1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2011 the V8 project authors. All rights reserved. 34 35 // A lightweight X64 Assembler. 36 37 #ifndef V8_X64_ASSEMBLER_X64_H_ 38 #define V8_X64_ASSEMBLER_X64_H_ 39 40 #include "serialize.h" 41 42 namespace v8 { 43 namespace internal { 44 45 // Utility functions 46 47 // Test whether a 64-bit value is in a specific range. 48 static inline bool is_uint32(int64_t x) { 49 static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff); 50 return static_cast<uint64_t>(x) <= kMaxUInt32; 51 } 52 53 static inline bool is_int32(int64_t x) { 54 static const int64_t kMinInt32 = -V8_INT64_C(0x80000000); 55 return is_uint32(x - kMinInt32); 56 } 57 58 static inline bool uint_is_int32(uint64_t x) { 59 static const uint64_t kMaxInt32 = V8_UINT64_C(0x7fffffff); 60 return x <= kMaxInt32; 61 } 62 63 static inline bool is_uint32(uint64_t x) { 64 static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff); 65 return x <= kMaxUInt32; 66 } 67 68 // CPU Registers. 69 // 70 // 1) We would prefer to use an enum, but enum values are assignment- 71 // compatible with int, which has caused code-generation bugs. 72 // 73 // 2) We would prefer to use a class instead of a struct but we don't like 74 // the register initialization to depend on the particular initialization 75 // order (which appears to be different on OS X, Linux, and Windows for the 76 // installed versions of C++ we tried). Using a struct permits C-style 77 // "initialization". Also, the Register objects cannot be const as this 78 // forces initialization stubs in MSVC, making us dependent on initialization 79 // order. 80 // 81 // 3) By not using an enum, we are possibly preventing the compiler from 82 // doing certain constant folds, which may significantly reduce the 83 // code generated for some assembly instructions (because they boil down 84 // to a few constants). If this is a problem, we could change the code 85 // such that we use an enum in optimized mode, and the struct in debug 86 // mode. This way we get the compile-time error checking in debug mode 87 // and best performance in optimized code. 88 // 89 90 struct Register { 91 // The non-allocatable registers are: 92 // rsp - stack pointer 93 // rbp - frame pointer 94 // rsi - context register 95 // r10 - fixed scratch register 96 // r12 - smi constant register 97 // r13 - root register 98 static const int kNumRegisters = 16; 99 static const int kNumAllocatableRegisters = 10; 100 101 static int ToAllocationIndex(Register reg) { 102 return kAllocationIndexByRegisterCode[reg.code()]; 103 } 104 105 static Register FromAllocationIndex(int index) { 106 ASSERT(index >= 0 && index < kNumAllocatableRegisters); 107 Register result = { kRegisterCodeByAllocationIndex[index] }; 108 return result; 109 } 110 111 static const char* AllocationIndexToString(int index) { 112 ASSERT(index >= 0 && index < kNumAllocatableRegisters); 113 const char* const names[] = { 114 "rax", 115 "rbx", 116 "rdx", 117 "rcx", 118 "rdi", 119 "r8", 120 "r9", 121 "r11", 122 "r14", 123 "r15" 124 }; 125 return names[index]; 126 } 127 128 static Register toRegister(int code) { 129 Register r = { code }; 130 return r; 131 } 132 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } 133 bool is(Register reg) const { return code_ == reg.code_; } 134 int code() const { 135 ASSERT(is_valid()); 136 return code_; 137 } 138 int bit() const { 139 return 1 << code_; 140 } 141 142 // Return the high bit of the register code as a 0 or 1. Used often 143 // when constructing the REX prefix byte. 144 int high_bit() const { 145 return code_ >> 3; 146 } 147 // Return the 3 low bits of the register code. Used when encoding registers 148 // in modR/M, SIB, and opcode bytes. 149 int low_bits() const { 150 return code_ & 0x7; 151 } 152 153 // Unfortunately we can't make this private in a struct when initializing 154 // by assignment. 155 int code_; 156 157 private: 158 static const int kRegisterCodeByAllocationIndex[kNumAllocatableRegisters]; 159 static const int kAllocationIndexByRegisterCode[kNumRegisters]; 160 }; 161 162 const Register rax = { 0 }; 163 const Register rcx = { 1 }; 164 const Register rdx = { 2 }; 165 const Register rbx = { 3 }; 166 const Register rsp = { 4 }; 167 const Register rbp = { 5 }; 168 const Register rsi = { 6 }; 169 const Register rdi = { 7 }; 170 const Register r8 = { 8 }; 171 const Register r9 = { 9 }; 172 const Register r10 = { 10 }; 173 const Register r11 = { 11 }; 174 const Register r12 = { 12 }; 175 const Register r13 = { 13 }; 176 const Register r14 = { 14 }; 177 const Register r15 = { 15 }; 178 const Register no_reg = { -1 }; 179 180 181 struct XMMRegister { 182 static const int kNumRegisters = 16; 183 static const int kNumAllocatableRegisters = 15; 184 185 static int ToAllocationIndex(XMMRegister reg) { 186 ASSERT(reg.code() != 0); 187 return reg.code() - 1; 188 } 189 190 static XMMRegister FromAllocationIndex(int index) { 191 ASSERT(0 <= index && index < kNumAllocatableRegisters); 192 XMMRegister result = { index + 1 }; 193 return result; 194 } 195 196 static const char* AllocationIndexToString(int index) { 197 ASSERT(index >= 0 && index < kNumAllocatableRegisters); 198 const char* const names[] = { 199 "xmm1", 200 "xmm2", 201 "xmm3", 202 "xmm4", 203 "xmm5", 204 "xmm6", 205 "xmm7", 206 "xmm8", 207 "xmm9", 208 "xmm10", 209 "xmm11", 210 "xmm12", 211 "xmm13", 212 "xmm14", 213 "xmm15" 214 }; 215 return names[index]; 216 } 217 218 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } 219 bool is(XMMRegister reg) const { return code_ == reg.code_; } 220 int code() const { 221 ASSERT(is_valid()); 222 return code_; 223 } 224 225 // Return the high bit of the register code as a 0 or 1. Used often 226 // when constructing the REX prefix byte. 227 int high_bit() const { 228 return code_ >> 3; 229 } 230 // Return the 3 low bits of the register code. Used when encoding registers 231 // in modR/M, SIB, and opcode bytes. 232 int low_bits() const { 233 return code_ & 0x7; 234 } 235 236 int code_; 237 }; 238 239 const XMMRegister xmm0 = { 0 }; 240 const XMMRegister xmm1 = { 1 }; 241 const XMMRegister xmm2 = { 2 }; 242 const XMMRegister xmm3 = { 3 }; 243 const XMMRegister xmm4 = { 4 }; 244 const XMMRegister xmm5 = { 5 }; 245 const XMMRegister xmm6 = { 6 }; 246 const XMMRegister xmm7 = { 7 }; 247 const XMMRegister xmm8 = { 8 }; 248 const XMMRegister xmm9 = { 9 }; 249 const XMMRegister xmm10 = { 10 }; 250 const XMMRegister xmm11 = { 11 }; 251 const XMMRegister xmm12 = { 12 }; 252 const XMMRegister xmm13 = { 13 }; 253 const XMMRegister xmm14 = { 14 }; 254 const XMMRegister xmm15 = { 15 }; 255 256 257 typedef XMMRegister DoubleRegister; 258 259 260 enum Condition { 261 // any value < 0 is considered no_condition 262 no_condition = -1, 263 264 overflow = 0, 265 no_overflow = 1, 266 below = 2, 267 above_equal = 3, 268 equal = 4, 269 not_equal = 5, 270 below_equal = 6, 271 above = 7, 272 negative = 8, 273 positive = 9, 274 parity_even = 10, 275 parity_odd = 11, 276 less = 12, 277 greater_equal = 13, 278 less_equal = 14, 279 greater = 15, 280 281 // Fake conditions that are handled by the 282 // opcodes using them. 283 always = 16, 284 never = 17, 285 // aliases 286 carry = below, 287 not_carry = above_equal, 288 zero = equal, 289 not_zero = not_equal, 290 sign = negative, 291 not_sign = positive, 292 last_condition = greater 293 }; 294 295 296 // Returns the equivalent of !cc. 297 // Negation of the default no_condition (-1) results in a non-default 298 // no_condition value (-2). As long as tests for no_condition check 299 // for condition < 0, this will work as expected. 300 inline Condition NegateCondition(Condition cc) { 301 return static_cast<Condition>(cc ^ 1); 302 } 303 304 305 // Corresponds to transposing the operands of a comparison. 306 inline Condition ReverseCondition(Condition cc) { 307 switch (cc) { 308 case below: 309 return above; 310 case above: 311 return below; 312 case above_equal: 313 return below_equal; 314 case below_equal: 315 return above_equal; 316 case less: 317 return greater; 318 case greater: 319 return less; 320 case greater_equal: 321 return less_equal; 322 case less_equal: 323 return greater_equal; 324 default: 325 return cc; 326 }; 327 } 328 329 330 enum Hint { 331 no_hint = 0, 332 not_taken = 0x2e, 333 taken = 0x3e 334 }; 335 336 // The result of negating a hint is as if the corresponding condition 337 // were negated by NegateCondition. That is, no_hint is mapped to 338 // itself and not_taken and taken are mapped to each other. 339 inline Hint NegateHint(Hint hint) { 340 return (hint == no_hint) 341 ? no_hint 342 : ((hint == not_taken) ? taken : not_taken); 343 } 344 345 346 // ----------------------------------------------------------------------------- 347 // Machine instruction Immediates 348 349 class Immediate BASE_EMBEDDED { 350 public: 351 explicit Immediate(int32_t value) : value_(value) {} 352 353 private: 354 int32_t value_; 355 356 friend class Assembler; 357 }; 358 359 360 // ----------------------------------------------------------------------------- 361 // Machine instruction Operands 362 363 enum ScaleFactor { 364 times_1 = 0, 365 times_2 = 1, 366 times_4 = 2, 367 times_8 = 3, 368 times_int_size = times_4, 369 times_pointer_size = times_8 370 }; 371 372 373 class Operand BASE_EMBEDDED { 374 public: 375 // [base + disp/r] 376 Operand(Register base, int32_t disp); 377 378 // [base + index*scale + disp/r] 379 Operand(Register base, 380 Register index, 381 ScaleFactor scale, 382 int32_t disp); 383 384 // [index*scale + disp/r] 385 Operand(Register index, 386 ScaleFactor scale, 387 int32_t disp); 388 389 // Offset from existing memory operand. 390 // Offset is added to existing displacement as 32-bit signed values and 391 // this must not overflow. 392 Operand(const Operand& base, int32_t offset); 393 394 // Checks whether either base or index register is the given register. 395 // Does not check the "reg" part of the Operand. 396 bool AddressUsesRegister(Register reg) const; 397 398 // Queries related to the size of the generated instruction. 399 // Whether the generated instruction will have a REX prefix. 400 bool requires_rex() const { return rex_ != 0; } 401 // Size of the ModR/M, SIB and displacement parts of the generated 402 // instruction. 403 int operand_size() const { return len_; } 404 405 private: 406 byte rex_; 407 byte buf_[6]; 408 // The number of bytes of buf_ in use. 409 byte len_; 410 411 // Set the ModR/M byte without an encoded 'reg' register. The 412 // register is encoded later as part of the emit_operand operation. 413 // set_modrm can be called before or after set_sib and set_disp*. 414 inline void set_modrm(int mod, Register rm); 415 416 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1. 417 inline void set_sib(ScaleFactor scale, Register index, Register base); 418 419 // Adds operand displacement fields (offsets added to the memory address). 420 // Needs to be called after set_sib, not before it. 421 inline void set_disp8(int disp); 422 inline void set_disp32(int disp); 423 424 friend class Assembler; 425 }; 426 427 428 // CpuFeatures keeps track of which features are supported by the target CPU. 429 // Supported features must be enabled by a Scope before use. 430 // Example: 431 // if (CpuFeatures::IsSupported(SSE3)) { 432 // CpuFeatures::Scope fscope(SSE3); 433 // // Generate SSE3 floating point code. 434 // } else { 435 // // Generate standard x87 or SSE2 floating point code. 436 // } 437 class CpuFeatures : public AllStatic { 438 public: 439 // Detect features of the target CPU. Set safe defaults if the serializer 440 // is enabled (snapshots must be portable). 441 static void Probe(); 442 443 // Check whether a feature is supported by the target CPU. 444 static bool IsSupported(CpuFeature f) { 445 ASSERT(initialized_); 446 if (f == SSE2 && !FLAG_enable_sse2) return false; 447 if (f == SSE3 && !FLAG_enable_sse3) return false; 448 if (f == CMOV && !FLAG_enable_cmov) return false; 449 if (f == RDTSC && !FLAG_enable_rdtsc) return false; 450 if (f == SAHF && !FLAG_enable_sahf) return false; 451 return (supported_ & (V8_UINT64_C(1) << f)) != 0; 452 } 453 454 #ifdef DEBUG 455 // Check whether a feature is currently enabled. 456 static bool IsEnabled(CpuFeature f) { 457 ASSERT(initialized_); 458 Isolate* isolate = Isolate::UncheckedCurrent(); 459 if (isolate == NULL) { 460 // When no isolate is available, work as if we're running in 461 // release mode. 462 return IsSupported(f); 463 } 464 uint64_t enabled = isolate->enabled_cpu_features(); 465 return (enabled & (V8_UINT64_C(1) << f)) != 0; 466 } 467 #endif 468 469 // Enable a specified feature within a scope. 470 class Scope BASE_EMBEDDED { 471 #ifdef DEBUG 472 public: 473 explicit Scope(CpuFeature f) { 474 uint64_t mask = V8_UINT64_C(1) << f; 475 ASSERT(CpuFeatures::IsSupported(f)); 476 ASSERT(!Serializer::enabled() || 477 (CpuFeatures::found_by_runtime_probing_ & mask) == 0); 478 isolate_ = Isolate::UncheckedCurrent(); 479 old_enabled_ = 0; 480 if (isolate_ != NULL) { 481 old_enabled_ = isolate_->enabled_cpu_features(); 482 isolate_->set_enabled_cpu_features(old_enabled_ | mask); 483 } 484 } 485 ~Scope() { 486 ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_); 487 if (isolate_ != NULL) { 488 isolate_->set_enabled_cpu_features(old_enabled_); 489 } 490 } 491 private: 492 Isolate* isolate_; 493 uint64_t old_enabled_; 494 #else 495 public: 496 explicit Scope(CpuFeature f) {} 497 #endif 498 }; 499 500 private: 501 // Safe defaults include SSE2 and CMOV for X64. It is always available, if 502 // anyone checks, but they shouldn't need to check. 503 // The required user mode extensions in X64 are (from AMD64 ABI Table A.1): 504 // fpu, tsc, cx8, cmov, mmx, sse, sse2, fxsr, syscall 505 static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV); 506 507 #ifdef DEBUG 508 static bool initialized_; 509 #endif 510 static uint64_t supported_; 511 static uint64_t found_by_runtime_probing_; 512 513 DISALLOW_COPY_AND_ASSIGN(CpuFeatures); 514 }; 515 516 517 class Assembler : public AssemblerBase { 518 private: 519 // We check before assembling an instruction that there is sufficient 520 // space to write an instruction and its relocation information. 521 // The relocation writer's position must be kGap bytes above the end of 522 // the generated instructions. This leaves enough space for the 523 // longest possible x64 instruction, 15 bytes, and the longest possible 524 // relocation information encoding, RelocInfoWriter::kMaxLength == 16. 525 // (There is a 15 byte limit on x64 instruction length that rules out some 526 // otherwise valid instructions.) 527 // This allows for a single, fast space check per instruction. 528 static const int kGap = 32; 529 530 public: 531 // Create an assembler. Instructions and relocation information are emitted 532 // into a buffer, with the instructions starting from the beginning and the 533 // relocation information starting from the end of the buffer. See CodeDesc 534 // for a detailed comment on the layout (globals.h). 535 // 536 // If the provided buffer is NULL, the assembler allocates and grows its own 537 // buffer, and buffer_size determines the initial buffer size. The buffer is 538 // owned by the assembler and deallocated upon destruction of the assembler. 539 // 540 // If the provided buffer is not NULL, the assembler uses the provided buffer 541 // for code generation and assumes its size to be buffer_size. If the buffer 542 // is too small, a fatal error occurs. No deallocation of the buffer is done 543 // upon destruction of the assembler. 544 Assembler(Isolate* isolate, void* buffer, int buffer_size); 545 ~Assembler(); 546 547 // Overrides the default provided by FLAG_debug_code. 548 void set_emit_debug_code(bool value) { emit_debug_code_ = value; } 549 550 // GetCode emits any pending (non-emitted) code and fills the descriptor 551 // desc. GetCode() is idempotent; it returns the same result if no other 552 // Assembler functions are invoked in between GetCode() calls. 553 void GetCode(CodeDesc* desc); 554 555 // Read/Modify the code target in the relative branch/call instruction at pc. 556 // On the x64 architecture, we use relative jumps with a 32-bit displacement 557 // to jump to other Code objects in the Code space in the heap. 558 // Jumps to C functions are done indirectly through a 64-bit register holding 559 // the absolute address of the target. 560 // These functions convert between absolute Addresses of Code objects and 561 // the relative displacements stored in the code. 562 static inline Address target_address_at(Address pc); 563 static inline void set_target_address_at(Address pc, Address target); 564 565 // This sets the branch destination (which is in the instruction on x64). 566 // This is for calls and branches within generated code. 567 inline static void set_target_at(Address instruction_payload, 568 Address target) { 569 set_target_address_at(instruction_payload, target); 570 } 571 572 // This sets the branch destination (which is a load instruction on x64). 573 // This is for calls and branches to runtime code. 574 inline static void set_external_target_at(Address instruction_payload, 575 Address target) { 576 *reinterpret_cast<Address*>(instruction_payload) = target; 577 } 578 579 inline Handle<Object> code_target_object_handle_at(Address pc); 580 // Number of bytes taken up by the branch target in the code. 581 static const int kCallTargetSize = 4; // Use 32-bit displacement. 582 static const int kExternalTargetSize = 8; // Use 64-bit absolute. 583 // Distance between the address of the code target in the call instruction 584 // and the return address pushed on the stack. 585 static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement. 586 // Distance between the start of the JS return sequence and where the 587 // 32-bit displacement of a near call would be, relative to the pushed 588 // return address. TODO: Use return sequence length instead. 589 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset; 590 static const int kPatchReturnSequenceAddressOffset = 13 - 4; 591 // Distance between start of patched debug break slot and where the 592 // 32-bit displacement of a near call would be, relative to the pushed 593 // return address. TODO: Use return sequence length instead. 594 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset; 595 static const int kPatchDebugBreakSlotAddressOffset = 13 - 4; 596 // TODO(X64): Rename this, removing the "Real", after changing the above. 597 static const int kRealPatchReturnSequenceAddressOffset = 2; 598 599 // Some x64 JS code is padded with int3 to make it large 600 // enough to hold an instruction when the debugger patches it. 601 static const int kJumpInstructionLength = 13; 602 static const int kCallInstructionLength = 13; 603 static const int kJSReturnSequenceLength = 13; 604 static const int kShortCallInstructionLength = 5; 605 606 // The debug break slot must be able to contain a call instruction. 607 static const int kDebugBreakSlotLength = kCallInstructionLength; 608 609 // One byte opcode for test eax,0xXXXXXXXX. 610 static const byte kTestEaxByte = 0xA9; 611 // One byte opcode for test al, 0xXX. 612 static const byte kTestAlByte = 0xA8; 613 // One byte opcode for nop. 614 static const byte kNopByte = 0x90; 615 616 // One byte prefix for a short conditional jump. 617 static const byte kJccShortPrefix = 0x70; 618 static const byte kJncShortOpcode = kJccShortPrefix | not_carry; 619 static const byte kJcShortOpcode = kJccShortPrefix | carry; 620 621 622 623 // --------------------------------------------------------------------------- 624 // Code generation 625 // 626 // Function names correspond one-to-one to x64 instruction mnemonics. 627 // Unless specified otherwise, instructions operate on 64-bit operands. 628 // 629 // If we need versions of an assembly instruction that operate on different 630 // width arguments, we add a single-letter suffix specifying the width. 631 // This is done for the following instructions: mov, cmp, inc, dec, 632 // add, sub, and test. 633 // There are no versions of these instructions without the suffix. 634 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'. 635 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'. 636 // - Instructions on 32-bit (doubleword) operands/registers use 'l'. 637 // - Instructions on 64-bit (quadword) operands/registers use 'q'. 638 // 639 // Some mnemonics, such as "and", are the same as C++ keywords. 640 // Naming conflicts with C++ keywords are resolved by adding a trailing '_'. 641 642 // Insert the smallest number of nop instructions 643 // possible to align the pc offset to a multiple 644 // of m, where m must be a power of 2. 645 void Align(int m); 646 // Aligns code to something that's optimal for a jump target for the platform. 647 void CodeTargetAlign(); 648 649 // Stack 650 void pushfq(); 651 void popfq(); 652 653 void push(Immediate value); 654 // Push a 32 bit integer, and guarantee that it is actually pushed as a 655 // 32 bit value, the normal push will optimize the 8 bit case. 656 void push_imm32(int32_t imm32); 657 void push(Register src); 658 void push(const Operand& src); 659 660 void pop(Register dst); 661 void pop(const Operand& dst); 662 663 void enter(Immediate size); 664 void leave(); 665 666 // Moves 667 void movb(Register dst, const Operand& src); 668 void movb(Register dst, Immediate imm); 669 void movb(const Operand& dst, Register src); 670 671 // Move the low 16 bits of a 64-bit register value to a 16-bit 672 // memory location. 673 void movw(const Operand& dst, Register src); 674 675 void movl(Register dst, Register src); 676 void movl(Register dst, const Operand& src); 677 void movl(const Operand& dst, Register src); 678 void movl(const Operand& dst, Immediate imm); 679 // Load a 32-bit immediate value, zero-extended to 64 bits. 680 void movl(Register dst, Immediate imm32); 681 682 // Move 64 bit register value to 64-bit memory location. 683 void movq(const Operand& dst, Register src); 684 // Move 64 bit memory location to 64-bit register value. 685 void movq(Register dst, const Operand& src); 686 void movq(Register dst, Register src); 687 // Sign extends immediate 32-bit value to 64 bits. 688 void movq(Register dst, Immediate x); 689 // Move the offset of the label location relative to the current 690 // position (after the move) to the destination. 691 void movl(const Operand& dst, Label* src); 692 693 // Move sign extended immediate to memory location. 694 void movq(const Operand& dst, Immediate value); 695 // Instructions to load a 64-bit immediate into a register. 696 // All 64-bit immediates must have a relocation mode. 697 void movq(Register dst, void* ptr, RelocInfo::Mode rmode); 698 void movq(Register dst, int64_t value, RelocInfo::Mode rmode); 699 void movq(Register dst, const char* s, RelocInfo::Mode rmode); 700 // Moves the address of the external reference into the register. 701 void movq(Register dst, ExternalReference ext); 702 void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode); 703 704 void movsxbq(Register dst, const Operand& src); 705 void movsxwq(Register dst, const Operand& src); 706 void movsxlq(Register dst, Register src); 707 void movsxlq(Register dst, const Operand& src); 708 void movzxbq(Register dst, const Operand& src); 709 void movzxbl(Register dst, const Operand& src); 710 void movzxwq(Register dst, const Operand& src); 711 void movzxwl(Register dst, const Operand& src); 712 713 // Repeated moves. 714 715 void repmovsb(); 716 void repmovsw(); 717 void repmovsl(); 718 void repmovsq(); 719 720 // Instruction to load from an immediate 64-bit pointer into RAX. 721 void load_rax(void* ptr, RelocInfo::Mode rmode); 722 void load_rax(ExternalReference ext); 723 724 // Conditional moves. 725 void cmovq(Condition cc, Register dst, Register src); 726 void cmovq(Condition cc, Register dst, const Operand& src); 727 void cmovl(Condition cc, Register dst, Register src); 728 void cmovl(Condition cc, Register dst, const Operand& src); 729 730 // Exchange two registers 731 void xchg(Register dst, Register src); 732 733 // Arithmetics 734 void addl(Register dst, Register src) { 735 arithmetic_op_32(0x03, dst, src); 736 } 737 738 void addl(Register dst, Immediate src) { 739 immediate_arithmetic_op_32(0x0, dst, src); 740 } 741 742 void addl(Register dst, const Operand& src) { 743 arithmetic_op_32(0x03, dst, src); 744 } 745 746 void addl(const Operand& dst, Immediate src) { 747 immediate_arithmetic_op_32(0x0, dst, src); 748 } 749 750 void addq(Register dst, Register src) { 751 arithmetic_op(0x03, dst, src); 752 } 753 754 void addq(Register dst, const Operand& src) { 755 arithmetic_op(0x03, dst, src); 756 } 757 758 void addq(const Operand& dst, Register src) { 759 arithmetic_op(0x01, src, dst); 760 } 761 762 void addq(Register dst, Immediate src) { 763 immediate_arithmetic_op(0x0, dst, src); 764 } 765 766 void addq(const Operand& dst, Immediate src) { 767 immediate_arithmetic_op(0x0, dst, src); 768 } 769 770 void sbbl(Register dst, Register src) { 771 arithmetic_op_32(0x1b, dst, src); 772 } 773 774 void sbbq(Register dst, Register src) { 775 arithmetic_op(0x1b, dst, src); 776 } 777 778 void cmpb(Register dst, Immediate src) { 779 immediate_arithmetic_op_8(0x7, dst, src); 780 } 781 782 void cmpb_al(Immediate src); 783 784 void cmpb(Register dst, Register src) { 785 arithmetic_op(0x3A, dst, src); 786 } 787 788 void cmpb(Register dst, const Operand& src) { 789 arithmetic_op(0x3A, dst, src); 790 } 791 792 void cmpb(const Operand& dst, Register src) { 793 arithmetic_op(0x38, src, dst); 794 } 795 796 void cmpb(const Operand& dst, Immediate src) { 797 immediate_arithmetic_op_8(0x7, dst, src); 798 } 799 800 void cmpw(const Operand& dst, Immediate src) { 801 immediate_arithmetic_op_16(0x7, dst, src); 802 } 803 804 void cmpw(Register dst, Immediate src) { 805 immediate_arithmetic_op_16(0x7, dst, src); 806 } 807 808 void cmpw(Register dst, const Operand& src) { 809 arithmetic_op_16(0x3B, dst, src); 810 } 811 812 void cmpw(Register dst, Register src) { 813 arithmetic_op_16(0x3B, dst, src); 814 } 815 816 void cmpw(const Operand& dst, Register src) { 817 arithmetic_op_16(0x39, src, dst); 818 } 819 820 void cmpl(Register dst, Register src) { 821 arithmetic_op_32(0x3B, dst, src); 822 } 823 824 void cmpl(Register dst, const Operand& src) { 825 arithmetic_op_32(0x3B, dst, src); 826 } 827 828 void cmpl(const Operand& dst, Register src) { 829 arithmetic_op_32(0x39, src, dst); 830 } 831 832 void cmpl(Register dst, Immediate src) { 833 immediate_arithmetic_op_32(0x7, dst, src); 834 } 835 836 void cmpl(const Operand& dst, Immediate src) { 837 immediate_arithmetic_op_32(0x7, dst, src); 838 } 839 840 void cmpq(Register dst, Register src) { 841 arithmetic_op(0x3B, dst, src); 842 } 843 844 void cmpq(Register dst, const Operand& src) { 845 arithmetic_op(0x3B, dst, src); 846 } 847 848 void cmpq(const Operand& dst, Register src) { 849 arithmetic_op(0x39, src, dst); 850 } 851 852 void cmpq(Register dst, Immediate src) { 853 immediate_arithmetic_op(0x7, dst, src); 854 } 855 856 void cmpq(const Operand& dst, Immediate src) { 857 immediate_arithmetic_op(0x7, dst, src); 858 } 859 860 void and_(Register dst, Register src) { 861 arithmetic_op(0x23, dst, src); 862 } 863 864 void and_(Register dst, const Operand& src) { 865 arithmetic_op(0x23, dst, src); 866 } 867 868 void and_(const Operand& dst, Register src) { 869 arithmetic_op(0x21, src, dst); 870 } 871 872 void and_(Register dst, Immediate src) { 873 immediate_arithmetic_op(0x4, dst, src); 874 } 875 876 void and_(const Operand& dst, Immediate src) { 877 immediate_arithmetic_op(0x4, dst, src); 878 } 879 880 void andl(Register dst, Immediate src) { 881 immediate_arithmetic_op_32(0x4, dst, src); 882 } 883 884 void andl(Register dst, Register src) { 885 arithmetic_op_32(0x23, dst, src); 886 } 887 888 void andl(Register dst, const Operand& src) { 889 arithmetic_op_32(0x23, dst, src); 890 } 891 892 void andb(Register dst, Immediate src) { 893 immediate_arithmetic_op_8(0x4, dst, src); 894 } 895 896 void decq(Register dst); 897 void decq(const Operand& dst); 898 void decl(Register dst); 899 void decl(const Operand& dst); 900 void decb(Register dst); 901 void decb(const Operand& dst); 902 903 // Sign-extends rax into rdx:rax. 904 void cqo(); 905 // Sign-extends eax into edx:eax. 906 void cdq(); 907 908 // Divide rdx:rax by src. Quotient in rax, remainder in rdx. 909 void idivq(Register src); 910 // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx. 911 void idivl(Register src); 912 913 // Signed multiply instructions. 914 void imul(Register src); // rdx:rax = rax * src. 915 void imul(Register dst, Register src); // dst = dst * src. 916 void imul(Register dst, const Operand& src); // dst = dst * src. 917 void imul(Register dst, Register src, Immediate imm); // dst = src * imm. 918 // Signed 32-bit multiply instructions. 919 void imull(Register dst, Register src); // dst = dst * src. 920 void imull(Register dst, const Operand& src); // dst = dst * src. 921 void imull(Register dst, Register src, Immediate imm); // dst = src * imm. 922 923 void incq(Register dst); 924 void incq(const Operand& dst); 925 void incl(Register dst); 926 void incl(const Operand& dst); 927 928 void lea(Register dst, const Operand& src); 929 void leal(Register dst, const Operand& src); 930 931 // Multiply rax by src, put the result in rdx:rax. 932 void mul(Register src); 933 934 void neg(Register dst); 935 void neg(const Operand& dst); 936 void negl(Register dst); 937 938 void not_(Register dst); 939 void not_(const Operand& dst); 940 void notl(Register dst); 941 942 void or_(Register dst, Register src) { 943 arithmetic_op(0x0B, dst, src); 944 } 945 946 void orl(Register dst, Register src) { 947 arithmetic_op_32(0x0B, dst, src); 948 } 949 950 void or_(Register dst, const Operand& src) { 951 arithmetic_op(0x0B, dst, src); 952 } 953 954 void orl(Register dst, const Operand& src) { 955 arithmetic_op_32(0x0B, dst, src); 956 } 957 958 void or_(const Operand& dst, Register src) { 959 arithmetic_op(0x09, src, dst); 960 } 961 962 void or_(Register dst, Immediate src) { 963 immediate_arithmetic_op(0x1, dst, src); 964 } 965 966 void orl(Register dst, Immediate src) { 967 immediate_arithmetic_op_32(0x1, dst, src); 968 } 969 970 void or_(const Operand& dst, Immediate src) { 971 immediate_arithmetic_op(0x1, dst, src); 972 } 973 974 void orl(const Operand& dst, Immediate src) { 975 immediate_arithmetic_op_32(0x1, dst, src); 976 } 977 978 979 void rcl(Register dst, Immediate imm8) { 980 shift(dst, imm8, 0x2); 981 } 982 983 void rol(Register dst, Immediate imm8) { 984 shift(dst, imm8, 0x0); 985 } 986 987 void rcr(Register dst, Immediate imm8) { 988 shift(dst, imm8, 0x3); 989 } 990 991 void ror(Register dst, Immediate imm8) { 992 shift(dst, imm8, 0x1); 993 } 994 995 // Shifts dst:src left by cl bits, affecting only dst. 996 void shld(Register dst, Register src); 997 998 // Shifts src:dst right by cl bits, affecting only dst. 999 void shrd(Register dst, Register src); 1000 1001 // Shifts dst right, duplicating sign bit, by shift_amount bits. 1002 // Shifting by 1 is handled efficiently. 1003 void sar(Register dst, Immediate shift_amount) { 1004 shift(dst, shift_amount, 0x7); 1005 } 1006 1007 // Shifts dst right, duplicating sign bit, by shift_amount bits. 1008 // Shifting by 1 is handled efficiently. 1009 void sarl(Register dst, Immediate shift_amount) { 1010 shift_32(dst, shift_amount, 0x7); 1011 } 1012 1013 // Shifts dst right, duplicating sign bit, by cl % 64 bits. 1014 void sar_cl(Register dst) { 1015 shift(dst, 0x7); 1016 } 1017 1018 // Shifts dst right, duplicating sign bit, by cl % 64 bits. 1019 void sarl_cl(Register dst) { 1020 shift_32(dst, 0x7); 1021 } 1022 1023 void shl(Register dst, Immediate shift_amount) { 1024 shift(dst, shift_amount, 0x4); 1025 } 1026 1027 void shl_cl(Register dst) { 1028 shift(dst, 0x4); 1029 } 1030 1031 void shll_cl(Register dst) { 1032 shift_32(dst, 0x4); 1033 } 1034 1035 void shll(Register dst, Immediate shift_amount) { 1036 shift_32(dst, shift_amount, 0x4); 1037 } 1038 1039 void shr(Register dst, Immediate shift_amount) { 1040 shift(dst, shift_amount, 0x5); 1041 } 1042 1043 void shr_cl(Register dst) { 1044 shift(dst, 0x5); 1045 } 1046 1047 void shrl_cl(Register dst) { 1048 shift_32(dst, 0x5); 1049 } 1050 1051 void shrl(Register dst, Immediate shift_amount) { 1052 shift_32(dst, shift_amount, 0x5); 1053 } 1054 1055 void store_rax(void* dst, RelocInfo::Mode mode); 1056 void store_rax(ExternalReference ref); 1057 1058 void subq(Register dst, Register src) { 1059 arithmetic_op(0x2B, dst, src); 1060 } 1061 1062 void subq(Register dst, const Operand& src) { 1063 arithmetic_op(0x2B, dst, src); 1064 } 1065 1066 void subq(const Operand& dst, Register src) { 1067 arithmetic_op(0x29, src, dst); 1068 } 1069 1070 void subq(Register dst, Immediate src) { 1071 immediate_arithmetic_op(0x5, dst, src); 1072 } 1073 1074 void subq(const Operand& dst, Immediate src) { 1075 immediate_arithmetic_op(0x5, dst, src); 1076 } 1077 1078 void subl(Register dst, Register src) { 1079 arithmetic_op_32(0x2B, dst, src); 1080 } 1081 1082 void subl(Register dst, const Operand& src) { 1083 arithmetic_op_32(0x2B, dst, src); 1084 } 1085 1086 void subl(const Operand& dst, Immediate src) { 1087 immediate_arithmetic_op_32(0x5, dst, src); 1088 } 1089 1090 void subl(Register dst, Immediate src) { 1091 immediate_arithmetic_op_32(0x5, dst, src); 1092 } 1093 1094 void subb(Register dst, Immediate src) { 1095 immediate_arithmetic_op_8(0x5, dst, src); 1096 } 1097 1098 void testb(Register dst, Register src); 1099 void testb(Register reg, Immediate mask); 1100 void testb(const Operand& op, Immediate mask); 1101 void testb(const Operand& op, Register reg); 1102 void testl(Register dst, Register src); 1103 void testl(Register reg, Immediate mask); 1104 void testl(const Operand& op, Immediate mask); 1105 void testq(const Operand& op, Register reg); 1106 void testq(Register dst, Register src); 1107 void testq(Register dst, Immediate mask); 1108 1109 void xor_(Register dst, Register src) { 1110 if (dst.code() == src.code()) { 1111 arithmetic_op_32(0x33, dst, src); 1112 } else { 1113 arithmetic_op(0x33, dst, src); 1114 } 1115 } 1116 1117 void xorl(Register dst, Register src) { 1118 arithmetic_op_32(0x33, dst, src); 1119 } 1120 1121 void xorl(Register dst, const Operand& src) { 1122 arithmetic_op_32(0x33, dst, src); 1123 } 1124 1125 void xorl(Register dst, Immediate src) { 1126 immediate_arithmetic_op_32(0x6, dst, src); 1127 } 1128 1129 void xorl(const Operand& dst, Immediate src) { 1130 immediate_arithmetic_op_32(0x6, dst, src); 1131 } 1132 1133 void xor_(Register dst, const Operand& src) { 1134 arithmetic_op(0x33, dst, src); 1135 } 1136 1137 void xor_(const Operand& dst, Register src) { 1138 arithmetic_op(0x31, src, dst); 1139 } 1140 1141 void xor_(Register dst, Immediate src) { 1142 immediate_arithmetic_op(0x6, dst, src); 1143 } 1144 1145 void xor_(const Operand& dst, Immediate src) { 1146 immediate_arithmetic_op(0x6, dst, src); 1147 } 1148 1149 // Bit operations. 1150 void bt(const Operand& dst, Register src); 1151 void bts(const Operand& dst, Register src); 1152 1153 // Miscellaneous 1154 void clc(); 1155 void cld(); 1156 void cpuid(); 1157 void hlt(); 1158 void int3(); 1159 void nop(); 1160 void nop(int n); 1161 void rdtsc(); 1162 void ret(int imm16); 1163 void setcc(Condition cc, Register reg); 1164 1165 // Label operations & relative jumps (PPUM Appendix D) 1166 // 1167 // Takes a branch opcode (cc) and a label (L) and generates 1168 // either a backward branch or a forward branch and links it 1169 // to the label fixup chain. Usage: 1170 // 1171 // Label L; // unbound label 1172 // j(cc, &L); // forward branch to unbound label 1173 // bind(&L); // bind label to the current pc 1174 // j(cc, &L); // backward branch to bound label 1175 // bind(&L); // illegal: a label may be bound only once 1176 // 1177 // Note: The same Label can be used for forward and backward branches 1178 // but it may be bound only once. 1179 1180 void bind(Label* L); // binds an unbound label L to the current code position 1181 void bind(NearLabel* L); 1182 1183 // Calls 1184 // Call near relative 32-bit displacement, relative to next instruction. 1185 void call(Label* L); 1186 void call(Handle<Code> target, RelocInfo::Mode rmode); 1187 1188 // Calls directly to the given address using a relative offset. 1189 // Should only ever be used in Code objects for calls within the 1190 // same Code object. Should not be used when generating new code (use labels), 1191 // but only when patching existing code. 1192 void call(Address target); 1193 1194 // Call near absolute indirect, address in register 1195 void call(Register adr); 1196 1197 // Call near indirect 1198 void call(const Operand& operand); 1199 1200 // Jumps 1201 // Jump short or near relative. 1202 // Use a 32-bit signed displacement. 1203 void jmp(Label* L); // unconditional jump to L 1204 void jmp(Handle<Code> target, RelocInfo::Mode rmode); 1205 1206 // Jump near absolute indirect (r64) 1207 void jmp(Register adr); 1208 1209 // Jump near absolute indirect (m64) 1210 void jmp(const Operand& src); 1211 1212 // Short jump 1213 void jmp(NearLabel* L); 1214 1215 // Conditional jumps 1216 void j(Condition cc, Label* L); 1217 void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode); 1218 1219 // Conditional short jump 1220 void j(Condition cc, NearLabel* L, Hint hint = no_hint); 1221 1222 // Floating-point operations 1223 void fld(int i); 1224 1225 void fld1(); 1226 void fldz(); 1227 void fldpi(); 1228 void fldln2(); 1229 1230 void fld_s(const Operand& adr); 1231 void fld_d(const Operand& adr); 1232 1233 void fstp_s(const Operand& adr); 1234 void fstp_d(const Operand& adr); 1235 void fstp(int index); 1236 1237 void fild_s(const Operand& adr); 1238 void fild_d(const Operand& adr); 1239 1240 void fist_s(const Operand& adr); 1241 1242 void fistp_s(const Operand& adr); 1243 void fistp_d(const Operand& adr); 1244 1245 void fisttp_s(const Operand& adr); 1246 void fisttp_d(const Operand& adr); 1247 1248 void fabs(); 1249 void fchs(); 1250 1251 void fadd(int i); 1252 void fsub(int i); 1253 void fmul(int i); 1254 void fdiv(int i); 1255 1256 void fisub_s(const Operand& adr); 1257 1258 void faddp(int i = 1); 1259 void fsubp(int i = 1); 1260 void fsubrp(int i = 1); 1261 void fmulp(int i = 1); 1262 void fdivp(int i = 1); 1263 void fprem(); 1264 void fprem1(); 1265 1266 void fxch(int i = 1); 1267 void fincstp(); 1268 void ffree(int i = 0); 1269 1270 void ftst(); 1271 void fucomp(int i); 1272 void fucompp(); 1273 void fucomi(int i); 1274 void fucomip(); 1275 1276 void fcompp(); 1277 void fnstsw_ax(); 1278 void fwait(); 1279 void fnclex(); 1280 1281 void fsin(); 1282 void fcos(); 1283 void fyl2x(); 1284 1285 void frndint(); 1286 1287 void sahf(); 1288 1289 // SSE2 instructions 1290 void movd(XMMRegister dst, Register src); 1291 void movd(Register dst, XMMRegister src); 1292 void movq(XMMRegister dst, Register src); 1293 void movq(Register dst, XMMRegister src); 1294 void extractps(Register dst, XMMRegister src, byte imm8); 1295 1296 void movsd(const Operand& dst, XMMRegister src); 1297 void movsd(XMMRegister dst, XMMRegister src); 1298 void movsd(XMMRegister dst, const Operand& src); 1299 1300 void movdqa(const Operand& dst, XMMRegister src); 1301 void movdqa(XMMRegister dst, const Operand& src); 1302 1303 void movss(XMMRegister dst, const Operand& src); 1304 void movss(const Operand& dst, XMMRegister src); 1305 1306 void cvttss2si(Register dst, const Operand& src); 1307 void cvttss2si(Register dst, XMMRegister src); 1308 void cvttsd2si(Register dst, const Operand& src); 1309 void cvttsd2si(Register dst, XMMRegister src); 1310 void cvttsd2siq(Register dst, XMMRegister src); 1311 1312 void cvtlsi2sd(XMMRegister dst, const Operand& src); 1313 void cvtlsi2sd(XMMRegister dst, Register src); 1314 void cvtqsi2sd(XMMRegister dst, const Operand& src); 1315 void cvtqsi2sd(XMMRegister dst, Register src); 1316 1317 void cvtlsi2ss(XMMRegister dst, Register src); 1318 1319 void cvtss2sd(XMMRegister dst, XMMRegister src); 1320 void cvtss2sd(XMMRegister dst, const Operand& src); 1321 void cvtsd2ss(XMMRegister dst, XMMRegister src); 1322 1323 void cvtsd2si(Register dst, XMMRegister src); 1324 void cvtsd2siq(Register dst, XMMRegister src); 1325 1326 void addsd(XMMRegister dst, XMMRegister src); 1327 void subsd(XMMRegister dst, XMMRegister src); 1328 void mulsd(XMMRegister dst, XMMRegister src); 1329 void divsd(XMMRegister dst, XMMRegister src); 1330 1331 void andpd(XMMRegister dst, XMMRegister src); 1332 void orpd(XMMRegister dst, XMMRegister src); 1333 void xorpd(XMMRegister dst, XMMRegister src); 1334 void sqrtsd(XMMRegister dst, XMMRegister src); 1335 1336 void ucomisd(XMMRegister dst, XMMRegister src); 1337 void ucomisd(XMMRegister dst, const Operand& src); 1338 1339 void movmskpd(Register dst, XMMRegister src); 1340 1341 // The first argument is the reg field, the second argument is the r/m field. 1342 void emit_sse_operand(XMMRegister dst, XMMRegister src); 1343 void emit_sse_operand(XMMRegister reg, const Operand& adr); 1344 void emit_sse_operand(XMMRegister dst, Register src); 1345 void emit_sse_operand(Register dst, XMMRegister src); 1346 1347 // Debugging 1348 void Print(); 1349 1350 // Check the code size generated from label to here. 1351 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); } 1352 1353 // Mark address of the ExitJSFrame code. 1354 void RecordJSReturn(); 1355 1356 // Mark address of a debug break slot. 1357 void RecordDebugBreakSlot(); 1358 1359 // Record a comment relocation entry that can be used by a disassembler. 1360 // Use --code-comments to enable. 1361 void RecordComment(const char* msg, bool force = false); 1362 1363 // Writes a single word of data in the code stream. 1364 // Used for inline tables, e.g., jump-tables. 1365 void db(uint8_t data); 1366 void dd(uint32_t data); 1367 1368 int pc_offset() const { return static_cast<int>(pc_ - buffer_); } 1369 1370 PositionsRecorder* positions_recorder() { return &positions_recorder_; } 1371 1372 // Check if there is less than kGap bytes available in the buffer. 1373 // If this is the case, we need to grow the buffer before emitting 1374 // an instruction or relocation information. 1375 inline bool buffer_overflow() const { 1376 return pc_ >= reloc_info_writer.pos() - kGap; 1377 } 1378 1379 // Get the number of bytes available in the buffer. 1380 inline int available_space() const { 1381 return static_cast<int>(reloc_info_writer.pos() - pc_); 1382 } 1383 1384 static bool IsNop(Address addr) { return *addr == 0x90; } 1385 1386 // Avoid overflows for displacements etc. 1387 static const int kMaximalBufferSize = 512*MB; 1388 static const int kMinimalBufferSize = 4*KB; 1389 1390 protected: 1391 bool emit_debug_code() const { return emit_debug_code_; } 1392 1393 private: 1394 byte* addr_at(int pos) { return buffer_ + pos; } 1395 byte byte_at(int pos) { return buffer_[pos]; } 1396 void set_byte_at(int pos, byte value) { buffer_[pos] = value; } 1397 uint32_t long_at(int pos) { 1398 return *reinterpret_cast<uint32_t*>(addr_at(pos)); 1399 } 1400 void long_at_put(int pos, uint32_t x) { 1401 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x; 1402 } 1403 1404 // code emission 1405 void GrowBuffer(); 1406 1407 void emit(byte x) { *pc_++ = x; } 1408 inline void emitl(uint32_t x); 1409 inline void emitq(uint64_t x, RelocInfo::Mode rmode); 1410 inline void emitw(uint16_t x); 1411 inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode); 1412 void emit(Immediate x) { emitl(x.value_); } 1413 1414 // Emits a REX prefix that encodes a 64-bit operand size and 1415 // the top bit of both register codes. 1416 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. 1417 // REX.W is set. 1418 inline void emit_rex_64(XMMRegister reg, Register rm_reg); 1419 inline void emit_rex_64(Register reg, XMMRegister rm_reg); 1420 inline void emit_rex_64(Register reg, Register rm_reg); 1421 1422 // Emits a REX prefix that encodes a 64-bit operand size and 1423 // the top bit of the destination, index, and base register codes. 1424 // The high bit of reg is used for REX.R, the high bit of op's base 1425 // register is used for REX.B, and the high bit of op's index register 1426 // is used for REX.X. REX.W is set. 1427 inline void emit_rex_64(Register reg, const Operand& op); 1428 inline void emit_rex_64(XMMRegister reg, const Operand& op); 1429 1430 // Emits a REX prefix that encodes a 64-bit operand size and 1431 // the top bit of the register code. 1432 // The high bit of register is used for REX.B. 1433 // REX.W is set and REX.R and REX.X are clear. 1434 inline void emit_rex_64(Register rm_reg); 1435 1436 // Emits a REX prefix that encodes a 64-bit operand size and 1437 // the top bit of the index and base register codes. 1438 // The high bit of op's base register is used for REX.B, and the high 1439 // bit of op's index register is used for REX.X. 1440 // REX.W is set and REX.R clear. 1441 inline void emit_rex_64(const Operand& op); 1442 1443 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size. 1444 void emit_rex_64() { emit(0x48); } 1445 1446 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. 1447 // REX.W is clear. 1448 inline void emit_rex_32(Register reg, Register rm_reg); 1449 1450 // The high bit of reg is used for REX.R, the high bit of op's base 1451 // register is used for REX.B, and the high bit of op's index register 1452 // is used for REX.X. REX.W is cleared. 1453 inline void emit_rex_32(Register reg, const Operand& op); 1454 1455 // High bit of rm_reg goes to REX.B. 1456 // REX.W, REX.R and REX.X are clear. 1457 inline void emit_rex_32(Register rm_reg); 1458 1459 // High bit of base goes to REX.B and high bit of index to REX.X. 1460 // REX.W and REX.R are clear. 1461 inline void emit_rex_32(const Operand& op); 1462 1463 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. 1464 // REX.W is cleared. If no REX bits are set, no byte is emitted. 1465 inline void emit_optional_rex_32(Register reg, Register rm_reg); 1466 1467 // The high bit of reg is used for REX.R, the high bit of op's base 1468 // register is used for REX.B, and the high bit of op's index register 1469 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing 1470 // is emitted. 1471 inline void emit_optional_rex_32(Register reg, const Operand& op); 1472 1473 // As for emit_optional_rex_32(Register, Register), except that 1474 // the registers are XMM registers. 1475 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base); 1476 1477 // As for emit_optional_rex_32(Register, Register), except that 1478 // one of the registers is an XMM registers. 1479 inline void emit_optional_rex_32(XMMRegister reg, Register base); 1480 1481 // As for emit_optional_rex_32(Register, Register), except that 1482 // one of the registers is an XMM registers. 1483 inline void emit_optional_rex_32(Register reg, XMMRegister base); 1484 1485 // As for emit_optional_rex_32(Register, const Operand&), except that 1486 // the register is an XMM register. 1487 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op); 1488 1489 // Optionally do as emit_rex_32(Register) if the register number has 1490 // the high bit set. 1491 inline void emit_optional_rex_32(Register rm_reg); 1492 1493 // Optionally do as emit_rex_32(const Operand&) if the operand register 1494 // numbers have a high bit set. 1495 inline void emit_optional_rex_32(const Operand& op); 1496 1497 1498 // Emit the ModR/M byte, and optionally the SIB byte and 1499 // 1- or 4-byte offset for a memory operand. Also encodes 1500 // the second operand of the operation, a register or operation 1501 // subcode, into the reg field of the ModR/M byte. 1502 void emit_operand(Register reg, const Operand& adr) { 1503 emit_operand(reg.low_bits(), adr); 1504 } 1505 1506 // Emit the ModR/M byte, and optionally the SIB byte and 1507 // 1- or 4-byte offset for a memory operand. Also used to encode 1508 // a three-bit opcode extension into the ModR/M byte. 1509 void emit_operand(int rm, const Operand& adr); 1510 1511 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields. 1512 void emit_modrm(Register reg, Register rm_reg) { 1513 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits()); 1514 } 1515 1516 // Emit a ModR/M byte with an operation subcode in the reg field and 1517 // a register in the rm_reg field. 1518 void emit_modrm(int code, Register rm_reg) { 1519 ASSERT(is_uint3(code)); 1520 emit(0xC0 | code << 3 | rm_reg.low_bits()); 1521 } 1522 1523 // Emit the code-object-relative offset of the label's position 1524 inline void emit_code_relative_offset(Label* label); 1525 1526 // Emit machine code for one of the operations ADD, ADC, SUB, SBC, 1527 // AND, OR, XOR, or CMP. The encodings of these operations are all 1528 // similar, differing just in the opcode or in the reg field of the 1529 // ModR/M byte. 1530 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg); 1531 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg); 1532 void arithmetic_op_32(byte opcode, Register reg, Register rm_reg); 1533 void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg); 1534 void arithmetic_op(byte opcode, Register reg, Register rm_reg); 1535 void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg); 1536 void immediate_arithmetic_op(byte subcode, Register dst, Immediate src); 1537 void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src); 1538 // Operate on a byte in memory or register. 1539 void immediate_arithmetic_op_8(byte subcode, 1540 Register dst, 1541 Immediate src); 1542 void immediate_arithmetic_op_8(byte subcode, 1543 const Operand& dst, 1544 Immediate src); 1545 // Operate on a word in memory or register. 1546 void immediate_arithmetic_op_16(byte subcode, 1547 Register dst, 1548 Immediate src); 1549 void immediate_arithmetic_op_16(byte subcode, 1550 const Operand& dst, 1551 Immediate src); 1552 // Operate on a 32-bit word in memory or register. 1553 void immediate_arithmetic_op_32(byte subcode, 1554 Register dst, 1555 Immediate src); 1556 void immediate_arithmetic_op_32(byte subcode, 1557 const Operand& dst, 1558 Immediate src); 1559 1560 // Emit machine code for a shift operation. 1561 void shift(Register dst, Immediate shift_amount, int subcode); 1562 void shift_32(Register dst, Immediate shift_amount, int subcode); 1563 // Shift dst by cl % 64 bits. 1564 void shift(Register dst, int subcode); 1565 void shift_32(Register dst, int subcode); 1566 1567 void emit_farith(int b1, int b2, int i); 1568 1569 // labels 1570 // void print(Label* L); 1571 void bind_to(Label* L, int pos); 1572 1573 // record reloc info for current pc_ 1574 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1575 1576 friend class CodePatcher; 1577 friend class EnsureSpace; 1578 friend class RegExpMacroAssemblerX64; 1579 1580 // Code buffer: 1581 // The buffer into which code and relocation info are generated. 1582 byte* buffer_; 1583 int buffer_size_; 1584 // True if the assembler owns the buffer, false if buffer is external. 1585 bool own_buffer_; 1586 1587 // code generation 1588 byte* pc_; // the program counter; moves forward 1589 RelocInfoWriter reloc_info_writer; 1590 1591 List< Handle<Code> > code_targets_; 1592 1593 PositionsRecorder positions_recorder_; 1594 1595 bool emit_debug_code_; 1596 1597 friend class PositionsRecorder; 1598 }; 1599 1600 1601 // Helper class that ensures that there is enough space for generating 1602 // instructions and relocation information. The constructor makes 1603 // sure that there is enough space and (in debug mode) the destructor 1604 // checks that we did not generate too much. 1605 class EnsureSpace BASE_EMBEDDED { 1606 public: 1607 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) { 1608 if (assembler_->buffer_overflow()) assembler_->GrowBuffer(); 1609 #ifdef DEBUG 1610 space_before_ = assembler_->available_space(); 1611 #endif 1612 } 1613 1614 #ifdef DEBUG 1615 ~EnsureSpace() { 1616 int bytes_generated = space_before_ - assembler_->available_space(); 1617 ASSERT(bytes_generated < assembler_->kGap); 1618 } 1619 #endif 1620 1621 private: 1622 Assembler* assembler_; 1623 #ifdef DEBUG 1624 int space_before_; 1625 #endif 1626 }; 1627 1628 } } // namespace v8::internal 1629 1630 #endif // V8_X64_ASSEMBLER_X64_H_ 1631