1 // Copyright (c) 2010 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_BASICTYPES_H_ 6 #define BASE_BASICTYPES_H_ 7 #pragma once 8 9 #include <limits.h> // So we can set the bounds of our types 10 #include <stddef.h> // For size_t 11 #include <string.h> // for memcpy 12 13 #include "base/port.h" // Types that only need exist on certain systems 14 15 #ifndef COMPILER_MSVC 16 // stdint.h is part of C99 but MSVC doesn't have it. 17 #include <stdint.h> // For intptr_t. 18 #endif 19 20 typedef signed char schar; 21 typedef signed char int8; 22 typedef short int16; 23 // TODO: Remove these type guards. These are to avoid conflicts with 24 // obsolete/protypes.h in the Gecko SDK. 25 #ifndef _INT32 26 #define _INT32 27 typedef int int32; 28 #endif 29 30 // The NSPR system headers define 64-bit as |long| when possible, except on 31 // Mac OS X. In order to not have typedef mismatches, we do the same on LP64. 32 // 33 // On Mac OS X, |long long| is used for 64-bit types for compatibility with 34 // <inttypes.h> format macros even in the LP64 model. 35 #if defined(__LP64__) && !defined(OS_MACOSX) 36 typedef long int64; 37 #else 38 typedef long long int64; 39 #endif 40 41 // NOTE: unsigned types are DANGEROUS in loops and other arithmetical 42 // places. Use the signed types unless your variable represents a bit 43 // pattern (eg a hash value) or you really need the extra bit. Do NOT 44 // use 'unsigned' to express "this value should always be positive"; 45 // use assertions for this. 46 47 typedef unsigned char uint8; 48 typedef unsigned short uint16; 49 // TODO: Remove these type guards. These are to avoid conflicts with 50 // obsolete/protypes.h in the Gecko SDK. 51 #ifndef _UINT32 52 #define _UINT32 53 typedef unsigned int uint32; 54 #endif 55 56 // See the comment above about NSPR and 64-bit. 57 #if defined(__LP64__) && !defined(OS_MACOSX) 58 typedef unsigned long uint64; 59 #else 60 typedef unsigned long long uint64; 61 #endif 62 63 // A type to represent a Unicode code-point value. As of Unicode 4.0, 64 // such values require up to 21 bits. 65 // (For type-checking on pointers, make this explicitly signed, 66 // and it should always be the signed version of whatever int32 is.) 67 typedef signed int char32; 68 69 const uint8 kuint8max = (( uint8) 0xFF); 70 const uint16 kuint16max = ((uint16) 0xFFFF); 71 const uint32 kuint32max = ((uint32) 0xFFFFFFFF); 72 const uint64 kuint64max = ((uint64) GG_LONGLONG(0xFFFFFFFFFFFFFFFF)); 73 const int8 kint8min = (( int8) 0x80); 74 const int8 kint8max = (( int8) 0x7F); 75 const int16 kint16min = (( int16) 0x8000); 76 const int16 kint16max = (( int16) 0x7FFF); 77 const int32 kint32min = (( int32) 0x80000000); 78 const int32 kint32max = (( int32) 0x7FFFFFFF); 79 const int64 kint64min = (( int64) GG_LONGLONG(0x8000000000000000)); 80 const int64 kint64max = (( int64) GG_LONGLONG(0x7FFFFFFFFFFFFFFF)); 81 82 // A macro to disallow the copy constructor and operator= functions 83 // This should be used in the private: declarations for a class 84 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ 85 TypeName(const TypeName&); \ 86 void operator=(const TypeName&) 87 88 // An older, deprecated, politically incorrect name for the above. 89 // NOTE: The usage of this macro was baned from our code base, but some 90 // third_party libraries are yet using it. 91 // TODO(tfarina): Figure out how to fix the usage of this macro in the 92 // third_party libraries and get rid of it. 93 #define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName) 94 95 // A macro to disallow all the implicit constructors, namely the 96 // default constructor, copy constructor and operator= functions. 97 // 98 // This should be used in the private: declarations for a class 99 // that wants to prevent anyone from instantiating it. This is 100 // especially useful for classes containing only static methods. 101 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ 102 TypeName(); \ 103 DISALLOW_COPY_AND_ASSIGN(TypeName) 104 105 // The arraysize(arr) macro returns the # of elements in an array arr. 106 // The expression is a compile-time constant, and therefore can be 107 // used in defining new arrays, for example. If you use arraysize on 108 // a pointer by mistake, you will get a compile-time error. 109 // 110 // One caveat is that arraysize() doesn't accept any array of an 111 // anonymous type or a type defined inside a function. In these rare 112 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is 113 // due to a limitation in C++'s template system. The limitation might 114 // eventually be removed, but it hasn't happened yet. 115 116 // This template function declaration is used in defining arraysize. 117 // Note that the function doesn't need an implementation, as we only 118 // use its type. 119 template <typename T, size_t N> 120 char (&ArraySizeHelper(T (&array)[N]))[N]; 121 122 // That gcc wants both of these prototypes seems mysterious. VC, for 123 // its part, can't decide which to use (another mystery). Matching of 124 // template overloads: the final frontier. 125 #ifndef _MSC_VER 126 template <typename T, size_t N> 127 char (&ArraySizeHelper(const T (&array)[N]))[N]; 128 #endif 129 130 #define arraysize(array) (sizeof(ArraySizeHelper(array))) 131 132 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize, 133 // but can be used on anonymous types or types defined inside 134 // functions. It's less safe than arraysize as it accepts some 135 // (although not all) pointers. Therefore, you should use arraysize 136 // whenever possible. 137 // 138 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type 139 // size_t. 140 // 141 // ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error 142 // 143 // "warning: division by zero in ..." 144 // 145 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer. 146 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays. 147 // 148 // The following comments are on the implementation details, and can 149 // be ignored by the users. 150 // 151 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in 152 // the array) and sizeof(*(arr)) (the # of bytes in one array 153 // element). If the former is divisible by the latter, perhaps arr is 154 // indeed an array, in which case the division result is the # of 155 // elements in the array. Otherwise, arr cannot possibly be an array, 156 // and we generate a compiler error to prevent the code from 157 // compiling. 158 // 159 // Since the size of bool is implementation-defined, we need to cast 160 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final 161 // result has type size_t. 162 // 163 // This macro is not perfect as it wrongfully accepts certain 164 // pointers, namely where the pointer size is divisible by the pointee 165 // size. Since all our code has to go through a 32-bit compiler, 166 // where a pointer is 4 bytes, this means all pointers to a type whose 167 // size is 3 or greater than 4 will be (righteously) rejected. 168 169 #define ARRAYSIZE_UNSAFE(a) \ 170 ((sizeof(a) / sizeof(*(a))) / \ 171 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) 172 173 174 // Use implicit_cast as a safe version of static_cast or const_cast 175 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo 176 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to 177 // a const pointer to Foo). 178 // When you use implicit_cast, the compiler checks that the cast is safe. 179 // Such explicit implicit_casts are necessary in surprisingly many 180 // situations where C++ demands an exact type match instead of an 181 // argument type convertable to a target type. 182 // 183 // The From type can be inferred, so the preferred syntax for using 184 // implicit_cast is the same as for static_cast etc.: 185 // 186 // implicit_cast<ToType>(expr) 187 // 188 // implicit_cast would have been part of the C++ standard library, 189 // but the proposal was submitted too late. It will probably make 190 // its way into the language in the future. 191 template<typename To, typename From> 192 inline To implicit_cast(From const &f) { 193 return f; 194 } 195 196 // The COMPILE_ASSERT macro can be used to verify that a compile time 197 // expression is true. For example, you could use it to verify the 198 // size of a static array: 199 // 200 // COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES, 201 // content_type_names_incorrect_size); 202 // 203 // or to make sure a struct is smaller than a certain size: 204 // 205 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); 206 // 207 // The second argument to the macro is the name of the variable. If 208 // the expression is false, most compilers will issue a warning/error 209 // containing the name of the variable. 210 211 template <bool> 212 struct CompileAssert { 213 }; 214 215 #undef COMPILE_ASSERT 216 #define COMPILE_ASSERT(expr, msg) \ 217 typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1] 218 219 // Implementation details of COMPILE_ASSERT: 220 // 221 // - COMPILE_ASSERT works by defining an array type that has -1 222 // elements (and thus is invalid) when the expression is false. 223 // 224 // - The simpler definition 225 // 226 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] 227 // 228 // does not work, as gcc supports variable-length arrays whose sizes 229 // are determined at run-time (this is gcc's extension and not part 230 // of the C++ standard). As a result, gcc fails to reject the 231 // following code with the simple definition: 232 // 233 // int foo; 234 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is 235 // // not a compile-time constant. 236 // 237 // - By using the type CompileAssert<(bool(expr))>, we ensures that 238 // expr is a compile-time constant. (Template arguments must be 239 // determined at compile-time.) 240 // 241 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary 242 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written 243 // 244 // CompileAssert<bool(expr)> 245 // 246 // instead, these compilers will refuse to compile 247 // 248 // COMPILE_ASSERT(5 > 0, some_message); 249 // 250 // (They seem to think the ">" in "5 > 0" marks the end of the 251 // template argument list.) 252 // 253 // - The array size is (bool(expr) ? 1 : -1), instead of simply 254 // 255 // ((expr) ? 1 : -1). 256 // 257 // This is to avoid running into a bug in MS VC 7.1, which 258 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. 259 260 261 // MetatagId refers to metatag-id that we assign to 262 // each metatag <name, value> pair.. 263 typedef uint32 MetatagId; 264 265 // Argument type used in interfaces that can optionally take ownership 266 // of a passed in argument. If TAKE_OWNERSHIP is passed, the called 267 // object takes ownership of the argument. Otherwise it does not. 268 enum Ownership { 269 DO_NOT_TAKE_OWNERSHIP, 270 TAKE_OWNERSHIP 271 }; 272 273 // bit_cast<Dest,Source> is a template function that implements the 274 // equivalent of "*reinterpret_cast<Dest*>(&source)". We need this in 275 // very low-level functions like the protobuf library and fast math 276 // support. 277 // 278 // float f = 3.14159265358979; 279 // int i = bit_cast<int32>(f); 280 // // i = 0x40490fdb 281 // 282 // The classical address-casting method is: 283 // 284 // // WRONG 285 // float f = 3.14159265358979; // WRONG 286 // int i = * reinterpret_cast<int*>(&f); // WRONG 287 // 288 // The address-casting method actually produces undefined behavior 289 // according to ISO C++ specification section 3.10 -15 -. Roughly, this 290 // section says: if an object in memory has one type, and a program 291 // accesses it with a different type, then the result is undefined 292 // behavior for most values of "different type". 293 // 294 // This is true for any cast syntax, either *(int*)&f or 295 // *reinterpret_cast<int*>(&f). And it is particularly true for 296 // conversions betweeen integral lvalues and floating-point lvalues. 297 // 298 // The purpose of 3.10 -15- is to allow optimizing compilers to assume 299 // that expressions with different types refer to different memory. gcc 300 // 4.0.1 has an optimizer that takes advantage of this. So a 301 // non-conforming program quietly produces wildly incorrect output. 302 // 303 // The problem is not the use of reinterpret_cast. The problem is type 304 // punning: holding an object in memory of one type and reading its bits 305 // back using a different type. 306 // 307 // The C++ standard is more subtle and complex than this, but that 308 // is the basic idea. 309 // 310 // Anyways ... 311 // 312 // bit_cast<> calls memcpy() which is blessed by the standard, 313 // especially by the example in section 3.9 . Also, of course, 314 // bit_cast<> wraps up the nasty logic in one place. 315 // 316 // Fortunately memcpy() is very fast. In optimized mode, with a 317 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline 318 // code with the minimal amount of data movement. On a 32-bit system, 319 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8) 320 // compiles to two loads and two stores. 321 // 322 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1. 323 // 324 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy 325 // is likely to surprise you. 326 327 template <class Dest, class Source> 328 inline Dest bit_cast(const Source& source) { 329 // Compile time assertion: sizeof(Dest) == sizeof(Source) 330 // A compile error here means your Dest and Source have different sizes. 331 typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1]; 332 333 Dest dest; 334 memcpy(&dest, &source, sizeof(dest)); 335 return dest; 336 } 337 338 // Used to explicitly mark the return value of a function as unused. If you are 339 // really sure you don't want to do anything with the return value of a function 340 // that has been marked WARN_UNUSED_RESULT, wrap it with this. Example: 341 // 342 // scoped_ptr<MyType> my_var = ...; 343 // if (TakeOwnership(my_var.get()) == SUCCESS) 344 // ignore_result(my_var.release()); 345 // 346 template<typename T> 347 inline void ignore_result(const T& ignored) { 348 } 349 350 // The following enum should be used only as a constructor argument to indicate 351 // that the variable has static storage class, and that the constructor should 352 // do nothing to its state. It indicates to the reader that it is legal to 353 // declare a static instance of the class, provided the constructor is given 354 // the base::LINKER_INITIALIZED argument. Normally, it is unsafe to declare a 355 // static variable that has a constructor or a destructor because invocation 356 // order is undefined. However, IF the type can be initialized by filling with 357 // zeroes (which the loader does for static variables), AND the destructor also 358 // does nothing to the storage, AND there are no virtual methods, then a 359 // constructor declared as 360 // explicit MyClass(base::LinkerInitialized x) {} 361 // and invoked as 362 // static MyClass my_variable_name(base::LINKER_INITIALIZED); 363 namespace base { 364 enum LinkerInitialized { LINKER_INITIALIZED }; 365 } // base 366 367 #endif // BASE_BASICTYPES_H_ 368