Home | History | Annotate | Download | only in VMCore
      1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Instruction class for the VMCore library.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Instruction.h"
     15 #include "llvm/Type.h"
     16 #include "llvm/Instructions.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/Module.h"
     19 #include "llvm/Support/CallSite.h"
     20 #include "llvm/Support/LeakDetector.h"
     21 using namespace llvm;
     22 
     23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
     24                          Instruction *InsertBefore)
     25   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
     26   // Make sure that we get added to a basicblock
     27   LeakDetector::addGarbageObject(this);
     28 
     29   // If requested, insert this instruction into a basic block...
     30   if (InsertBefore) {
     31     assert(InsertBefore->getParent() &&
     32            "Instruction to insert before is not in a basic block!");
     33     InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
     34   }
     35 }
     36 
     37 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
     38                          BasicBlock *InsertAtEnd)
     39   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
     40   // Make sure that we get added to a basicblock
     41   LeakDetector::addGarbageObject(this);
     42 
     43   // append this instruction into the basic block
     44   assert(InsertAtEnd && "Basic block to append to may not be NULL!");
     45   InsertAtEnd->getInstList().push_back(this);
     46 }
     47 
     48 
     49 // Out of line virtual method, so the vtable, etc has a home.
     50 Instruction::~Instruction() {
     51   assert(Parent == 0 && "Instruction still linked in the program!");
     52   if (hasMetadataHashEntry())
     53     clearMetadataHashEntries();
     54 }
     55 
     56 
     57 void Instruction::setParent(BasicBlock *P) {
     58   if (getParent()) {
     59     if (!P) LeakDetector::addGarbageObject(this);
     60   } else {
     61     if (P) LeakDetector::removeGarbageObject(this);
     62   }
     63 
     64   Parent = P;
     65 }
     66 
     67 void Instruction::removeFromParent() {
     68   getParent()->getInstList().remove(this);
     69 }
     70 
     71 void Instruction::eraseFromParent() {
     72   getParent()->getInstList().erase(this);
     73 }
     74 
     75 /// insertBefore - Insert an unlinked instructions into a basic block
     76 /// immediately before the specified instruction.
     77 void Instruction::insertBefore(Instruction *InsertPos) {
     78   InsertPos->getParent()->getInstList().insert(InsertPos, this);
     79 }
     80 
     81 /// insertAfter - Insert an unlinked instructions into a basic block
     82 /// immediately after the specified instruction.
     83 void Instruction::insertAfter(Instruction *InsertPos) {
     84   InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
     85 }
     86 
     87 /// moveBefore - Unlink this instruction from its current basic block and
     88 /// insert it into the basic block that MovePos lives in, right before
     89 /// MovePos.
     90 void Instruction::moveBefore(Instruction *MovePos) {
     91   MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
     92                                              this);
     93 }
     94 
     95 
     96 const char *Instruction::getOpcodeName(unsigned OpCode) {
     97   switch (OpCode) {
     98   // Terminators
     99   case Ret:    return "ret";
    100   case Br:     return "br";
    101   case Switch: return "switch";
    102   case IndirectBr: return "indirectbr";
    103   case Invoke: return "invoke";
    104   case Unwind: return "unwind";
    105   case Unreachable: return "unreachable";
    106 
    107   // Standard binary operators...
    108   case Add: return "add";
    109   case FAdd: return "fadd";
    110   case Sub: return "sub";
    111   case FSub: return "fsub";
    112   case Mul: return "mul";
    113   case FMul: return "fmul";
    114   case UDiv: return "udiv";
    115   case SDiv: return "sdiv";
    116   case FDiv: return "fdiv";
    117   case URem: return "urem";
    118   case SRem: return "srem";
    119   case FRem: return "frem";
    120 
    121   // Logical operators...
    122   case And: return "and";
    123   case Or : return "or";
    124   case Xor: return "xor";
    125 
    126   // Memory instructions...
    127   case Alloca:        return "alloca";
    128   case Load:          return "load";
    129   case Store:         return "store";
    130   case GetElementPtr: return "getelementptr";
    131 
    132   // Convert instructions...
    133   case Trunc:     return "trunc";
    134   case ZExt:      return "zext";
    135   case SExt:      return "sext";
    136   case FPTrunc:   return "fptrunc";
    137   case FPExt:     return "fpext";
    138   case FPToUI:    return "fptoui";
    139   case FPToSI:    return "fptosi";
    140   case UIToFP:    return "uitofp";
    141   case SIToFP:    return "sitofp";
    142   case IntToPtr:  return "inttoptr";
    143   case PtrToInt:  return "ptrtoint";
    144   case BitCast:   return "bitcast";
    145 
    146   // Other instructions...
    147   case ICmp:           return "icmp";
    148   case FCmp:           return "fcmp";
    149   case PHI:            return "phi";
    150   case Select:         return "select";
    151   case Call:           return "call";
    152   case Shl:            return "shl";
    153   case LShr:           return "lshr";
    154   case AShr:           return "ashr";
    155   case VAArg:          return "va_arg";
    156   case ExtractElement: return "extractelement";
    157   case InsertElement:  return "insertelement";
    158   case ShuffleVector:  return "shufflevector";
    159   case ExtractValue:   return "extractvalue";
    160   case InsertValue:    return "insertvalue";
    161 
    162   default: return "<Invalid operator> ";
    163   }
    164 
    165   return 0;
    166 }
    167 
    168 /// isIdenticalTo - Return true if the specified instruction is exactly
    169 /// identical to the current one.  This means that all operands match and any
    170 /// extra information (e.g. load is volatile) agree.
    171 bool Instruction::isIdenticalTo(const Instruction *I) const {
    172   return isIdenticalToWhenDefined(I) &&
    173          SubclassOptionalData == I->SubclassOptionalData;
    174 }
    175 
    176 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
    177 /// ignores the SubclassOptionalData flags, which specify conditions
    178 /// under which the instruction's result is undefined.
    179 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
    180   if (getOpcode() != I->getOpcode() ||
    181       getNumOperands() != I->getNumOperands() ||
    182       getType() != I->getType())
    183     return false;
    184 
    185   // We have two instructions of identical opcode and #operands.  Check to see
    186   // if all operands are the same.
    187   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    188     if (getOperand(i) != I->getOperand(i))
    189       return false;
    190 
    191   // Check special state that is a part of some instructions.
    192   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    193     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
    194            LI->getAlignment() == cast<LoadInst>(I)->getAlignment();
    195   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
    196     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
    197            SI->getAlignment() == cast<StoreInst>(I)->getAlignment();
    198   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
    199     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
    200   if (const CallInst *CI = dyn_cast<CallInst>(this))
    201     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
    202            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
    203            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
    204   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
    205     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
    206            CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
    207   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
    208     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
    209   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
    210     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
    211 
    212   return true;
    213 }
    214 
    215 // isSameOperationAs
    216 // This should be kept in sync with isEquivalentOperation in
    217 // lib/Transforms/IPO/MergeFunctions.cpp.
    218 bool Instruction::isSameOperationAs(const Instruction *I) const {
    219   if (getOpcode() != I->getOpcode() ||
    220       getNumOperands() != I->getNumOperands() ||
    221       getType() != I->getType())
    222     return false;
    223 
    224   // We have two instructions of identical opcode and #operands.  Check to see
    225   // if all operands are the same type
    226   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    227     if (getOperand(i)->getType() != I->getOperand(i)->getType())
    228       return false;
    229 
    230   // Check special state that is a part of some instructions.
    231   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    232     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
    233            LI->getAlignment() == cast<LoadInst>(I)->getAlignment();
    234   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
    235     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
    236            SI->getAlignment() == cast<StoreInst>(I)->getAlignment();
    237   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
    238     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
    239   if (const CallInst *CI = dyn_cast<CallInst>(this))
    240     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
    241            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
    242            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
    243   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
    244     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
    245            CI->getAttributes() ==
    246              cast<InvokeInst>(I)->getAttributes();
    247   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
    248     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
    249   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
    250     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
    251 
    252   return true;
    253 }
    254 
    255 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
    256 /// specified block.  Note that PHI nodes are considered to evaluate their
    257 /// operands in the corresponding predecessor block.
    258 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
    259   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    260     // PHI nodes uses values in the corresponding predecessor block.  For other
    261     // instructions, just check to see whether the parent of the use matches up.
    262     const User *U = *UI;
    263     const PHINode *PN = dyn_cast<PHINode>(U);
    264     if (PN == 0) {
    265       if (cast<Instruction>(U)->getParent() != BB)
    266         return true;
    267       continue;
    268     }
    269 
    270     if (PN->getIncomingBlock(UI) != BB)
    271       return true;
    272   }
    273   return false;
    274 }
    275 
    276 /// mayReadFromMemory - Return true if this instruction may read memory.
    277 ///
    278 bool Instruction::mayReadFromMemory() const {
    279   switch (getOpcode()) {
    280   default: return false;
    281   case Instruction::VAArg:
    282   case Instruction::Load:
    283     return true;
    284   case Instruction::Call:
    285     return !cast<CallInst>(this)->doesNotAccessMemory();
    286   case Instruction::Invoke:
    287     return !cast<InvokeInst>(this)->doesNotAccessMemory();
    288   case Instruction::Store:
    289     return cast<StoreInst>(this)->isVolatile();
    290   }
    291 }
    292 
    293 /// mayWriteToMemory - Return true if this instruction may modify memory.
    294 ///
    295 bool Instruction::mayWriteToMemory() const {
    296   switch (getOpcode()) {
    297   default: return false;
    298   case Instruction::Store:
    299   case Instruction::VAArg:
    300     return true;
    301   case Instruction::Call:
    302     return !cast<CallInst>(this)->onlyReadsMemory();
    303   case Instruction::Invoke:
    304     return !cast<InvokeInst>(this)->onlyReadsMemory();
    305   case Instruction::Load:
    306     return cast<LoadInst>(this)->isVolatile();
    307   }
    308 }
    309 
    310 /// mayThrow - Return true if this instruction may throw an exception.
    311 ///
    312 bool Instruction::mayThrow() const {
    313   if (const CallInst *CI = dyn_cast<CallInst>(this))
    314     return !CI->doesNotThrow();
    315   return false;
    316 }
    317 
    318 /// isAssociative - Return true if the instruction is associative:
    319 ///
    320 ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
    321 ///
    322 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
    323 ///
    324 bool Instruction::isAssociative(unsigned Opcode) {
    325   return Opcode == And || Opcode == Or || Opcode == Xor ||
    326          Opcode == Add || Opcode == Mul;
    327 }
    328 
    329 /// isCommutative - Return true if the instruction is commutative:
    330 ///
    331 ///   Commutative operators satisfy: (x op y) === (y op x)
    332 ///
    333 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
    334 /// applied to any type.
    335 ///
    336 bool Instruction::isCommutative(unsigned op) {
    337   switch (op) {
    338   case Add:
    339   case FAdd:
    340   case Mul:
    341   case FMul:
    342   case And:
    343   case Or:
    344   case Xor:
    345     return true;
    346   default:
    347     return false;
    348   }
    349 }
    350 
    351 bool Instruction::isSafeToSpeculativelyExecute() const {
    352   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    353     if (Constant *C = dyn_cast<Constant>(getOperand(i)))
    354       if (C->canTrap())
    355         return false;
    356 
    357   switch (getOpcode()) {
    358   default:
    359     return true;
    360   case UDiv:
    361   case URem: {
    362     // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
    363     ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
    364     return Op && !Op->isNullValue();
    365   }
    366   case SDiv:
    367   case SRem: {
    368     // x / y is undefined if y == 0, and might be undefined if y == -1,
    369     // but calcuations like x / 3 are safe.
    370     ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
    371     return Op && !Op->isNullValue() && !Op->isAllOnesValue();
    372   }
    373   case Load: {
    374     const LoadInst *LI = cast<LoadInst>(this);
    375     if (LI->isVolatile())
    376       return false;
    377     return LI->getPointerOperand()->isDereferenceablePointer();
    378   }
    379   case Call:
    380     return false; // The called function could have undefined behavior or
    381                   // side-effects.
    382                   // FIXME: We should special-case some intrinsics (bswap,
    383                   // overflow-checking arithmetic, etc.)
    384   case VAArg:
    385   case Alloca:
    386   case Invoke:
    387   case PHI:
    388   case Store:
    389   case Ret:
    390   case Br:
    391   case IndirectBr:
    392   case Switch:
    393   case Unwind:
    394   case Unreachable:
    395     return false; // Misc instructions which have effects
    396   }
    397 }
    398 
    399 Instruction *Instruction::clone() const {
    400   Instruction *New = clone_impl();
    401   New->SubclassOptionalData = SubclassOptionalData;
    402   if (!hasMetadata())
    403     return New;
    404 
    405   // Otherwise, enumerate and copy over metadata from the old instruction to the
    406   // new one.
    407   SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
    408   getAllMetadataOtherThanDebugLoc(TheMDs);
    409   for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
    410     New->setMetadata(TheMDs[i].first, TheMDs[i].second);
    411 
    412   New->setDebugLoc(getDebugLoc());
    413   return New;
    414 }
    415