case Instruction::FDiv:
    182   case Instruction::URem:
    183   case Instruction::SRem:
    184   case Instruction::FRem:
    185     // Div and rem can trap if the RHS is not known to be non-zero.
    186     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
    187       return true;
    188     return false;
    189   }
    190 }
    191 
    192 /// isConstantUsed - Return true if the constant has users other than constant
    193 /// exprs and other dangling things.
    194 bool Constant::isConstantUsed() const {
    195   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    196     const Constant *UC = dyn_cast<Constant>(*UI);
    197     if (UC == 0 || isa<GlobalValue>(UC))
    198       return true;
    199 
    200     if (UC->isConstantUsed())
    201       return true;
    202   }
    203   return false;
    204 }
    205 
    206 
    207 
    208 /// getRelocationInfo - This method classifies the entry according to
    209 /// whether or not it may generate a relocation entry.  This must be
    210 /// conservative, so if it might codegen to a relocatable entry, it should say
    211 /// so.  The return values are:
    212 ///
    213 ///  NoRelocation: This constant pool entry is guaranteed to never have a
    214 ///     relocation applied to it (because it holds a simple constant like
    215 ///     '4').
    216 ///  LocalRelocation: This entry has relocations, but the entries are
    217 ///     guaranteed to be resolvable by the static linker, so the dynamic
    218 ///     linker will never see them.
    219 ///  GlobalRelocations: This entry may have arbitrary relocations.
    220 ///
    221 /// FIXME: This really should not be in VMCore.
    222 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
    223   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
    224     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
    225       return LocalRelocation;  // Local to this file/library.
    226     return GlobalRelocations;    // Global reference.
    227   }
    228 
    229   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
    230     return BA->getFunction()->getRelocationInfo();
    231 
    232   // While raw uses of blockaddress need to be relocated, differences between
    233   // two of them don't when they are for labels in the same function.  This is a
    234   // common idiom when creating a table for the indirect goto extension, so we
    235   // handle it efficiently here.
    236   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
    237     if (CE->getOpcode() == Instruction::Sub) {
    238       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
    239       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
    240       if (LHS && RHS &&
    241           LHS->getOpcode() == Instruction::PtrToInt &&
    242           RHS->getOpcode() == Instruction::PtrToInt &&
    243           isa<BlockAddress>(LHS->getOperand(0)) &&
    244           isa<BlockAddress>(RHS->getOperand(0)) &&
    245           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
    246             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
    247         return NoRelocation;
    248     }
    249 
    250   PossibleRelocationsTy Result = NoRelocation;
    251   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    252     Result = std::max(Result,
    253                       cast<Constant>(getOperand(i))->getRelocationInfo());
    254 
    255   return Result;
    256 }
    257 
    258 
    259 /// getVectorElements - This method, which is only valid on constant of vector
    260 /// type, returns the elements of the vector in the specified smallvector.
    261 /// This handles breaking down a vector undef into undef elements, etc.  For
    262 /// constant exprs and other cases we can't handle, we return an empty vector.
    263 void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
    264   assert(getType()->isVectorTy() && "Not a vector constant!");
    265 
    266   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
    267     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
    268       Elts.push_back(CV->getOperand(i));
    269     return;
    270   }
    271 
    272   VectorType *VT = cast<VectorType>(getType());
    273   if (isa<ConstantAggregateZero>(this)) {
    274     Elts.assign(VT->getNumElements(),
    275                 Constant::getNullValue(VT->getElementType()));
    276     return;
    277   }
    278 
    279   if (isa<UndefValue>(this)) {
    280     Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
    281     return;
    282   }
    283 
    284   // Unknown type, must be constant expr etc.
    285 }
    286 
    287 
    288 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
    289 /// it.  This involves recursively eliminating any dead users of the
    290 /// constantexpr.
    291 static bool removeDeadUsersOfConstant(const Constant *C) {
    292   if (isa<GlobalValue>(C)) return false; // Cannot remove this
    293 
    294   while (!C->use_empty()) {
    295     const Constant *User = dyn_cast<Constant>(C->use_back());
    296     if (!User) return false; // Non-constant usage;
    297     if (!removeDeadUsersOfConstant(User))
    298       return false; // Constant wasn't dead
    299   }
    300 
    301   const_cast<Constant*>(C)->destroyConstant();
    302   return true;
    303 }
    304 
    305 
    306 /// removeDeadConstantUsers - If there are any dead constant users dangling
    307 /// off of this constant, remove them.  This method is useful for clients
    308 /// that want to check to see if a global is unused, but don't want to deal
    309 /// with potentially dead constants hanging off of the globals.
    310 void Constant::removeDeadConstantUsers() const {
    311   Value::const_use_iterator I = use_begin(), E = use_end();
    312   Value::const_use_iterator LastNonDeadUser = E;
    313   while (I != E) {
    314     const Constant *User = dyn_cast<Constant>(*I);
    315     if (User == 0) {
    316       LastNonDeadUser = I;
    317       ++I;
    318       continue;
    319     }
    320 
    321     if (!removeDeadUsersOfConstant(User)) {
    322       // If the constant wasn't dead, remember that this was the last live use
    323       // and move on to the next constant.
    324       LastNonDeadUser = I;
    325       ++I;
    326       continue;
    327     }
    328 
    329     // If the constant was dead, then the iterator is invalidated.
    330     if (LastNonDeadUser == E) {
    331       I = use_begin();
    332       if (I == E) break;
    333     } else {
    334       I = LastNonDeadUser;
    335       ++I;
    336     }
    337   }
    338 }
    339 
    340 
    341 
    342 //===----------------------------------------------------------------------===//
    343 //                                ConstantInt
    344 //===----------------------------------------------------------------------===//
    345 
    346 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
    347   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
    348   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
    349 }
    350 
    351 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
    352   LLVMContextImpl *pImpl = Context.pImpl;
    353   if (!pImpl->TheTrueVal)
    354     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
    355   return pImpl->TheTrueVal;
    356 }
    357 
    358 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
    359   LLVMContextImpl *pImpl = Context.pImpl;
    360   if (!pImpl->TheFalseVal)
    361     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
    362   return pImpl->TheFalseVal;
    363 }
    364 
    365 Constant *ConstantInt::getTrue(Type *Ty) {
    366   VectorType *VTy = dyn_cast<VectorType>(Ty);
    367   if (!VTy) {
    368     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
    369     return ConstantInt::getTrue(Ty->getContext());
    370   }
    371   assert(VTy->getElementType()->isIntegerTy(1) &&
    372          "True must be vector of i1 or i1.");
    373   SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
    374                                    ConstantInt::getTrue(Ty->getContext()));
    375   return ConstantVector::get(Splat);
    376 }
    377 
    378 Constant *ConstantInt::getFalse(Type *Ty) {
    379   VectorType *VTy = dyn_cast<VectorType>(Ty);
    380   if (!VTy) {
    381     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
    382     return ConstantInt::getFalse(Ty->getContext());
    383   }
    384   assert(VTy->getElementType()->isIntegerTy(1) &&
    385          "False must be vector of i1 or i1.");
    386   SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
    387                                    ConstantInt::getFalse(Ty->getContext()));
    388   return ConstantVector::get(Splat);
    389 }
    390 
    391 
    392 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
    393 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
    394 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
    395 // compare APInt's of different widths, which would violate an APInt class
    396 // invariant which generates an assertion.
    397 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
    398   // Get the corresponding integer type for the bit width of the value.
    399   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
    400   // get an existing value or the insertion position
    401   DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
    402   ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
    403   if (!Slot) Slot = new ConstantInt(ITy, V);
    404   return Slot;
    405 }
    406 
    407 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
    408   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
    409 
    410   // For vectors, broadcast the value.
    411   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    412     return ConstantVector::get(SmallVector<Constant*,
    413                                            16>(VTy->getNumElements(), C));
    414 
    415   return C;
    416 }
    417 
    418 ConstantInt* ConstantInt::get(IntegerType* Ty, uint64_t V,
    419                               bool isSigned) {
    420   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
    421 }
    422 
    423 ConstantInt* ConstantInt::getSigned(IntegerType* Ty, int64_t V) {
    424   return get(Ty, V, true);
    425 }
    426 
    427 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
    428   return get(Ty, V, true);
    429 }
    430 
    431 Constant *ConstantInt::get(Type* Ty, const APInt& V) {
    432   ConstantInt *C = get(Ty->getContext(), V);
    433   assert(C->getType() == Ty->getScalarType() &&
    434          "ConstantInt type doesn't match the type implied by its value!");
    435 
    436   // For vectors, broadcast the value.
    437   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    438     return ConstantVector::get(
    439       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
    440 
    441   return C;
    442 }
    443 
    444 ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str,
    445                               uint8_t radix) {
    446   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
    447 }
    448 
    449 //===----------------------------------------------------------------------===//
    450 //                                ConstantFP
    451 //===----------------------------------------------------------------------===//
    452 
    453 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
    454   if (Ty->isFloatTy())
    455     return &APFloat::IEEEsingle;
    456   if (Ty->isDoubleTy())
    457     return &APFloat::IEEEdouble;
    458   if (Ty->isX86_FP80Ty())
    459     return &APFloat::x87DoubleExtended;
    460   else if (Ty->isFP128Ty())
    461     return &APFloat::IEEEquad;
    462 
    463   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
    464   return &APFloat::PPCDoubleDouble;
    465 }
    466 
    467 /// get() - This returns a constant fp for the specified value in the
    468 /// specified type.  This should only be used for simple constant values like
    469 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
    470 Constant *ConstantFP::get(Type* Ty, double V) {
    471   LLVMContext &Context = Ty->getContext();
    472 
    473   APFloat FV(V);
    474   bool ignored;
    475   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
    476              APFloat::rmNearestTiesToEven, &ignored);
    477   Constant *C = get(Context, FV);
    478 
    479   // For vectors, broadcast the value.
    480   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    481     return ConstantVector::get(
    482       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
    483 
    484   return C;
    485 }
    486 
    487 
    488 Constant *ConstantFP::get(Type* Ty, StringRef Str) {
    489   LLVMContext &Context = Ty->getContext();
    490 
    491   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
    492   Constant *C = get(Context, FV);
    493 
    494   // For vectors, broadcast the value.
    495   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    496     return ConstantVector::get(
    497       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
    498 
    499   return C;
    500 }
    501 
    502 
    503 ConstantFP* ConstantFP::getNegativeZero(Type* Ty) {
    504   LLVMContext &Context = Ty->getContext();
    505   APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
    506   apf.changeSign();
    507   return get(Context, apf);
    508 }
    509 
    510 
    511 Constant *ConstantFP::getZeroValueForNegation(Type* Ty) {
    512   if (VectorType *PTy = dyn_cast<VectorType>(Ty))
    513     if (PTy->getElementType()->isFloatingPointTy()) {
    514       SmallVector<Constant*, 16> zeros(PTy->getNumElements(),
    515                            getNegativeZero(PTy->getElementType()));
    516       return ConstantVector::get(zeros);
    517     }
    518 
    519   if (Ty->isFloatingPointTy())
    520     return getNegativeZero(Ty);
    521 
    522   return Constant::getNullValue(Ty);
    523 }
    524 
    525 
    526 // ConstantFP accessors.
    527 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
    528   DenseMapAPFloatKeyInfo::KeyTy Key(V);
    529 
    530   LLVMContextImpl* pImpl = Context.pImpl;
    531 
    532   ConstantFP *&Slot = pImpl->FPConstants[Key];
    533 
    534   if (!Slot) {
    535     Type *Ty;
    536     if (&V.getSemantics() == &APFloat::IEEEsingle)
    537       Ty = Type::getFloatTy(Context);
    538     else if (&V.getSemantics() == &APFloat::IEEEdouble)
    539       Ty = Type::getDoubleTy(Context);
    540     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
    541       Ty = Type::getX86_FP80Ty(Context);
    542     else if (&V.getSemantics() == &APFloat::IEEEquad)
    543       Ty = Type::getFP128Ty(Context);
    544     else {
    545       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
    546              "Unknown FP format");
    547       Ty = Type::getPPC_FP128Ty(Context);
    548     }
    549     Slot = new ConstantFP(Ty, V);
    550   }
    551 
    552   return Slot;
    553 }
    554 
    555 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
    556   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
    557   return ConstantFP::get(Ty->getContext(),
    558                          APFloat::getInf(Semantics, Negative));
    559 }
    560 
    561 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
    562   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
    563   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
    564          "FP type Mismatch");
    565 }
    566 
    567 bool ConstantFP::isExactlyValue(const APFloat &V) const {
    568   return Val.bitwiseIsEqual(V);
    569 }
    570 
    571 //===----------------------------------------------------------------------===//
    572 //                            ConstantXXX Classes
    573 //===----------------------------------------------------------------------===//
    574 
    575 
    576 ConstantArray::ConstantArray(ArrayType *T,
    577                              const std::vector<Constant*> &V)
    578   : Constant(T, ConstantArrayVal,
    579              OperandTraits<ConstantArray>::op_end(this) - V.size(),
    580              V.size()) {
    581   assert(V.size() == T->getNumElements() &&
    582          "Invalid initializer vector for constant array");
    583   Use *OL = OperandList;
    584   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
    585        I != E; ++I, ++OL) {
    586     Constant *C = *I;
    587     assert(C->getType() == T->getElementType() &&
    588            "Initializer for array element doesn't match array element type!");
    589     *OL = C;
    590   }
    591 }
    592 
    593 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
    594   for (unsigned i = 0, e = V.size(); i != e; ++i) {
    595     assert(V[i]->getType() == Ty->getElementType() &&
    596            "Wrong type in array element initializer");
    597   }
    598   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
    599   // If this is an all-zero array, return a ConstantAggregateZero object
    600   if (!V.empty()) {
    601     Constant *C = V[0];
    602     if (!C->isNullValue())
    603       return pImpl->ArrayConstants.getOrCreate(Ty, V);
    604 
    605     for (unsigned i = 1, e = V.size(); i != e; ++i)
    606       if (V[i] != C)
    607         return pImpl->ArrayConstants.getOrCreate(Ty, V);
    608   }
    609 
    610   return ConstantAggregateZero::get(Ty);
    611 }
    612 
    613 /// ConstantArray::get(const string&) - Return an array that is initialized to
    614 /// contain the specified string.  If length is zero then a null terminator is
    615 /// added to the specified string so that it may be used in a natural way.
    616 /// Otherwise, the length parameter specifies how much of the string to use
    617 /// and it won't be null terminated.
    618 ///
    619 Constant *ConstantArray::get(LLVMContext &Context, StringRef Str,
    620                              bool AddNull) {
    621   std::vector<Constant*> ElementVals;
    622   ElementVals.reserve(Str.size() + size_t(AddNull));
    623   for (unsigned i = 0; i < Str.size(); ++i)
    624     ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
    625 
    626   // Add a null terminator to the string...
    627   if (AddNull) {
    628     ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
    629   }
    630 
    631   ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
    632   return get(ATy, ElementVals);
    633 }
    634 
    635 /// getTypeForElements - Return an anonymous struct type to use for a constant
    636 /// with the specified set of elements.  The list must not be empty.
    637 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
    638                                                ArrayRef<Constant*> V,
    639                                                bool Packed) {
    640   SmallVector<Type*, 16> EltTypes;
    641   for (unsigned i = 0, e = V.size(); i != e; ++i)
    642     EltTypes.push_back(V[i]->getType());
    643 
    644   return StructType::get(Context, EltTypes, Packed);
    645 }
    646 
    647 
    648 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
    649                                                bool Packed) {
    650   assert(!V.empty() &&
    651          "ConstantStruct::getTypeForElements cannot be called on empty list");
    652   return getTypeForElements(V[0]->getContext(), V, Packed);
    653 }
    654 
    655 
    656 ConstantStruct::ConstantStruct(StructType *T,
    657                                const std::vector<Constant*> &V)
    658   : Constant(T, ConstantStructVal,
    659              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
    660              V.size()) {
    661   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
    662          "Invalid initializer vector for constant structure");
    663   Use *OL = OperandList;
    664   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
    665        I != E; ++I, ++OL) {
    666     Constant *C = *I;
    667     assert((T->isOpaque() || C->getType() == T->getElementType(I-V.begin())) &&
    668            "Initializer for struct element doesn't match struct element type!");
    669     *OL = C;
    670   }
    671 }
    672 
    673 // ConstantStruct accessors.
    674 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
    675   // Create a ConstantAggregateZero value if all elements are zeros.
    676   for (unsigned i = 0, e = V.size(); i != e; ++i)
    677     if (!V[i]->isNullValue())
    678       return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
    679 
    680   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
    681          "Incorrect # elements specified to ConstantStruct::get");
    682   return ConstantAggregateZero::get(ST);
    683 }
    684 
    685 Constant* ConstantStruct::get(StructType *T, ...) {
    686   va_list ap;
    687   SmallVector<Constant*, 8> Values;
    688   va_start(ap, T);
    689   while (Constant *Val = va_arg(ap, llvm::Constant*))
    690     Values.push_back(Val);
    691   va_end(ap);
    692   return get(T, Values);
    693 }
    694 
    695 ConstantVector::ConstantVector(VectorType *T,
    696                                const std::vector<Constant*> &V)
    697   : Constant(T, ConstantVectorVal,
    698              OperandTraits<ConstantVector>::op_end(this) - V.size(),
    699              V.size()) {
    700   Use *OL = OperandList;
    701   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
    702        I != E; ++I, ++OL) {
    703     Constant *C = *I;
    704     assert(C->getType() == T->getElementType() &&
    705            "Initializer for vector element doesn't match vector element type!");
    706     *OL = C;
    707   }
    708 }
    709 
    710 // ConstantVector accessors.
    711 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
    712   assert(!V.empty() && "Vectors can't be empty");
    713   VectorType *T = VectorType::get(V.front()->getType(), V.size());
    714   LLVMContextImpl *pImpl = T->getContext().pImpl;
    715 
    716   // If this is an all-undef or all-zero vector, return a
    717   // ConstantAggregateZero or UndefValue.
    718   Constant *C = V[0];
    719   bool isZero = C->isNullValue();
    720   bool isUndef = isa<UndefValue>(C);
    721 
    722   if (isZero || isUndef) {
    723     for (unsigned i = 1, e = V.size(); i != e; ++i)
    724       if (V[i] != C) {
    725         isZero = isUndef = false;
    726         break;
    727       }
    728   }
    729 
    730   if (isZero)
    731     return ConstantAggregateZero::get(T);
    732   if (isUndef)
    733     return UndefValue::get(T);
    734 
    735   return pImpl->VectorConstants.getOrCreate(T, V);
    736 }
    737 
    738 // Utility function for determining if a ConstantExpr is a CastOp or not. This
    739 // can't be inline because we don't want to #include Instruction.h into
    740 // Constant.h
    741 bool ConstantExpr::isCast() const {
    742   return Instruction::isCast(getOpcode());
    743 }
    744 
    745 bool ConstantExpr::isCompare() const {
    746   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
    747 }
    748 
    749 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
    750   if (getOpcode() != Instruction::GetElementPtr) return false;
    751 
    752   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
    753   User::const_op_iterator OI = llvm::next(this->op_begin());
    754 
    755   // Skip the first index, as it has no static limit.
    756   ++GEPI;
    757   ++OI;
    758 
    759   // The remaining indices must be compile-time known integers within the
    760   // bounds of the corresponding notional static array types.
    761   for (; GEPI != E; ++GEPI, ++OI) {
    762     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
    763     if (!CI) return false;
    764     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
    765       if (CI->getValue().getActiveBits() > 64 ||
    766           CI->getZExtValue() >= ATy->getNumElements())
    767         return false;
    768   }
    769 
    770   // All the indices checked out.
    771   return true;
    772 }
    773 
    774 bool ConstantExpr::hasIndices() const {
    775   return getOpcode() == Instruction::ExtractValue ||
    776          getOpcode() == Instruction::InsertValue;
    777 }
    778 
    779 ArrayRef<unsigned> ConstantExpr::getIndices() const {
    780   if (const ExtractValueConstantExpr *EVCE =
    781         dyn_cast<ExtractValueConstantExpr>(this))
    782     return EVCE->Indices;
    783 
    784   return cast<InsertValueConstantExpr>(this)->Indices;
    785 }
    786 
    787 unsigned ConstantExpr::getPredicate() const {
    788   assert(isCompare());
    789   return ((const CompareConstantExpr*)this)->predicate;
    790 }
    791 
    792 /// getWithOperandReplaced - Return a constant expression identical to this
    793 /// one, but with the specified operand set to the specified value.
    794 Constant *
    795 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
    796   assert(OpNo < getNumOperands() && "Operand num is out of range!");
    797   assert(Op->getType() == getOperand(OpNo)->getType() &&
    798          "Replacing operand with value of different type!");
    799   if (getOperand(OpNo) == Op)
    800     return const_cast<ConstantExpr*>(this);
    801 
    802   Constant *Op0, *Op1, *Op2;
    803   switch (getOpcode()) {
    804   case Instruction::Trunc:
    805   case Instruction::ZExt:
    806   case Instruction::SExt:
    807   case Instruction::FPTrunc:
    808   case Instruction::FPExt:
    809   case Instruction::UIToFP:
    810   case Instruction::SIToFP:
    811   case Instruction::FPToUI:
    812   case Instruction::FPToSI:
    813   case Instruction::PtrToInt:
    814   case Instruction::IntToPtr:
    815   case Instruction::BitCast:
    816     return ConstantExpr::getCast(getOpcode(), Op, getType());
    817   case Instruction::Select:
    818     Op0 = (OpNo == 0) ? Op : getOperand(0);
    819     Op1 = (OpNo == 1) ? Op : getOperand(1);
    820     Op2 = (OpNo == 2) ? Op : getOperand(2);
    821     return ConstantExpr::getSelect(Op0, Op1, Op2);
    822   case Instruction::InsertElement:
    823     Op0 = (OpNo == 0) ? Op : getOperand(0);
    824     Op1 = (OpNo == 1) ? Op : getOperand(1);
    825     Op2 = (OpNo == 2) ? Op : getOperand(2);
    826     return ConstantExpr::getInsertElement(Op0, Op1, Op2);
    827   case Instruction::ExtractElement:
    828     Op0 = (OpNo == 0) ? Op : getOperand(0);
    829     Op1 = (OpNo == 1) ? Op : getOperand(1);
    830     return ConstantExpr::getExtractElement(Op0, Op1);
    831   case Instruction::ShuffleVector:
    832     Op0 = (OpNo == 0) ? Op : getOperand(0);
    833     Op1 = (OpNo == 1) ? Op : getOperand(1);
    834     Op2 = (OpNo == 2) ? Op : getOperand(2);
    835     return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
    836   case Instruction::GetElementPtr: {
    837     SmallVector<Constant*, 8> Ops;
    838     Ops.resize(getNumOperands()-1);
    839     for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
    840       Ops[i-1] = getOperand(i);
    841     if (OpNo == 0)
    842       return cast<GEPOperator>(this)->isInBounds() ?
    843         ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
    844         ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
    845     Ops[OpNo-1] = Op;
    846     return cast<GEPOperator>(this)->isInBounds() ?
    847       ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()):
    848       ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
    849   }
    850   default:
    851     assert(getNumOperands() == 2 && "Must be binary operator?");
    852     Op0 = (OpNo == 0) ? Op : getOperand(0);
    853     Op1 = (OpNo == 1) ? Op : getOperand(1);
    854     return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
    855   }
    856 }
    857 
    858 /// getWithOperands - This returns the current constant expression with the
    859 /// operands replaced with the specified values.  The specified array must
    860 /// have the same number of operands as our current one.
    861 Constant *ConstantExpr::
    862 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
    863   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
    864   bool AnyChange = Ty != getType();
    865   for (unsigned i = 0; i != Ops.size(); ++i)
    866     AnyChange |= Ops[i] != getOperand(i);
    867 
    868   if (!AnyChange)  // No operands changed, return self.
    869     return const_cast<ConstantExpr*>(this);
    870 
    871   switch (getOpcode()) {
    872   case Instruction::Trunc:
    873   case Instruction::ZExt:
    874   case Instruction::SExt:
    875   case Instruction::FPTrunc:
    876   case Instruction::FPExt:
    877   case Instruction::UIToFP:
    878   case Instruction::SIToFP:
    879   case Instruction::FPToUI:
    880   case Instruction::FPToSI:
    881   case Instruction::PtrToInt:
    882   case Instruction::IntToPtr:
    883   case Instruction::BitCast:
    884     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
    885   case Instruction::Select:
    886     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
    887   case Instruction::InsertElement:
    888     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
    889   case Instruction::ExtractElement:
    890     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
    891   case Instruction::ShuffleVector:
    892     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
    893   case Instruction::GetElementPtr:
    894     return cast<GEPOperator>(this)->isInBounds() ?
    895       ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], Ops.size()-1) :
    896       ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1);
    897   case Instruction::ICmp:
    898   case Instruction::FCmp:
    899     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
    900   default:
    901     assert(getNumOperands() == 2 && "Must be binary operator?");
    902     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
    903   }
    904 }
    905 
    906 
    907 //===----------------------------------------------------------------------===//
    908 //                      isValueValidForType implementations
    909 
    910 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
    911   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
    912   if (Ty == Type::getInt1Ty(Ty->getContext()))
    913     return Val == 0 || Val == 1;
    914   if (NumBits >= 64)
    915     return true; // always true, has to fit in largest type
    916   uint64_t Max = (1ll << NumBits) - 1;
    917   return Val <= Max;
    918 }
    919 
    920 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
    921   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
    922   if (Ty == Type::getInt1Ty(Ty->getContext()))
    923     return Val == 0 || Val == 1 || Val == -1;
    924   if (NumBits >= 64)
    925     return true; // always true, has to fit in largest type
    926   int64_t Min = -(1ll << (NumBits-1));
    927   int64_t Max = (1ll << (NumBits-1)) - 1;
    928   return (Val >= Min && Val <= Max);
    929 }
    930 
    931 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
    932   // convert modifies in place, so make a copy.
    933   APFloat Val2 = APFloat(Val);
    934   bool losesInfo;
    935   switch (Ty->getTypeID()) {
    936   default:
    937     return false;         // These can't be represented as floating point!
    938 
    939   // FIXME rounding mode needs to be more flexible
    940   case Type::FloatTyID: {
    941     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
    942       return true;
    943     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
    944     return !losesInfo;
    945   }
    946   case Type::DoubleTyID: {
    947     if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
    948         &Val2.getSemantics() == &APFloat::IEEEdouble)
    949       return true;
    950     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
    951     return !losesInfo;
    952   }
    953   case Type::X86_FP80TyID:
    954     return &Val2.getSemantics() == &APFloat::IEEEsingle ||
    955            &Val2.getSemantics() == &APFloat::IEEEdouble ||
    956            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
    957   case Type::FP128TyID:
    958     return &Val2.getSemantics() == &APFloat::IEEEsingle ||
    959            &Val2.getSemantics() == &APFloat::IEEEdouble ||
    960            &Val2.getSemantics() == &APFloat::IEEEquad;
    961   case Type::PPC_FP128TyID:
    962     return &Val2.getSemantics() == &APFloat::IEEEsingle ||
    963            &Val2.getSemantics() == &APFloat::IEEEdouble ||
    964            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
    965   }
    966 }
    967 
    968 //===----------------------------------------------------------------------===//
    969 //                      Factory Function Implementation
    970 
    971 ConstantAggregateZero* ConstantAggregateZero::get(Type* Ty) {
    972   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
    973          "Cannot create an aggregate zero of non-aggregate type!");
    974 
    975   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
    976   return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
    977 }
    978 
    979 /// destroyConstant - Remove the constant from the constant table...
    980 ///
    981 void ConstantAggregateZero::destroyConstant() {
    982   getType()->getContext().pImpl->AggZeroConstants.remove(this);
    983   destroyConstantImpl();
    984 }
    985 
    986 /// destroyConstant - Remove the constant from the constant table...
    987 ///
    988 void ConstantArray::destroyConstant() {
    989   getType()->getContext().pImpl->ArrayConstants.remove(this);
    990   destroyConstantImpl();
    991 }
    992 
    993 /// isString - This method returns true if the array is an array of i8, and
    994 /// if the elements of the array are all ConstantInt's.
    995 bool ConstantArray::isString() const {
    996   // Check the element type for i8...
    997   if (!getType()->getElementType()->isIntegerTy(8))
    998     return false;
    999   // Check the elements to make sure they are all integers, not constant
   1000   // expressions.
   1001   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1002     if (!isa<ConstantInt>(getOperand(i)))
   1003       return false;
   1004   return true;
   1005 }
   1006 
   1007 /// isCString - This method returns true if the array is a string (see
   1008 /// isString) and it ends in a null byte \\0 and does not contains any other
   1009 /// null bytes except its terminator.
   1010 bool ConstantArray::isCString() const {
   1011   // Check the element type for i8...
   1012   if (!getType()->getElementType()->isIntegerTy(8))
   1013     return false;
   1014 
   1015   // Last element must be a null.
   1016   if (!getOperand(getNumOperands()-1)->isNullValue())
   1017     return false;
   1018   // Other elements must be non-null integers.
   1019   for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
   1020     if (!isa<ConstantInt>(getOperand(i)))
   1021       return false;
   1022     if (getOperand(i)->isNullValue())
   1023       return false;
   1024   }
   1025   return true;
   1026 }
   1027 
   1028 
   1029 /// convertToString - Helper function for getAsString() and getAsCString().
   1030 static std::string convertToString(const User *U, unsigned len) {
   1031   std::string Result;
   1032   Result.reserve(len);
   1033   for (unsigned i = 0; i != len; ++i)
   1034     Result.push_back((char)cast<ConstantInt>(U->getOperand(i))->getZExtValue());
   1035   return Result;
   1036 }
   1037 
   1038 /// getAsString - If this array is isString(), then this method converts the
   1039 /// array to an std::string and returns it.  Otherwise, it asserts out.
   1040 ///
   1041 std::string ConstantArray::getAsString() const {
   1042   assert(isString() && "Not a string!");
   1043   return convertToString(this, getNumOperands());
   1044 }
   1045 
   1046 
   1047 /// getAsCString - If this array is isCString(), then this method converts the
   1048 /// array (without the trailing null byte) to an std::string and returns it.
   1049 /// Otherwise, it asserts out.
   1050 ///
   1051 std::string ConstantArray::getAsCString() const {
   1052   assert(isCString() && "Not a string!");
   1053   return convertToString(this, getNumOperands() - 1);
   1054 }
   1055 
   1056 
   1057 //---- ConstantStruct::get() implementation...
   1058 //
   1059 
   1060 // destroyConstant - Remove the constant from the constant table...
   1061 //
   1062 void ConstantStruct::destroyConstant() {
   1063   getType()->getContext().pImpl->StructConstants.remove(this);
   1064   destroyConstantImpl();
   1065 }
   1066 
   1067 // destroyConstant - Remove the constant from the constant table...
   1068 //
   1069 void ConstantVector::destroyConstant() {
   1070   getType()->getContext().pImpl->VectorConstants.remove(this);
   1071   destroyConstantImpl();
   1072 }
   1073 
   1074 /// This function will return true iff every element in this vector constant
   1075 /// is set to all ones.
   1076 /// @returns true iff this constant's elements are all set to all ones.
   1077 /// @brief Determine if the value is all ones.
   1078 bool ConstantVector::isAllOnesValue() const {
   1079   // Check out first element.
   1080   const Constant *Elt = getOperand(0);
   1081   const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
   1082   if (!CI || !CI->isAllOnesValue()) return false;
   1083   // Then make sure all remaining elements point to the same value.
   1084   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1085     if (getOperand(I) != Elt)
   1086       return false;
   1087 
   1088   return true;
   1089 }
   1090 
   1091 /// getSplatValue - If this is a splat constant, where all of the
   1092 /// elements have the same value, return that value. Otherwise return null.
   1093 Constant *ConstantVector::getSplatValue() const {
   1094   // Check out first element.
   1095   Constant *Elt = getOperand(0);
   1096   // Then make sure all remaining elements point to the same value.
   1097   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1098     if (getOperand(I) != Elt)
   1099       return 0;
   1100   return Elt;
   1101 }
   1102 
   1103 //---- ConstantPointerNull::get() implementation.
   1104 //
   1105 
   1106 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
   1107   return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
   1108 }
   1109 
   1110 // destroyConstant - Remove the constant from the constant table...
   1111 //
   1112 void ConstantPointerNull::destroyConstant() {
   1113   getType()->getContext().pImpl->NullPtrConstants.remove(this);
   1114   destroyConstantImpl();
   1115 }
   1116 
   1117 
   1118 //---- UndefValue::get() implementation.
   1119 //
   1120 
   1121 UndefValue *UndefValue::get(Type *Ty) {
   1122   return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
   1123 }
   1124 
   1125 // destroyConstant - Remove the constant from the constant table.
   1126 //
   1127 void UndefValue::destroyConstant() {
   1128   getType()->getContext().pImpl->UndefValueConstants.remove(this);
   1129   destroyConstantImpl();
   1130 }
   1131 
   1132 //---- BlockAddress::get() implementation.
   1133 //
   1134 
   1135 BlockAddress *BlockAddress::get(BasicBlock *BB) {
   1136   assert(BB->getParent() != 0 && "Block must have a parent");
   1137   return get(BB->getParent(), BB);
   1138 }
   1139 
   1140 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
   1141   BlockAddress *&BA =
   1142     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
   1143   if (BA == 0)
   1144     BA = new BlockAddress(F, BB);
   1145 
   1146   assert(BA->getFunction() == F && "Basic block moved between functions");
   1147   return BA;
   1148 }
   1149 
   1150 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
   1151 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
   1152            &Op<0>(), 2) {
   1153   setOperand(0, F);
   1154   setOperand(1, BB);
   1155   BB->AdjustBlockAddressRefCount(1);
   1156 }
   1157 
   1158 
   1159 // destroyConstant - Remove the constant from the constant table.
   1160 //
   1161 void BlockAddress::destroyConstant() {
   1162   getFunction()->getType()->getContext().pImpl
   1163     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
   1164   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1165   destroyConstantImpl();
   1166 }
   1167 
   1168 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
   1169   // This could be replacing either the Basic Block or the Function.  In either
   1170   // case, we have to remove the map entry.
   1171   Function *NewF = getFunction();
   1172   BasicBlock *NewBB = getBasicBlock();
   1173 
   1174   if (U == &Op<0>())
   1175     NewF = cast<Function>(To);
   1176   else
   1177     NewBB = cast<BasicBlock>(To);
   1178 
   1179   // See if the 'new' entry already exists, if not, just update this in place
   1180   // and return early.
   1181   BlockAddress *&NewBA =
   1182     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
   1183   if (NewBA == 0) {
   1184     getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1185 
   1186     // Remove the old entry, this can't cause the map to rehash (just a
   1187     // tombstone will get added).
   1188     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
   1189                                                             getBasicBlock()));
   1190     NewBA = this;
   1191     setOperand(0, NewF);
   1192     setOperand(1, NewBB);
   1193     getBasicBlock()->AdjustBlockAddressRefCount(1);
   1194     return;
   1195   }
   1196 
   1197   // Otherwise, I do need to replace this with an existing value.
   1198   assert(NewBA != this && "I didn't contain From!");
   1199 
   1200   // Everyone using this now uses the replacement.
   1201   replaceAllUsesWith(NewBA);
   1202 
   1203   destroyConstant();
   1204 }
   1205 
   1206 //---- ConstantExpr::get() implementations.
   1207 //
   1208 
   1209 /// This is a utility function to handle folding of casts and lookup of the
   1210 /// cast in the ExprConstants map. It is used by the various get* methods below.
   1211 static inline Constant *getFoldedCast(
   1212   Instruction::CastOps opc, Constant *C, Type *Ty) {
   1213   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
   1214   // Fold a few common cases
   1215   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
   1216     return FC;
   1217 
   1218   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
   1219 
   1220   // Look up the constant in the table first to ensure uniqueness
   1221   std::vector<Constant*> argVec(1, C);
   1222   ExprMapKeyType Key(opc, argVec);
   1223 
   1224   return pImpl->ExprConstants.getOrCreate(Ty, Key);
   1225 }
   1226 
   1227 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
   1228   Instruction::CastOps opc = Instruction::CastOps(oc);
   1229   assert(Instruction::isCast(opc) && "opcode out of range");
   1230   assert(C && Ty && "Null arguments to getCast");
   1231   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
   1232 
   1233   switch (opc) {
   1234   default:
   1235     llvm_unreachable("Invalid cast opcode");
   1236     break;
   1237   case Instruction::Trunc:    return getTrunc(C, Ty);
   1238   case Instruction::ZExt:     return getZExt(C, Ty);
   1239   case Instruction::SExt:     return getSExt(C, Ty);
   1240   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
   1241   case Instruction::FPExt:    return getFPExtend(C, Ty);
   1242   case Instruction::UIToFP:   return getUIToFP(C, Ty);
   1243   case Instruction::SIToFP:   return getSIToFP(C, Ty);
   1244   case Instruction::FPToUI:   return getFPToUI(C, Ty);
   1245   case Instruction::FPToSI:   return getFPToSI(C, Ty);
   1246   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
   1247   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
   1248   case Instruction::BitCast:  return getBitCast(C, Ty);
   1249   }
   1250   return 0;
   1251 }
   1252 
   1253 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
   1254   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1255     return getBitCast(C, Ty);
   1256   return getZExt(C, Ty);
   1257 }
   1258 
   1259 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
   1260   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1261     return getBitCast(C, Ty);
   1262   return getSExt(C, Ty);
   1263 }
   1264 
   1265 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
   1266   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1267     return getBitCast(C, Ty);
   1268   return getTrunc(C, Ty);
   1269 }
   1270 
   1271 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
   1272   assert(S->getType()->isPointerTy() && "Invalid cast");
   1273   assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
   1274 
   1275   if (Ty->isIntegerTy())
   1276     return getPtrToInt(S, Ty);
   1277   return getBitCast(S, Ty);
   1278 }
   1279 
   1280 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
   1281                                        bool isSigned) {
   1282   assert(C->getType()->isIntOrIntVectorTy() &&
   1283          Ty->isIntOrIntVectorTy() && "Invalid cast");
   1284   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1285   unsigned DstBits = Ty->getScalarSizeInBits();
   1286   Instruction::CastOps opcode =
   1287     (SrcBits == DstBits ? Instruction::BitCast :
   1288      (SrcBits > DstBits ? Instruction::Trunc :
   1289       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   1290   return getCast(opcode, C, Ty);
   1291 }
   1292 
   1293 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
   1294   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1295          "Invalid cast");
   1296   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1297   unsigned DstBits = Ty->getScalarSizeInBits();
   1298   if (SrcBits == DstBits)
   1299     return C; // Avoid a useless cast
   1300   Instruction::CastOps opcode =
   1301     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
   1302   return getCast(opcode, C, Ty);
   1303 }
   1304 
   1305 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
   1306 #ifndef NDEBUG
   1307   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1308   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1309 #endif
   1310   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1311   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
   1312   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
   1313   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1314          "SrcTy must be larger than DestTy for Trunc!");
   1315 
   1316   return getFoldedCast(Instruction::Trunc, C, Ty);
   1317 }
   1318 
   1319 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
   1320 #ifndef NDEBUG
   1321   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1322   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1323 #endif
   1324   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1325   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
   1326   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
   1327   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1328          "SrcTy must be smaller than DestTy for SExt!");
   1329 
   1330   return getFoldedCast(Instruction::SExt, C, Ty);
   1331 }
   1332 
   1333 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
   1334 #ifndef NDEBUG
   1335   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1336   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1337 #endif
   1338   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1339   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
   1340   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
   1341   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1342          "SrcTy must be smaller than DestTy for ZExt!");
   1343 
   1344   return getFoldedCast(Instruction::ZExt, C, Ty);
   1345 }
   1346 
   1347 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
   1348 #ifndef NDEBUG
   1349   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1350   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1351 #endif
   1352   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1353   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1354          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1355          "This is an illegal floating point truncation!");
   1356   return getFoldedCast(Instruction::FPTrunc, C, Ty);
   1357 }
   1358 
   1359 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
   1360 #ifndef NDEBUG
   1361   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1362   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1363 #endif
   1364   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1365   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1366          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1367          "This is an illegal floating point extension!");
   1368   return getFoldedCast(Instruction::FPExt, C, Ty);
   1369 }
   1370 
   1371 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
   1372 #ifndef NDEBUG
   1373   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1374   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1375 #endif
   1376   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1377   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1378          "This is an illegal uint to floating point cast!");
   1379   return getFoldedCast(Instruction::UIToFP, C, Ty);
   1380 }
   1381 
   1382 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
   1383 #ifndef NDEBUG
   1384   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1385   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1386 #endif
   1387   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1388   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1389          "This is an illegal sint to floating point cast!");
   1390   return getFoldedCast(Instruction::SIToFP, C, Ty);
   1391 }
   1392 
   1393 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
   1394 #ifndef NDEBUG
   1395   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1396   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1397 #endif
   1398   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1399   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1400          "This is an illegal floating point to uint cast!");
   1401   return getFoldedCast(Instruction::FPToUI, C, Ty);
   1402 }
   1403 
   1404 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
   1405 #ifndef NDEBUG
   1406   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1407   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1408 #endif
   1409   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1410   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1411          "This is an illegal floating point to sint cast!");
   1412   return getFoldedCast(Instruction::FPToSI, C, Ty);
   1413 }
   1414 
   1415 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
   1416   assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
   1417   assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
   1418   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
   1419 }
   1420 
   1421 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
   1422   assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
   1423   assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
   1424   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
   1425 }
   1426 
   1427 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
   1428   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
   1429          "Invalid constantexpr bitcast!");
   1430 
   1431   // It is common to ask for a bitcast of a value to its own type, handle this
   1432   // speedily.
   1433   if (C->getType() == DstTy) return C;
   1434 
   1435   return getFoldedCast(Instruction::BitCast, C, DstTy);
   1436 }
   1437 
   1438 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
   1439                             unsigned Flags) {
   1440   // Check the operands for consistency first.
   1441   assert(Opcode >= Instruction::BinaryOpsBegin &&
   1442          Opcode <  Instruction::BinaryOpsEnd   &&
   1443          "Invalid opcode in binary constant expression");
   1444   assert(C1->getType() == C2->getType() &&
   1445          "Operand types in binary constant expression should match");
   1446 
   1447 #ifndef NDEBUG
   1448   switch (Opcode) {
   1449   case Instruction::Add:
   1450   case Instruction::Sub:
   1451   case Instruction::Mul:
   1452     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1453     assert(C1->getType()->isIntOrIntVectorTy() &&
   1454            "Tried to create an integer operation on a non-integer type!");
   1455     break;
   1456   case Instruction::FAdd:
   1457   case Instruction::FSub:
   1458   case Instruction::FMul:
   1459     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1460     assert(C1->getType()->isFPOrFPVectorTy() &&
   1461            "Tried to create a floating-point operation on a "
   1462            "non-floating-point type!");
   1463     break;
   1464   case Instruction::UDiv:
   1465   case Instruction::SDiv:
   1466     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1467     assert(C1->getType()->isIntOrIntVectorTy() &&
   1468            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1469     break;
   1470   case Instruction::FDiv:
   1471     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1472     assert(C1->getType()->isFPOrFPVectorTy() &&
   1473            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1474     break;
   1475   case Instruction::URem:
   1476   case Instruction::SRem:
   1477     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1478     assert(C1->getType()->isIntOrIntVectorTy() &&
   1479            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1480     break;
   1481   case Instruction::FRem:
   1482     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1483     assert(C1->getType()->isFPOrFPVectorTy() &&
   1484            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1485     break;
   1486   case Instruction::And:
   1487   case Instruction::Or:
   1488   case Instruction::Xor:
   1489     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1490     assert(C1->getType()->isIntOrIntVectorTy() &&
   1491            "Tried to create a logical operation on a non-integral type!");
   1492     break;
   1493   case Instruction::Shl:
   1494   case Instruction::LShr:
   1495   case Instruction::AShr:
   1496     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1497     assert(C1->getType()->isIntOrIntVectorTy() &&
   1498            "Tried to create a shift operation on a non-integer type!");
   1499     break;
   1500   default:
   1501     break;
   1502   }
   1503 #endif
   1504 
   1505   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
   1506     return FC;          // Fold a few common cases.
   1507 
   1508   std::vector<Constant*> argVec(1, C1);
   1509   argVec.push_back(C2);
   1510   ExprMapKeyType Key(Opcode, argVec, 0, Flags);
   1511 
   1512   LLVMContextImpl *pImpl = C1->getContext().pImpl;
   1513   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
   1514 }
   1515 
   1516 Constant *ConstantExpr::getSizeOf(Type* Ty) {
   1517   // sizeof is implemented as: (i64) gep (Ty*)null, 1
   1518   // Note that a non-inbounds gep is used, as null isn't within any object.
   1519   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1520   Constant *GEP = getGetElementPtr(
   1521                  Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
   1522   return getPtrToInt(GEP,
   1523                      Type::getInt64Ty(Ty->getContext()));
   1524 }
   1525 
   1526 Constant *ConstantExpr::getAlignOf(Type* Ty) {
   1527   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
   1528   // Note that a non-inbounds gep is used, as null isn't within any object.
   1529   Type *AligningTy =
   1530     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
   1531   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
   1532   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
   1533   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1534   Constant *Indices[2] = { Zero, One };
   1535   Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
   1536   return getPtrToInt(GEP,
   1537                      Type::getInt64Ty(Ty->getContext()));
   1538 }
   1539 
   1540 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
   1541   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
   1542                                            FieldNo));
   1543 }
   1544 
   1545 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
   1546   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
   1547   // Note that a non-inbounds gep is used, as null isn't within any object.
   1548   Constant *GEPIdx[] = {
   1549     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
   1550     FieldNo
   1551   };
   1552   Constant *GEP = getGetElementPtr(
   1553                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2);
   1554   return getPtrToInt(GEP,
   1555                      Type::getInt64Ty(Ty->getContext()));
   1556 }
   1557 
   1558 Constant *ConstantExpr::getCompare(unsigned short Predicate,
   1559                                    Constant *C1, Constant *C2) {
   1560   assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1561 
   1562   switch (Predicate) {
   1563   default: llvm_unreachable("Invalid CmpInst predicate");
   1564   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
   1565   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
   1566   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
   1567   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
   1568   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
   1569   case CmpInst::FCMP_TRUE:
   1570     return getFCmp(Predicate, C1, C2);
   1571 
   1572   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
   1573   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
   1574   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
   1575   case CmpInst::ICMP_SLE:
   1576     return getICmp(Predicate, C1, C2);
   1577   }
   1578 }
   1579 
   1580 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
   1581   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
   1582 
   1583   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
   1584     return SC;        // Fold common cases
   1585 
   1586   std::vector<Constant*> argVec(3, C);
   1587   argVec[1] = V1;
   1588   argVec[2] = V2;
   1589   ExprMapKeyType Key(Instruction::Select, argVec);
   1590 
   1591   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1592   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
   1593 }
   1594 
   1595 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
   1596                                          unsigned NumIdx, bool InBounds) {
   1597   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds,
   1598                                                makeArrayRef(Idxs, NumIdx)))
   1599     return FC;          // Fold a few common cases.
   1600 
   1601   // Get the result type of the getelementptr!
   1602   Type *Ty =
   1603     GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
   1604   assert(Ty && "GEP indices invalid!");
   1605   unsigned AS = cast<PointerType>(C->getType())->getAddressSpace();
   1606   Type *ReqTy = Ty->getPointerTo(AS);
   1607 
   1608   assert(C->getType()->isPointerTy() &&
   1609          "Non-pointer type for constant GetElementPtr expression");
   1610   // Look up the constant in the table first to ensure uniqueness
   1611   std::vector<Constant*> ArgVec;
   1612   ArgVec.reserve(NumIdx+1);
   1613   ArgVec.push_back(C);
   1614   for (unsigned i = 0; i != NumIdx; ++i)
   1615     ArgVec.push_back(cast<Constant>(Idxs[i]));
   1616   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
   1617                            InBounds ? GEPOperator::IsInBounds : 0);
   1618 
   1619   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1620   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1621 }
   1622 
   1623 Constant *
   1624 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
   1625   assert(LHS->getType() == RHS->getType());
   1626   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
   1627          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
   1628 
   1629   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1630     return FC;          // Fold a few common cases...
   1631 
   1632   // Look up the constant in the table first to ensure uniqueness
   1633   std::vector<Constant*> ArgVec;
   1634   ArgVec.push_back(LHS);
   1635   ArgVec.push_back(RHS);
   1636   // Get the key type with both the opcode and predicate
   1637   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
   1638 
   1639   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1640   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1641     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1642 
   1643   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1644   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1645 }
   1646 
   1647 Constant *
   1648 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
   1649   assert(LHS->getType() == RHS->getType());
   1650   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
   1651 
   1652   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1653     return FC;          // Fold a few common cases...
   1654 
   1655   // Look up the constant in the table first to ensure uniqueness
   1656   std::vector<Constant*> ArgVec;
   1657   ArgVec.push_back(LHS);
   1658   ArgVec.push_back(RHS);
   1659   // Get the key type with both the opcode and predicate
   1660   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
   1661 
   1662   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1663   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1664     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1665 
   1666   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1667   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1668 }
   1669 
   1670 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
   1671   assert(Val->getType()->isVectorTy() &&
   1672          "Tried to create extractelement operation on non-vector type!");
   1673   assert(Idx->getType()->isIntegerTy(32) &&
   1674          "Extractelement index must be i32 type!");
   1675 
   1676   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
   1677     return FC;          // Fold a few common cases.
   1678 
   1679   // Look up the constant in the table first to ensure uniqueness
   1680   std::vector<Constant*> ArgVec(1, Val);
   1681   ArgVec.push_back(Idx);
   1682   const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
   1683 
   1684   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   1685   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
   1686   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1687 }
   1688 
   1689 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
   1690                                          Constant *Idx) {
   1691   assert(Val->getType()->isVectorTy() &&
   1692          "Tried to create insertelement operation on non-vector type!");
   1693   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
   1694          && "Insertelement types must match!");
   1695   assert(Idx->getType()->isIntegerTy(32) &&
   1696          "Insertelement index must be i32 type!");
   1697 
   1698   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
   1699     return FC;          // Fold a few common cases.
   1700   // Look up the constant in the table first to ensure uniqueness
   1701   std::vector<Constant*> ArgVec(1, Val);
   1702   ArgVec.push_back(Elt);
   1703   ArgVec.push_back(Idx);
   1704   const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
   1705 
   1706   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   1707   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
   1708 }
   1709 
   1710 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
   1711                                          Constant *Mask) {
   1712   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
   1713          "Invalid shuffle vector constant expr operands!");
   1714 
   1715   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
   1716     return FC;          // Fold a few common cases.
   1717 
   1718   unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
   1719   Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
   1720   Type *ShufTy = VectorType::get(EltTy, NElts);
   1721 
   1722   // Look up the constant in the table first to ensure uniqueness
   1723   std::vector<Constant*> ArgVec(1, V1);
   1724   ArgVec.push_back(V2);
   1725   ArgVec.push_back(Mask);
   1726   const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
   1727 
   1728   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
   1729   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
   1730 }
   1731 
   1732 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
   1733                                        ArrayRef<unsigned> Idxs) {
   1734   assert(ExtractValueInst::getIndexedType(Agg->getType(),
   1735                                           Idxs) == Val->getType() &&
   1736          "insertvalue indices invalid!");
   1737   assert(Agg->getType()->isFirstClassType() &&
   1738          "Non-first-class type for constant insertvalue expression");
   1739   Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
   1740   assert(FC && "insertvalue constant expr couldn't be folded!");
   1741   return FC;
   1742 }
   1743 
   1744 Constant *ConstantExpr::getExtractValue(Constant *Agg,
   1745                                         ArrayRef<unsigned> Idxs) {
   1746   assert(Agg->getType()->isFirstClassType() &&
   1747          "Tried to create extractelement operation on non-first-class type!");
   1748 
   1749   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
   1750   (void)ReqTy;
   1751   assert(ReqTy && "extractvalue indices invalid!");
   1752 
   1753   assert(Agg->getType()->isFirstClassType() &&
   1754          "Non-first-class type for constant extractvalue expression");
   1755   Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
   1756   assert(FC && "ExtractValue constant expr couldn't be folded!");
   1757   return FC;
   1758 }
   1759 
   1760 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
   1761   assert(C->getType()->isIntOrIntVectorTy() &&
   1762          "Cannot NEG a nonintegral value!");
   1763   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
   1764                 C, HasNUW, HasNSW);
   1765 }
   1766 
   1767 Constant *ConstantExpr::getFNeg(Constant *C) {
   1768   assert(C->getType()->isFPOrFPVectorTy() &&
   1769          "Cannot FNEG a non-floating-point value!");
   1770   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
   1771 }
   1772 
   1773 Constant *ConstantExpr::getNot(Constant *C) {
   1774   assert(C->getType()->isIntOrIntVectorTy() &&
   1775          "Cannot NOT a nonintegral value!");
   1776   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
   1777 }
   1778 
   1779 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
   1780                                bool HasNUW, bool HasNSW) {
   1781   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   1782                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   1783   return get(Instruction::Add, C1, C2, Flags);
   1784 }
   1785 
   1786 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
   1787   return get(Instruction::FAdd, C1, C2);
   1788 }
   1789 
   1790 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
   1791                                bool HasNUW, bool HasNSW) {
   1792   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   1793                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   1794   return get(Instruction::Sub, C1, C2, Flags);
   1795 }
   1796 
   1797 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
   1798   return get(Instruction::FSub, C1, C2);
   1799 }
   1800 
   1801 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
   1802                                bool HasNUW, bool HasNSW) {
   1803   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   1804                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   1805   return get(Instruction::Mul, C1, C2, Flags);
   1806 }
   1807 
   1808 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
   1809   return get(Instruction::FMul, C1, C2);
   1810 }
   1811 
   1812 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
   1813   return get(Instruction::UDiv, C1, C2,
   1814              isExact ? PossiblyExactOperator::IsExact : 0);
   1815 }
   1816 
   1817 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
   1818   return get(Instruction::SDiv, C1, C2,
   1819              isExact ? PossiblyExactOperator::IsExact : 0);
   1820 }
   1821 
   1822 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
   1823   return get(Instruction::FDiv, C1, C2);
   1824 }
   1825 
   1826 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
   1827   return get(Instruction::URem, C1, C2);
   1828 }
   1829 
   1830 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
   1831   return get(Instruction::SRem, C1, C2);
   1832 }
   1833 
   1834 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
   1835   return get(Instruction::FRem, C1, C2);
   1836 }
   1837 
   1838 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
   1839   return get(Instruction::And, C1, C2);
   1840 }
   1841 
   1842 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
   1843   return get(Instruction::Or, C1, C2);
   1844 }
   1845 
   1846 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
   1847   return get(Instruction::Xor, C1, C2);
   1848 }
   1849 
   1850 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
   1851                                bool HasNUW, bool HasNSW) {
   1852   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   1853                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   1854   return get(Instruction::Shl, C1, C2, Flags);
   1855 }
   1856 
   1857 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
   1858   return get(Instruction::LShr, C1, C2,
   1859              isExact ? PossiblyExactOperator::IsExact : 0);
   1860 }
   1861 
   1862 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
   1863   return get(Instruction::AShr, C1, C2,
   1864              isExact ? PossiblyExactOperator::IsExact : 0);
   1865 }
   1866 
   1867 // destroyConstant - Remove the constant from the constant table...
   1868 //
   1869 void ConstantExpr::destroyConstant() {
   1870   getType()->getContext().pImpl->ExprConstants.remove(this);
   1871   destroyConstantImpl();
   1872 }
   1873 
   1874 const char *ConstantExpr::getOpcodeName() const {
   1875   return Instruction::getOpcodeName(getOpcode());
   1876 }
   1877 
   1878 
   1879 
   1880 GetElementPtrConstantExpr::
   1881 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
   1882                           Type *DestTy)
   1883   : ConstantExpr(DestTy, Instruction::GetElementPtr,
   1884                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
   1885                  - (IdxList.size()+1), IdxList.size()+1) {
   1886   OperandList[0] = C;
   1887   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
   1888     OperandList[i+1] = IdxList[i];
   1889 }
   1890 
   1891 
   1892 //===----------------------------------------------------------------------===//
   1893 //                replaceUsesOfWithOnConstant implementations
   1894 
   1895 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
   1896 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
   1897 /// etc.
   1898 ///
   1899 /// Note that we intentionally replace all uses of From with To here.  Consider
   1900 /// a large array that uses 'From' 1000 times.  By handling this case all here,
   1901 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
   1902 /// single invocation handles all 1000 uses.  Handling them one at a time would
   1903 /// work, but would be really slow because it would have to unique each updated
   1904 /// array instance.
   1905 ///
   1906 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
   1907                                                 Use *U) {
   1908   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   1909   Constant *ToC = cast<Constant>(To);
   1910 
   1911   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
   1912 
   1913   std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
   1914   Lookup.first.first = cast<ArrayType>(getType());
   1915   Lookup.second = this;
   1916 
   1917   std::vector<Constant*> &Values = Lookup.first.second;
   1918   Values.reserve(getNumOperands());  // Build replacement array.
   1919 
   1920   // Fill values with the modified operands of the constant array.  Also,
   1921   // compute whether this turns into an all-zeros array.
   1922   bool isAllZeros = false;
   1923   unsigned NumUpdated = 0;
   1924   if (!ToC->isNullValue()) {
   1925     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   1926       Constant *Val = cast<Constant>(O->get());
   1927       if (Val == From) {
   1928         Val = ToC;
   1929         ++NumUpdated;
   1930       }
   1931       Values.push_back(Val);
   1932     }
   1933   } else {
   1934     isAllZeros = true;
   1935     for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
   1936       Constant *Val = cast<Constant>(O->get());
   1937       if (Val == From) {
   1938         Val = ToC;
   1939         ++NumUpdated;
   1940       }
   1941       Values.push_back(Val);
   1942       if (isAllZeros) isAllZeros = Val->isNullValue();
   1943     }
   1944   }
   1945 
   1946   Constant *Replacement = 0;
   1947   if (isAllZeros) {
   1948     Replacement = ConstantAggregateZero::get(getType());
   1949   } else {
   1950     // Check to see if we have this array type already.
   1951     bool Exists;
   1952     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
   1953       pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
   1954 
   1955     if (Exists) {
   1956       Replacement = I->second;
   1957     } else {
   1958       // Okay, the new shape doesn't exist in the system yet.  Instead of
   1959       // creating a new constant array, inserting it, replaceallusesof'ing the
   1960       // old with the new, then deleting the old... just update the current one
   1961       // in place!
   1962       pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
   1963 
   1964       // Update to the new value.  Optimize for the case when we have a single
   1965       // operand that we're changing, but handle bulk updates efficiently.
   1966       if (NumUpdated == 1) {
   1967         unsigned OperandToUpdate = U - OperandList;
   1968         assert(getOperand(OperandToUpdate) == From &&
   1969                "ReplaceAllUsesWith broken!");
   1970         setOperand(OperandToUpdate, ToC);
   1971       } else {
   1972         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1973           if (getOperand(i) == From)
   1974             setOperand(i, ToC);
   1975       }
   1976       return;
   1977     }
   1978   }
   1979 
   1980   // Otherwise, I do need to replace this with an existing value.
   1981   assert(Replacement != this && "I didn't contain From!");
   1982 
   1983   // Everyone using this now uses the replacement.
   1984   replaceAllUsesWith(Replacement);
   1985 
   1986   // Delete the old constant!
   1987   destroyConstant();
   1988 }
   1989 
   1990 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
   1991                                                  Use *U) {
   1992   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   1993   Constant *ToC = cast<Constant>(To);
   1994 
   1995   unsigned OperandToUpdate = U-OperandList;
   1996   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
   1997 
   1998   std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
   1999   Lookup.first.first = cast<StructType>(getType());
   2000   Lookup.second = this;
   2001   std::vector<Constant*> &Values = Lookup.first.second;
   2002   Values.reserve(getNumOperands());  // Build replacement struct.
   2003 
   2004 
   2005   // Fill values with the modified operands of the constant struct.  Also,
   2006   // compute whether this turns into an all-zeros struct.
   2007   bool isAllZeros = false;
   2008   if (!ToC->isNullValue()) {
   2009     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
   2010       Values.push_back(cast<Constant>(O->get()));
   2011   } else {
   2012     isAllZeros = true;
   2013     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2014       Constant *Val = cast<Constant>(O->get());
   2015       Values.push_back(Val);
   2016       if (isAllZeros) isAllZeros = Val->isNullValue();
   2017     }
   2018   }
   2019   Values[OperandToUpdate] = ToC;
   2020 
   2021   LLVMContextImpl *pImpl = getContext().pImpl;
   2022 
   2023   Constant *Replacement = 0;
   2024   if (isAllZeros) {
   2025     Replacement = ConstantAggregateZero::get(getType());
   2026   } else {
   2027     // Check to see if we have this struct type already.
   2028     bool Exists;
   2029     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
   2030       pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
   2031 
   2032     if (Exists) {
   2033       Replacement = I->second;
   2034     } else {
   2035       // Okay, the new shape doesn't exist in the system yet.  Instead of
   2036       // creating a new constant struct, inserting it, replaceallusesof'ing the
   2037       // old with the new, then deleting the old... just update the current one
   2038       // in place!
   2039       pImpl->StructConstants.MoveConstantToNewSlot(this, I);
   2040 
   2041       // Update to the new value.
   2042       setOperand(OperandToUpdate, ToC);
   2043       return;
   2044     }
   2045   }
   2046 
   2047   assert(Replacement != this && "I didn't contain From!");
   2048 
   2049   // Everyone using this now uses the replacement.
   2050   replaceAllUsesWith(Replacement);
   2051 
   2052   // Delete the old constant!
   2053   destroyConstant();
   2054 }
   2055 
   2056 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2057                                                  Use *U) {
   2058   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2059 
   2060   std::vector<Constant*> Values;
   2061   Values.reserve(getNumOperands());  // Build replacement array...
   2062   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2063     Constant *Val = getOperand(i);
   2064     if (Val == From) Val = cast<Constant>(To);
   2065     Values.push_back(Val);
   2066   }
   2067 
   2068   Constant *Replacement = get(Values);
   2069   assert(Replacement != this && "I didn't contain From!");
   2070 
   2071   // Everyone using this now uses the replacement.
   2072   replaceAllUsesWith(Replacement);
   2073 
   2074   // Delete the old constant!
   2075   destroyConstant();
   2076 }
   2077 
   2078 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
   2079                                                Use *U) {
   2080   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
   2081   Constant *To = cast<Constant>(ToV);
   2082 
   2083   Constant *Replacement = 0;
   2084   if (getOpcode() == Instruction::GetElementPtr) {
   2085     SmallVector<Constant*, 8> Indices;
   2086     Constant *Pointer = getOperand(0);
   2087     Indices.reserve(getNumOperands()-1);
   2088     if (Pointer == From) Pointer = To;
   2089 
   2090     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   2091       Constant *Val = getOperand(i);
   2092       if (Val == From) Val = To;
   2093       Indices.push_back(Val);
   2094     }
   2095     Replacement = ConstantExpr::getGetElementPtr(Pointer,
   2096                                                  &Indices[0], Indices.size(),
   2097                                          cast<GEPOperator>(this)->isInBounds());
   2098   } else if (getOpcode() == Instruction::ExtractValue) {
   2099     Constant *Agg = getOperand(0);
   2100     if (Agg == From) Agg = To;
   2101 
   2102     ArrayRef<unsigned> Indices = getIndices();
   2103     Replacement = ConstantExpr::getExtractValue(Agg, Indices);
   2104   } else if (getOpcode() == Instruction::InsertValue) {
   2105     Constant *Agg = getOperand(0);
   2106     Constant *Val = getOperand(1);
   2107     if (Agg == From) Agg = To;
   2108     if (Val == From) Val = To;
   2109 
   2110     ArrayRef<unsigned> Indices = getIndices();
   2111     Replacement = ConstantExpr::getInsertValue(Agg, Val, Indices);
   2112   } else if (isCast()) {
   2113     assert(getOperand(0) == From && "Cast only has one use!");
   2114     Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
   2115   } else if (getOpcode() == Instruction::Select) {
   2116     Constant *C1 = getOperand(0);
   2117     Constant *C2 = getOperand(1);
   2118     Constant *C3 = getOperand(2);
   2119     if (C1 == From) C1 = To;
   2120     if (C2 == From) C2 = To;
   2121     if (C3 == From) C3 = To;
   2122     Replacement = ConstantExpr::getSelect(C1, C2, C3);
   2123   } else if (getOpcode() == Instruction::ExtractElement) {
   2124     Constant *C1 = getOperand(0);
   2125     Constant *C2 = getOperand(1);
   2126     if (C1 == From) C1 = To;
   2127     if (C2 == From) C2 = To;
   2128     Replacement = ConstantExpr::getExtractElement(C1, C2);
   2129   } else if (getOpcode() == Instruction::InsertElement) {
   2130     Constant *C1 = getOperand(0);
   2131     Constant *C2 = getOperand(1);
   2132     Constant *C3 = getOperand(1);
   2133     if (C1 == From) C1 = To;
   2134     if (C2 == From) C2 = To;
   2135     if (C3 == From) C3 = To;
   2136     Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
   2137   } else if (getOpcode() == Instruction::ShuffleVector) {
   2138     Constant *C1 = getOperand(0);
   2139     Constant *C2 = getOperand(1);
   2140     Constant *C3 = getOperand(2);
   2141     if (C1 == From) C1 = To;
   2142     if (C2 == From) C2 = To;
   2143     if (C3 == From) C3 = To;
   2144     Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
   2145   } else if (isCompare()) {
   2146     Constant *C1 = getOperand(0);
   2147     Constant *C2 = getOperand(1);
   2148     if (C1 == From) C1 = To;
   2149     if (C2 == From) C2 = To;
   2150     if (getOpcode() == Instruction::ICmp)
   2151       Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
   2152     else {
   2153       assert(getOpcode() == Instruction::FCmp);
   2154       Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
   2155     }
   2156   } else if (getNumOperands() == 2) {
   2157     Constant *C1 = getOperand(0);
   2158     Constant *C2 = getOperand(1);
   2159     if (C1 == From) C1 = To;
   2160     if (C2 == From) C2 = To;
   2161     Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
   2162   } else {
   2163     llvm_unreachable("Unknown ConstantExpr type!");
   2164     return;
   2165   }
   2166 
   2167   assert(Replacement != this && "I didn't contain From!");
   2168 
   2169   // Everyone using this now uses the replacement.
   2170   replaceAllUsesWith(Replacement);
   2171 
   2172   // Delete the old constant!
   2173   destroyConstant();
   2174 }
   2175