Home | History | Annotate | Download | only in CppBackend
      1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
     11 // LLVM IR interface. The input module is assumed to be verified.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CPPTargetMachine.h"
     16 #include "llvm/CallingConv.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/InlineAsm.h"
     20 #include "llvm/Instruction.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Pass.h"
     24 #include "llvm/PassManager.h"
     25 #include "llvm/MC/MCAsmInfo.h"
     26 #include "llvm/MC/MCInstrInfo.h"
     27 #include "llvm/MC/MCSubtargetInfo.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/FormattedStream.h"
     32 #include "llvm/Target/TargetRegistry.h"
     33 #include "llvm/ADT/StringExtras.h"
     34 #include "llvm/Config/config.h"
     35 #include <algorithm>
     36 #include <set>
     37 #include <map>
     38 using namespace llvm;
     39 
     40 static cl::opt<std::string>
     41 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
     42          cl::value_desc("function name"));
     43 
     44 enum WhatToGenerate {
     45   GenProgram,
     46   GenModule,
     47   GenContents,
     48   GenFunction,
     49   GenFunctions,
     50   GenInline,
     51   GenVariable,
     52   GenType
     53 };
     54 
     55 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
     56   cl::desc("Choose what kind of output to generate"),
     57   cl::init(GenProgram),
     58   cl::values(
     59     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
     60     clEnumValN(GenModule,   "module",    "Generate a module definition"),
     61     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
     62     clEnumValN(GenFunction, "function",  "Generate a function definition"),
     63     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
     64     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
     65     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
     66     clEnumValN(GenType,     "type",      "Generate a type definition"),
     67     clEnumValEnd
     68   )
     69 );
     70 
     71 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
     72   cl::desc("Specify the name of the thing to generate"),
     73   cl::init("!bad!"));
     74 
     75 extern "C" void LLVMInitializeCppBackendTarget() {
     76   // Register the target.
     77   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
     78 }
     79 
     80 extern "C" void LLVMInitializeCppBackendMCAsmInfo() {}
     81 
     82 extern "C" void LLVMInitializeCppBackendMCRegisterInfo() {}
     83 
     84 extern "C" void LLVMInitializeCppBackendMCInstrInfo() {}
     85 
     86 extern "C" void LLVMInitializeCppBackendMCSubtargetInfo() {}
     87 
     88 extern "C" void LLVMInitializeCppBackendMCCodeGenInfo() {}
     89 
     90 namespace {
     91   typedef std::vector<Type*> TypeList;
     92   typedef std::map<Type*,std::string> TypeMap;
     93   typedef std::map<const Value*,std::string> ValueMap;
     94   typedef std::set<std::string> NameSet;
     95   typedef std::set<Type*> TypeSet;
     96   typedef std::set<const Value*> ValueSet;
     97   typedef std::map<const Value*,std::string> ForwardRefMap;
     98 
     99   /// CppWriter - This class is the main chunk of code that converts an LLVM
    100   /// module to a C++ translation unit.
    101   class CppWriter : public ModulePass {
    102     formatted_raw_ostream &Out;
    103     const Module *TheModule;
    104     uint64_t uniqueNum;
    105     TypeMap TypeNames;
    106     ValueMap ValueNames;
    107     NameSet UsedNames;
    108     TypeSet DefinedTypes;
    109     ValueSet DefinedValues;
    110     ForwardRefMap ForwardRefs;
    111     bool is_inline;
    112     unsigned indent_level;
    113 
    114   public:
    115     static char ID;
    116     explicit CppWriter(formatted_raw_ostream &o) :
    117       ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
    118 
    119     virtual const char *getPassName() const { return "C++ backend"; }
    120 
    121     bool runOnModule(Module &M);
    122 
    123     void printProgram(const std::string& fname, const std::string& modName );
    124     void printModule(const std::string& fname, const std::string& modName );
    125     void printContents(const std::string& fname, const std::string& modName );
    126     void printFunction(const std::string& fname, const std::string& funcName );
    127     void printFunctions();
    128     void printInline(const std::string& fname, const std::string& funcName );
    129     void printVariable(const std::string& fname, const std::string& varName );
    130     void printType(const std::string& fname, const std::string& typeName );
    131 
    132     void error(const std::string& msg);
    133 
    134 
    135     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
    136     inline void in() { indent_level++; }
    137     inline void out() { if (indent_level >0) indent_level--; }
    138 
    139   private:
    140     void printLinkageType(GlobalValue::LinkageTypes LT);
    141     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
    142     void printCallingConv(CallingConv::ID cc);
    143     void printEscapedString(const std::string& str);
    144     void printCFP(const ConstantFP* CFP);
    145 
    146     std::string getCppName(Type* val);
    147     inline void printCppName(Type* val);
    148 
    149     std::string getCppName(const Value* val);
    150     inline void printCppName(const Value* val);
    151 
    152     void printAttributes(const AttrListPtr &PAL, const std::string &name);
    153     void printType(Type* Ty);
    154     void printTypes(const Module* M);
    155 
    156     void printConstant(const Constant *CPV);
    157     void printConstants(const Module* M);
    158 
    159     void printVariableUses(const GlobalVariable *GV);
    160     void printVariableHead(const GlobalVariable *GV);
    161     void printVariableBody(const GlobalVariable *GV);
    162 
    163     void printFunctionUses(const Function *F);
    164     void printFunctionHead(const Function *F);
    165     void printFunctionBody(const Function *F);
    166     void printInstruction(const Instruction *I, const std::string& bbname);
    167     std::string getOpName(Value*);
    168 
    169     void printModuleBody();
    170   };
    171 } // end anonymous namespace.
    172 
    173 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
    174   Out << '\n';
    175   if (delta >= 0 || indent_level >= unsigned(-delta))
    176     indent_level += delta;
    177   Out.indent(indent_level);
    178   return Out;
    179 }
    180 
    181 static inline void sanitize(std::string &str) {
    182   for (size_t i = 0; i < str.length(); ++i)
    183     if (!isalnum(str[i]) && str[i] != '_')
    184       str[i] = '_';
    185 }
    186 
    187 static std::string getTypePrefix(Type *Ty) {
    188   switch (Ty->getTypeID()) {
    189   case Type::VoidTyID:     return "void_";
    190   case Type::IntegerTyID:
    191     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
    192   case Type::FloatTyID:    return "float_";
    193   case Type::DoubleTyID:   return "double_";
    194   case Type::LabelTyID:    return "label_";
    195   case Type::FunctionTyID: return "func_";
    196   case Type::StructTyID:   return "struct_";
    197   case Type::ArrayTyID:    return "array_";
    198   case Type::PointerTyID:  return "ptr_";
    199   case Type::VectorTyID:   return "packed_";
    200   default:                 return "other_";
    201   }
    202   return "unknown_";
    203 }
    204 
    205 void CppWriter::error(const std::string& msg) {
    206   report_fatal_error(msg);
    207 }
    208 
    209 // printCFP - Print a floating point constant .. very carefully :)
    210 // This makes sure that conversion to/from floating yields the same binary
    211 // result so that we don't lose precision.
    212 void CppWriter::printCFP(const ConstantFP *CFP) {
    213   bool ignored;
    214   APFloat APF = APFloat(CFP->getValueAPF());  // copy
    215   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
    216     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
    217   Out << "ConstantFP::get(mod->getContext(), ";
    218   Out << "APFloat(";
    219 #if HAVE_PRINTF_A
    220   char Buffer[100];
    221   sprintf(Buffer, "%A", APF.convertToDouble());
    222   if ((!strncmp(Buffer, "0x", 2) ||
    223        !strncmp(Buffer, "-0x", 3) ||
    224        !strncmp(Buffer, "+0x", 3)) &&
    225       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
    226     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    227       Out << "BitsToDouble(" << Buffer << ")";
    228     else
    229       Out << "BitsToFloat((float)" << Buffer << ")";
    230     Out << ")";
    231   } else {
    232 #endif
    233     std::string StrVal = ftostr(CFP->getValueAPF());
    234 
    235     while (StrVal[0] == ' ')
    236       StrVal.erase(StrVal.begin());
    237 
    238     // Check to make sure that the stringized number is not some string like
    239     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
    240     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    241          ((StrVal[0] == '-' || StrVal[0] == '+') &&
    242           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
    243         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
    244       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    245         Out <<  StrVal;
    246       else
    247         Out << StrVal << "f";
    248     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    249       Out << "BitsToDouble(0x"
    250           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
    251           << "ULL) /* " << StrVal << " */";
    252     else
    253       Out << "BitsToFloat(0x"
    254           << utohexstr((uint32_t)CFP->getValueAPF().
    255                                       bitcastToAPInt().getZExtValue())
    256           << "U) /* " << StrVal << " */";
    257     Out << ")";
    258 #if HAVE_PRINTF_A
    259   }
    260 #endif
    261   Out << ")";
    262 }
    263 
    264 void CppWriter::printCallingConv(CallingConv::ID cc){
    265   // Print the calling convention.
    266   switch (cc) {
    267   case CallingConv::C:     Out << "CallingConv::C"; break;
    268   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
    269   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
    270   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
    271   default:                 Out << cc; break;
    272   }
    273 }
    274 
    275 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
    276   switch (LT) {
    277   case GlobalValue::InternalLinkage:
    278     Out << "GlobalValue::InternalLinkage"; break;
    279   case GlobalValue::PrivateLinkage:
    280     Out << "GlobalValue::PrivateLinkage"; break;
    281   case GlobalValue::LinkerPrivateLinkage:
    282     Out << "GlobalValue::LinkerPrivateLinkage"; break;
    283   case GlobalValue::LinkerPrivateWeakLinkage:
    284     Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
    285   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
    286     Out << "GlobalValue::LinkerPrivateWeakDefAutoLinkage"; break;
    287   case GlobalValue::AvailableExternallyLinkage:
    288     Out << "GlobalValue::AvailableExternallyLinkage "; break;
    289   case GlobalValue::LinkOnceAnyLinkage:
    290     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
    291   case GlobalValue::LinkOnceODRLinkage:
    292     Out << "GlobalValue::LinkOnceODRLinkage "; break;
    293   case GlobalValue::WeakAnyLinkage:
    294     Out << "GlobalValue::WeakAnyLinkage"; break;
    295   case GlobalValue::WeakODRLinkage:
    296     Out << "GlobalValue::WeakODRLinkage"; break;
    297   case GlobalValue::AppendingLinkage:
    298     Out << "GlobalValue::AppendingLinkage"; break;
    299   case GlobalValue::ExternalLinkage:
    300     Out << "GlobalValue::ExternalLinkage"; break;
    301   case GlobalValue::DLLImportLinkage:
    302     Out << "GlobalValue::DLLImportLinkage"; break;
    303   case GlobalValue::DLLExportLinkage:
    304     Out << "GlobalValue::DLLExportLinkage"; break;
    305   case GlobalValue::ExternalWeakLinkage:
    306     Out << "GlobalValue::ExternalWeakLinkage"; break;
    307   case GlobalValue::CommonLinkage:
    308     Out << "GlobalValue::CommonLinkage"; break;
    309   }
    310 }
    311 
    312 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
    313   switch (VisType) {
    314   default: llvm_unreachable("Unknown GVar visibility");
    315   case GlobalValue::DefaultVisibility:
    316     Out << "GlobalValue::DefaultVisibility";
    317     break;
    318   case GlobalValue::HiddenVisibility:
    319     Out << "GlobalValue::HiddenVisibility";
    320     break;
    321   case GlobalValue::ProtectedVisibility:
    322     Out << "GlobalValue::ProtectedVisibility";
    323     break;
    324   }
    325 }
    326 
    327 // printEscapedString - Print each character of the specified string, escaping
    328 // it if it is not printable or if it is an escape char.
    329 void CppWriter::printEscapedString(const std::string &Str) {
    330   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    331     unsigned char C = Str[i];
    332     if (isprint(C) && C != '"' && C != '\\') {
    333       Out << C;
    334     } else {
    335       Out << "\\x"
    336           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
    337           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
    338     }
    339   }
    340 }
    341 
    342 std::string CppWriter::getCppName(Type* Ty) {
    343   // First, handle the primitive types .. easy
    344   if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
    345     switch (Ty->getTypeID()) {
    346     case Type::VoidTyID:   return "Type::getVoidTy(mod->getContext())";
    347     case Type::IntegerTyID: {
    348       unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
    349       return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
    350     }
    351     case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
    352     case Type::FloatTyID:    return "Type::getFloatTy(mod->getContext())";
    353     case Type::DoubleTyID:   return "Type::getDoubleTy(mod->getContext())";
    354     case Type::LabelTyID:    return "Type::getLabelTy(mod->getContext())";
    355     case Type::X86_MMXTyID:  return "Type::getX86_MMXTy(mod->getContext())";
    356     default:
    357       error("Invalid primitive type");
    358       break;
    359     }
    360     // shouldn't be returned, but make it sensible
    361     return "Type::getVoidTy(mod->getContext())";
    362   }
    363 
    364   // Now, see if we've seen the type before and return that
    365   TypeMap::iterator I = TypeNames.find(Ty);
    366   if (I != TypeNames.end())
    367     return I->second;
    368 
    369   // Okay, let's build a new name for this type. Start with a prefix
    370   const char* prefix = 0;
    371   switch (Ty->getTypeID()) {
    372   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
    373   case Type::StructTyID:      prefix = "StructTy_"; break;
    374   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
    375   case Type::PointerTyID:     prefix = "PointerTy_"; break;
    376   case Type::VectorTyID:      prefix = "VectorTy_"; break;
    377   default:                    prefix = "OtherTy_"; break; // prevent breakage
    378   }
    379 
    380   // See if the type has a name in the symboltable and build accordingly
    381   std::string name;
    382   if (StructType *STy = dyn_cast<StructType>(Ty))
    383     if (STy->hasName())
    384       name = STy->getName();
    385 
    386   if (name.empty())
    387     name = utostr(uniqueNum++);
    388 
    389   name = std::string(prefix) + name;
    390   sanitize(name);
    391 
    392   // Save the name
    393   return TypeNames[Ty] = name;
    394 }
    395 
    396 void CppWriter::printCppName(Type* Ty) {
    397   printEscapedString(getCppName(Ty));
    398 }
    399 
    400 std::string CppWriter::getCppName(const Value* val) {
    401   std::string name;
    402   ValueMap::iterator I = ValueNames.find(val);
    403   if (I != ValueNames.end() && I->first == val)
    404     return  I->second;
    405 
    406   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
    407     name = std::string("gvar_") +
    408       getTypePrefix(GV->getType()->getElementType());
    409   } else if (isa<Function>(val)) {
    410     name = std::string("func_");
    411   } else if (const Constant* C = dyn_cast<Constant>(val)) {
    412     name = std::string("const_") + getTypePrefix(C->getType());
    413   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
    414     if (is_inline) {
    415       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
    416                                       Function::const_arg_iterator(Arg)) + 1;
    417       name = std::string("arg_") + utostr(argNum);
    418       NameSet::iterator NI = UsedNames.find(name);
    419       if (NI != UsedNames.end())
    420         name += std::string("_") + utostr(uniqueNum++);
    421       UsedNames.insert(name);
    422       return ValueNames[val] = name;
    423     } else {
    424       name = getTypePrefix(val->getType());
    425     }
    426   } else {
    427     name = getTypePrefix(val->getType());
    428   }
    429   if (val->hasName())
    430     name += val->getName();
    431   else
    432     name += utostr(uniqueNum++);
    433   sanitize(name);
    434   NameSet::iterator NI = UsedNames.find(name);
    435   if (NI != UsedNames.end())
    436     name += std::string("_") + utostr(uniqueNum++);
    437   UsedNames.insert(name);
    438   return ValueNames[val] = name;
    439 }
    440 
    441 void CppWriter::printCppName(const Value* val) {
    442   printEscapedString(getCppName(val));
    443 }
    444 
    445 void CppWriter::printAttributes(const AttrListPtr &PAL,
    446                                 const std::string &name) {
    447   Out << "AttrListPtr " << name << "_PAL;";
    448   nl(Out);
    449   if (!PAL.isEmpty()) {
    450     Out << '{'; in(); nl(Out);
    451     Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
    452     Out << "AttributeWithIndex PAWI;"; nl(Out);
    453     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
    454       unsigned index = PAL.getSlot(i).Index;
    455       Attributes attrs = PAL.getSlot(i).Attrs;
    456       Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
    457 #define HANDLE_ATTR(X)                 \
    458       if (attrs & Attribute::X)      \
    459         Out << " | Attribute::" #X;  \
    460       attrs &= ~Attribute::X;
    461 
    462       HANDLE_ATTR(SExt);
    463       HANDLE_ATTR(ZExt);
    464       HANDLE_ATTR(NoReturn);
    465       HANDLE_ATTR(InReg);
    466       HANDLE_ATTR(StructRet);
    467       HANDLE_ATTR(NoUnwind);
    468       HANDLE_ATTR(NoAlias);
    469       HANDLE_ATTR(ByVal);
    470       HANDLE_ATTR(Nest);
    471       HANDLE_ATTR(ReadNone);
    472       HANDLE_ATTR(ReadOnly);
    473       HANDLE_ATTR(NoInline);
    474       HANDLE_ATTR(AlwaysInline);
    475       HANDLE_ATTR(OptimizeForSize);
    476       HANDLE_ATTR(StackProtect);
    477       HANDLE_ATTR(StackProtectReq);
    478       HANDLE_ATTR(NoCapture);
    479       HANDLE_ATTR(NoRedZone);
    480       HANDLE_ATTR(NoImplicitFloat);
    481       HANDLE_ATTR(Naked);
    482       HANDLE_ATTR(InlineHint);
    483 #undef HANDLE_ATTR
    484       if (attrs & Attribute::StackAlignment)
    485         Out << " | Attribute::constructStackAlignmentFromInt("
    486             << Attribute::getStackAlignmentFromAttrs(attrs)
    487             << ")";
    488       attrs &= ~Attribute::StackAlignment;
    489       assert(attrs == 0 && "Unhandled attribute!");
    490       Out << ";";
    491       nl(Out);
    492       Out << "Attrs.push_back(PAWI);";
    493       nl(Out);
    494     }
    495     Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
    496     nl(Out);
    497     out(); nl(Out);
    498     Out << '}'; nl(Out);
    499   }
    500 }
    501 
    502 void CppWriter::printType(Type* Ty) {
    503   // We don't print definitions for primitive types
    504   if (Ty->isPrimitiveType() || Ty->isIntegerTy())
    505     return;
    506 
    507   // If we already defined this type, we don't need to define it again.
    508   if (DefinedTypes.find(Ty) != DefinedTypes.end())
    509     return;
    510 
    511   // Everything below needs the name for the type so get it now.
    512   std::string typeName(getCppName(Ty));
    513 
    514   // Print the type definition
    515   switch (Ty->getTypeID()) {
    516   case Type::FunctionTyID:  {
    517     FunctionType* FT = cast<FunctionType>(Ty);
    518     Out << "std::vector<Type*>" << typeName << "_args;";
    519     nl(Out);
    520     FunctionType::param_iterator PI = FT->param_begin();
    521     FunctionType::param_iterator PE = FT->param_end();
    522     for (; PI != PE; ++PI) {
    523       Type* argTy = static_cast<Type*>(*PI);
    524       printType(argTy);
    525       std::string argName(getCppName(argTy));
    526       Out << typeName << "_args.push_back(" << argName;
    527       Out << ");";
    528       nl(Out);
    529     }
    530     printType(FT->getReturnType());
    531     std::string retTypeName(getCppName(FT->getReturnType()));
    532     Out << "FunctionType* " << typeName << " = FunctionType::get(";
    533     in(); nl(Out) << "/*Result=*/" << retTypeName;
    534     Out << ",";
    535     nl(Out) << "/*Params=*/" << typeName << "_args,";
    536     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
    537     out();
    538     nl(Out);
    539     break;
    540   }
    541   case Type::StructTyID: {
    542     StructType* ST = cast<StructType>(Ty);
    543     if (!ST->isAnonymous()) {
    544       Out << "StructType *" << typeName << " = ";
    545       Out << "StructType::createNamed(mod->getContext(), \"";
    546       printEscapedString(ST->getName());
    547       Out << "\");";
    548       nl(Out);
    549       // Indicate that this type is now defined.
    550       DefinedTypes.insert(Ty);
    551     }
    552 
    553     Out << "std::vector<Type*>" << typeName << "_fields;";
    554     nl(Out);
    555     StructType::element_iterator EI = ST->element_begin();
    556     StructType::element_iterator EE = ST->element_end();
    557     for (; EI != EE; ++EI) {
    558       Type* fieldTy = static_cast<Type*>(*EI);
    559       printType(fieldTy);
    560       std::string fieldName(getCppName(fieldTy));
    561       Out << typeName << "_fields.push_back(" << fieldName;
    562       Out << ");";
    563       nl(Out);
    564     }
    565 
    566     if (ST->isAnonymous()) {
    567       Out << "StructType *" << typeName << " = ";
    568       Out << "StructType::get(" << "mod->getContext(), ";
    569     } else {
    570       Out << typeName << "->setBody(";
    571     }
    572 
    573     Out << typeName << "_fields, /*isPacked=*/"
    574         << (ST->isPacked() ? "true" : "false") << ");";
    575     nl(Out);
    576     break;
    577   }
    578   case Type::ArrayTyID: {
    579     ArrayType* AT = cast<ArrayType>(Ty);
    580     Type* ET = AT->getElementType();
    581     printType(ET);
    582     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    583       std::string elemName(getCppName(ET));
    584       Out << "ArrayType* " << typeName << " = ArrayType::get("
    585           << elemName
    586           << ", " << utostr(AT->getNumElements()) << ");";
    587       nl(Out);
    588     }
    589     break;
    590   }
    591   case Type::PointerTyID: {
    592     PointerType* PT = cast<PointerType>(Ty);
    593     Type* ET = PT->getElementType();
    594     printType(ET);
    595     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    596       std::string elemName(getCppName(ET));
    597       Out << "PointerType* " << typeName << " = PointerType::get("
    598           << elemName
    599           << ", " << utostr(PT->getAddressSpace()) << ");";
    600       nl(Out);
    601     }
    602     break;
    603   }
    604   case Type::VectorTyID: {
    605     VectorType* PT = cast<VectorType>(Ty);
    606     Type* ET = PT->getElementType();
    607     printType(ET);
    608     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    609       std::string elemName(getCppName(ET));
    610       Out << "VectorType* " << typeName << " = VectorType::get("
    611           << elemName
    612           << ", " << utostr(PT->getNumElements()) << ");";
    613       nl(Out);
    614     }
    615     break;
    616   }
    617   default:
    618     error("Invalid TypeID");
    619   }
    620 
    621   // Indicate that this type is now defined.
    622   DefinedTypes.insert(Ty);
    623 
    624   // Finally, separate the type definition from other with a newline.
    625   nl(Out);
    626 }
    627 
    628 void CppWriter::printTypes(const Module* M) {
    629   // Add all of the global variables to the value table.
    630   for (Module::const_global_iterator I = TheModule->global_begin(),
    631          E = TheModule->global_end(); I != E; ++I) {
    632     if (I->hasInitializer())
    633       printType(I->getInitializer()->getType());
    634     printType(I->getType());
    635   }
    636 
    637   // Add all the functions to the table
    638   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    639        FI != FE; ++FI) {
    640     printType(FI->getReturnType());
    641     printType(FI->getFunctionType());
    642     // Add all the function arguments
    643     for (Function::const_arg_iterator AI = FI->arg_begin(),
    644            AE = FI->arg_end(); AI != AE; ++AI) {
    645       printType(AI->getType());
    646     }
    647 
    648     // Add all of the basic blocks and instructions
    649     for (Function::const_iterator BB = FI->begin(),
    650            E = FI->end(); BB != E; ++BB) {
    651       printType(BB->getType());
    652       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    653            ++I) {
    654         printType(I->getType());
    655         for (unsigned i = 0; i < I->getNumOperands(); ++i)
    656           printType(I->getOperand(i)->getType());
    657       }
    658     }
    659   }
    660 }
    661 
    662 
    663 // printConstant - Print out a constant pool entry...
    664 void CppWriter::printConstant(const Constant *CV) {
    665   // First, if the constant is actually a GlobalValue (variable or function)
    666   // or its already in the constant list then we've printed it already and we
    667   // can just return.
    668   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
    669     return;
    670 
    671   std::string constName(getCppName(CV));
    672   std::string typeName(getCppName(CV->getType()));
    673 
    674   if (isa<GlobalValue>(CV)) {
    675     // Skip variables and functions, we emit them elsewhere
    676     return;
    677   }
    678 
    679   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    680     std::string constValue = CI->getValue().toString(10, true);
    681     Out << "ConstantInt* " << constName
    682         << " = ConstantInt::get(mod->getContext(), APInt("
    683         << cast<IntegerType>(CI->getType())->getBitWidth()
    684         << ", StringRef(\"" <<  constValue << "\"), 10));";
    685   } else if (isa<ConstantAggregateZero>(CV)) {
    686     Out << "ConstantAggregateZero* " << constName
    687         << " = ConstantAggregateZero::get(" << typeName << ");";
    688   } else if (isa<ConstantPointerNull>(CV)) {
    689     Out << "ConstantPointerNull* " << constName
    690         << " = ConstantPointerNull::get(" << typeName << ");";
    691   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    692     Out << "ConstantFP* " << constName << " = ";
    693     printCFP(CFP);
    694     Out << ";";
    695   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    696     if (CA->isString() &&
    697         CA->getType()->getElementType() ==
    698             Type::getInt8Ty(CA->getContext())) {
    699       Out << "Constant* " << constName <<
    700              " = ConstantArray::get(mod->getContext(), \"";
    701       std::string tmp = CA->getAsString();
    702       bool nullTerminate = false;
    703       if (tmp[tmp.length()-1] == 0) {
    704         tmp.erase(tmp.length()-1);
    705         nullTerminate = true;
    706       }
    707       printEscapedString(tmp);
    708       // Determine if we want null termination or not.
    709       if (nullTerminate)
    710         Out << "\", true"; // Indicate that the null terminator should be
    711                            // added.
    712       else
    713         Out << "\", false";// No null terminator
    714       Out << ");";
    715     } else {
    716       Out << "std::vector<Constant*> " << constName << "_elems;";
    717       nl(Out);
    718       unsigned N = CA->getNumOperands();
    719       for (unsigned i = 0; i < N; ++i) {
    720         printConstant(CA->getOperand(i)); // recurse to print operands
    721         Out << constName << "_elems.push_back("
    722             << getCppName(CA->getOperand(i)) << ");";
    723         nl(Out);
    724       }
    725       Out << "Constant* " << constName << " = ConstantArray::get("
    726           << typeName << ", " << constName << "_elems);";
    727     }
    728   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    729     Out << "std::vector<Constant*> " << constName << "_fields;";
    730     nl(Out);
    731     unsigned N = CS->getNumOperands();
    732     for (unsigned i = 0; i < N; i++) {
    733       printConstant(CS->getOperand(i));
    734       Out << constName << "_fields.push_back("
    735           << getCppName(CS->getOperand(i)) << ");";
    736       nl(Out);
    737     }
    738     Out << "Constant* " << constName << " = ConstantStruct::get("
    739         << typeName << ", " << constName << "_fields);";
    740   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
    741     Out << "std::vector<Constant*> " << constName << "_elems;";
    742     nl(Out);
    743     unsigned N = CP->getNumOperands();
    744     for (unsigned i = 0; i < N; ++i) {
    745       printConstant(CP->getOperand(i));
    746       Out << constName << "_elems.push_back("
    747           << getCppName(CP->getOperand(i)) << ");";
    748       nl(Out);
    749     }
    750     Out << "Constant* " << constName << " = ConstantVector::get("
    751         << typeName << ", " << constName << "_elems);";
    752   } else if (isa<UndefValue>(CV)) {
    753     Out << "UndefValue* " << constName << " = UndefValue::get("
    754         << typeName << ");";
    755   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    756     if (CE->getOpcode() == Instruction::GetElementPtr) {
    757       Out << "std::vector<Constant*> " << constName << "_indices;";
    758       nl(Out);
    759       printConstant(CE->getOperand(0));
    760       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
    761         printConstant(CE->getOperand(i));
    762         Out << constName << "_indices.push_back("
    763             << getCppName(CE->getOperand(i)) << ");";
    764         nl(Out);
    765       }
    766       Out << "Constant* " << constName
    767           << " = ConstantExpr::getGetElementPtr("
    768           << getCppName(CE->getOperand(0)) << ", "
    769           << "&" << constName << "_indices[0], "
    770           << constName << "_indices.size()"
    771           << ");";
    772     } else if (CE->isCast()) {
    773       printConstant(CE->getOperand(0));
    774       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
    775       switch (CE->getOpcode()) {
    776       default: llvm_unreachable("Invalid cast opcode");
    777       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
    778       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
    779       case Instruction::SExt:  Out << "Instruction::SExt"; break;
    780       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
    781       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
    782       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
    783       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
    784       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
    785       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
    786       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
    787       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
    788       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
    789       }
    790       Out << ", " << getCppName(CE->getOperand(0)) << ", "
    791           << getCppName(CE->getType()) << ");";
    792     } else {
    793       unsigned N = CE->getNumOperands();
    794       for (unsigned i = 0; i < N; ++i ) {
    795         printConstant(CE->getOperand(i));
    796       }
    797       Out << "Constant* " << constName << " = ConstantExpr::";
    798       switch (CE->getOpcode()) {
    799       case Instruction::Add:    Out << "getAdd(";  break;
    800       case Instruction::FAdd:   Out << "getFAdd(";  break;
    801       case Instruction::Sub:    Out << "getSub("; break;
    802       case Instruction::FSub:   Out << "getFSub("; break;
    803       case Instruction::Mul:    Out << "getMul("; break;
    804       case Instruction::FMul:   Out << "getFMul("; break;
    805       case Instruction::UDiv:   Out << "getUDiv("; break;
    806       case Instruction::SDiv:   Out << "getSDiv("; break;
    807       case Instruction::FDiv:   Out << "getFDiv("; break;
    808       case Instruction::URem:   Out << "getURem("; break;
    809       case Instruction::SRem:   Out << "getSRem("; break;
    810       case Instruction::FRem:   Out << "getFRem("; break;
    811       case Instruction::And:    Out << "getAnd("; break;
    812       case Instruction::Or:     Out << "getOr("; break;
    813       case Instruction::Xor:    Out << "getXor("; break;
    814       case Instruction::ICmp:
    815         Out << "getICmp(ICmpInst::ICMP_";
    816         switch (CE->getPredicate()) {
    817         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
    818         case ICmpInst::ICMP_NE:  Out << "NE"; break;
    819         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
    820         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
    821         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
    822         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
    823         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
    824         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
    825         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
    826         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
    827         default: error("Invalid ICmp Predicate");
    828         }
    829         break;
    830       case Instruction::FCmp:
    831         Out << "getFCmp(FCmpInst::FCMP_";
    832         switch (CE->getPredicate()) {
    833         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
    834         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
    835         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
    836         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
    837         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
    838         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
    839         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
    840         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
    841         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
    842         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
    843         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
    844         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
    845         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
    846         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
    847         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
    848         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
    849         default: error("Invalid FCmp Predicate");
    850         }
    851         break;
    852       case Instruction::Shl:     Out << "getShl("; break;
    853       case Instruction::LShr:    Out << "getLShr("; break;
    854       case Instruction::AShr:    Out << "getAShr("; break;
    855       case Instruction::Select:  Out << "getSelect("; break;
    856       case Instruction::ExtractElement: Out << "getExtractElement("; break;
    857       case Instruction::InsertElement:  Out << "getInsertElement("; break;
    858       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
    859       default:
    860         error("Invalid constant expression");
    861         break;
    862       }
    863       Out << getCppName(CE->getOperand(0));
    864       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
    865         Out << ", " << getCppName(CE->getOperand(i));
    866       Out << ");";
    867     }
    868   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    869     Out << "Constant* " << constName << " = ";
    870     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
    871   } else {
    872     error("Bad Constant");
    873     Out << "Constant* " << constName << " = 0; ";
    874   }
    875   nl(Out);
    876 }
    877 
    878 void CppWriter::printConstants(const Module* M) {
    879   // Traverse all the global variables looking for constant initializers
    880   for (Module::const_global_iterator I = TheModule->global_begin(),
    881          E = TheModule->global_end(); I != E; ++I)
    882     if (I->hasInitializer())
    883       printConstant(I->getInitializer());
    884 
    885   // Traverse the LLVM functions looking for constants
    886   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    887        FI != FE; ++FI) {
    888     // Add all of the basic blocks and instructions
    889     for (Function::const_iterator BB = FI->begin(),
    890            E = FI->end(); BB != E; ++BB) {
    891       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    892            ++I) {
    893         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
    894           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
    895             printConstant(C);
    896           }
    897         }
    898       }
    899     }
    900   }
    901 }
    902 
    903 void CppWriter::printVariableUses(const GlobalVariable *GV) {
    904   nl(Out) << "// Type Definitions";
    905   nl(Out);
    906   printType(GV->getType());
    907   if (GV->hasInitializer()) {
    908     const Constant *Init = GV->getInitializer();
    909     printType(Init->getType());
    910     if (const Function *F = dyn_cast<Function>(Init)) {
    911       nl(Out)<< "/ Function Declarations"; nl(Out);
    912       printFunctionHead(F);
    913     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
    914       nl(Out) << "// Global Variable Declarations"; nl(Out);
    915       printVariableHead(gv);
    916 
    917       nl(Out) << "// Global Variable Definitions"; nl(Out);
    918       printVariableBody(gv);
    919     } else  {
    920       nl(Out) << "// Constant Definitions"; nl(Out);
    921       printConstant(Init);
    922     }
    923   }
    924 }
    925 
    926 void CppWriter::printVariableHead(const GlobalVariable *GV) {
    927   nl(Out) << "GlobalVariable* " << getCppName(GV);
    928   if (is_inline) {
    929     Out << " = mod->getGlobalVariable(mod->getContext(), ";
    930     printEscapedString(GV->getName());
    931     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
    932     nl(Out) << "if (!" << getCppName(GV) << ") {";
    933     in(); nl(Out) << getCppName(GV);
    934   }
    935   Out << " = new GlobalVariable(/*Module=*/*mod, ";
    936   nl(Out) << "/*Type=*/";
    937   printCppName(GV->getType()->getElementType());
    938   Out << ",";
    939   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
    940   Out << ",";
    941   nl(Out) << "/*Linkage=*/";
    942   printLinkageType(GV->getLinkage());
    943   Out << ",";
    944   nl(Out) << "/*Initializer=*/0, ";
    945   if (GV->hasInitializer()) {
    946     Out << "// has initializer, specified below";
    947   }
    948   nl(Out) << "/*Name=*/\"";
    949   printEscapedString(GV->getName());
    950   Out << "\");";
    951   nl(Out);
    952 
    953   if (GV->hasSection()) {
    954     printCppName(GV);
    955     Out << "->setSection(\"";
    956     printEscapedString(GV->getSection());
    957     Out << "\");";
    958     nl(Out);
    959   }
    960   if (GV->getAlignment()) {
    961     printCppName(GV);
    962     Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
    963     nl(Out);
    964   }
    965   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
    966     printCppName(GV);
    967     Out << "->setVisibility(";
    968     printVisibilityType(GV->getVisibility());
    969     Out << ");";
    970     nl(Out);
    971   }
    972   if (GV->isThreadLocal()) {
    973     printCppName(GV);
    974     Out << "->setThreadLocal(true);";
    975     nl(Out);
    976   }
    977   if (is_inline) {
    978     out(); Out << "}"; nl(Out);
    979   }
    980 }
    981 
    982 void CppWriter::printVariableBody(const GlobalVariable *GV) {
    983   if (GV->hasInitializer()) {
    984     printCppName(GV);
    985     Out << "->setInitializer(";
    986     Out << getCppName(GV->getInitializer()) << ");";
    987     nl(Out);
    988   }
    989 }
    990 
    991 std::string CppWriter::getOpName(Value* V) {
    992   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
    993     return getCppName(V);
    994 
    995   // See if its alread in the map of forward references, if so just return the
    996   // name we already set up for it
    997   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
    998   if (I != ForwardRefs.end())
    999     return I->second;
   1000 
   1001   // This is a new forward reference. Generate a unique name for it
   1002   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
   1003 
   1004   // Yes, this is a hack. An Argument is the smallest instantiable value that
   1005   // we can make as a placeholder for the real value. We'll replace these
   1006   // Argument instances later.
   1007   Out << "Argument* " << result << " = new Argument("
   1008       << getCppName(V->getType()) << ");";
   1009   nl(Out);
   1010   ForwardRefs[V] = result;
   1011   return result;
   1012 }
   1013 
   1014 // printInstruction - This member is called for each Instruction in a function.
   1015 void CppWriter::printInstruction(const Instruction *I,
   1016                                  const std::string& bbname) {
   1017   std::string iName(getCppName(I));
   1018 
   1019   // Before we emit this instruction, we need to take care of generating any
   1020   // forward references. So, we get the names of all the operands in advance
   1021   const unsigned Ops(I->getNumOperands());
   1022   std::string* opNames = new std::string[Ops];
   1023   for (unsigned i = 0; i < Ops; i++)
   1024     opNames[i] = getOpName(I->getOperand(i));
   1025 
   1026   switch (I->getOpcode()) {
   1027   default:
   1028     error("Invalid instruction");
   1029     break;
   1030 
   1031   case Instruction::Ret: {
   1032     const ReturnInst* ret =  cast<ReturnInst>(I);
   1033     Out << "ReturnInst::Create(mod->getContext(), "
   1034         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
   1035     break;
   1036   }
   1037   case Instruction::Br: {
   1038     const BranchInst* br = cast<BranchInst>(I);
   1039     Out << "BranchInst::Create(" ;
   1040     if (br->getNumOperands() == 3) {
   1041       Out << opNames[2] << ", "
   1042           << opNames[1] << ", "
   1043           << opNames[0] << ", ";
   1044 
   1045     } else if (br->getNumOperands() == 1) {
   1046       Out << opNames[0] << ", ";
   1047     } else {
   1048       error("Branch with 2 operands?");
   1049     }
   1050     Out << bbname << ");";
   1051     break;
   1052   }
   1053   case Instruction::Switch: {
   1054     const SwitchInst *SI = cast<SwitchInst>(I);
   1055     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
   1056         << opNames[0] << ", "
   1057         << opNames[1] << ", "
   1058         << SI->getNumCases() << ", " << bbname << ");";
   1059     nl(Out);
   1060     for (unsigned i = 2; i != SI->getNumOperands(); i += 2) {
   1061       Out << iName << "->addCase("
   1062           << opNames[i] << ", "
   1063           << opNames[i+1] << ");";
   1064       nl(Out);
   1065     }
   1066     break;
   1067   }
   1068   case Instruction::IndirectBr: {
   1069     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
   1070     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
   1071         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
   1072     nl(Out);
   1073     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
   1074       Out << iName << "->addDestination(" << opNames[i] << ");";
   1075       nl(Out);
   1076     }
   1077     break;
   1078   }
   1079   case Instruction::Invoke: {
   1080     const InvokeInst* inv = cast<InvokeInst>(I);
   1081     Out << "std::vector<Value*> " << iName << "_params;";
   1082     nl(Out);
   1083     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
   1084       Out << iName << "_params.push_back("
   1085           << getOpName(inv->getArgOperand(i)) << ");";
   1086       nl(Out);
   1087     }
   1088     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
   1089     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
   1090         << getOpName(inv->getCalledFunction()) << ", "
   1091         << getOpName(inv->getNormalDest()) << ", "
   1092         << getOpName(inv->getUnwindDest()) << ", "
   1093         << iName << "_params.begin(), "
   1094         << iName << "_params.end(), \"";
   1095     printEscapedString(inv->getName());
   1096     Out << "\", " << bbname << ");";
   1097     nl(Out) << iName << "->setCallingConv(";
   1098     printCallingConv(inv->getCallingConv());
   1099     Out << ");";
   1100     printAttributes(inv->getAttributes(), iName);
   1101     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1102     nl(Out);
   1103     break;
   1104   }
   1105   case Instruction::Unwind: {
   1106     Out << "new UnwindInst("
   1107         << bbname << ");";
   1108     break;
   1109   }
   1110   case Instruction::Unreachable: {
   1111     Out << "new UnreachableInst("
   1112         << "mod->getContext(), "
   1113         << bbname << ");";
   1114     break;
   1115   }
   1116   case Instruction::Add:
   1117   case Instruction::FAdd:
   1118   case Instruction::Sub:
   1119   case Instruction::FSub:
   1120   case Instruction::Mul:
   1121   case Instruction::FMul:
   1122   case Instruction::UDiv:
   1123   case Instruction::SDiv:
   1124   case Instruction::FDiv:
   1125   case Instruction::URem:
   1126   case Instruction::SRem:
   1127   case Instruction::FRem:
   1128   case Instruction::And:
   1129   case Instruction::Or:
   1130   case Instruction::Xor:
   1131   case Instruction::Shl:
   1132   case Instruction::LShr:
   1133   case Instruction::AShr:{
   1134     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
   1135     switch (I->getOpcode()) {
   1136     case Instruction::Add: Out << "Instruction::Add"; break;
   1137     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
   1138     case Instruction::Sub: Out << "Instruction::Sub"; break;
   1139     case Instruction::FSub: Out << "Instruction::FSub"; break;
   1140     case Instruction::Mul: Out << "Instruction::Mul"; break;
   1141     case Instruction::FMul: Out << "Instruction::FMul"; break;
   1142     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
   1143     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
   1144     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
   1145     case Instruction::URem:Out << "Instruction::URem"; break;
   1146     case Instruction::SRem:Out << "Instruction::SRem"; break;
   1147     case Instruction::FRem:Out << "Instruction::FRem"; break;
   1148     case Instruction::And: Out << "Instruction::And"; break;
   1149     case Instruction::Or:  Out << "Instruction::Or";  break;
   1150     case Instruction::Xor: Out << "Instruction::Xor"; break;
   1151     case Instruction::Shl: Out << "Instruction::Shl"; break;
   1152     case Instruction::LShr:Out << "Instruction::LShr"; break;
   1153     case Instruction::AShr:Out << "Instruction::AShr"; break;
   1154     default: Out << "Instruction::BadOpCode"; break;
   1155     }
   1156     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1157     printEscapedString(I->getName());
   1158     Out << "\", " << bbname << ");";
   1159     break;
   1160   }
   1161   case Instruction::FCmp: {
   1162     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
   1163     switch (cast<FCmpInst>(I)->getPredicate()) {
   1164     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
   1165     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
   1166     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
   1167     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
   1168     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
   1169     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
   1170     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
   1171     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
   1172     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
   1173     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
   1174     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
   1175     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
   1176     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
   1177     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
   1178     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
   1179     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
   1180     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
   1181     }
   1182     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1183     printEscapedString(I->getName());
   1184     Out << "\");";
   1185     break;
   1186   }
   1187   case Instruction::ICmp: {
   1188     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
   1189     switch (cast<ICmpInst>(I)->getPredicate()) {
   1190     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
   1191     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
   1192     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
   1193     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
   1194     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
   1195     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
   1196     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
   1197     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
   1198     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
   1199     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
   1200     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
   1201     }
   1202     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1203     printEscapedString(I->getName());
   1204     Out << "\");";
   1205     break;
   1206   }
   1207   case Instruction::Alloca: {
   1208     const AllocaInst* allocaI = cast<AllocaInst>(I);
   1209     Out << "AllocaInst* " << iName << " = new AllocaInst("
   1210         << getCppName(allocaI->getAllocatedType()) << ", ";
   1211     if (allocaI->isArrayAllocation())
   1212       Out << opNames[0] << ", ";
   1213     Out << "\"";
   1214     printEscapedString(allocaI->getName());
   1215     Out << "\", " << bbname << ");";
   1216     if (allocaI->getAlignment())
   1217       nl(Out) << iName << "->setAlignment("
   1218           << allocaI->getAlignment() << ");";
   1219     break;
   1220   }
   1221   case Instruction::Load: {
   1222     const LoadInst* load = cast<LoadInst>(I);
   1223     Out << "LoadInst* " << iName << " = new LoadInst("
   1224         << opNames[0] << ", \"";
   1225     printEscapedString(load->getName());
   1226     Out << "\", " << (load->isVolatile() ? "true" : "false" )
   1227         << ", " << bbname << ");";
   1228     break;
   1229   }
   1230   case Instruction::Store: {
   1231     const StoreInst* store = cast<StoreInst>(I);
   1232     Out << " new StoreInst("
   1233         << opNames[0] << ", "
   1234         << opNames[1] << ", "
   1235         << (store->isVolatile() ? "true" : "false")
   1236         << ", " << bbname << ");";
   1237     break;
   1238   }
   1239   case Instruction::GetElementPtr: {
   1240     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
   1241     if (gep->getNumOperands() <= 2) {
   1242       Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
   1243           << opNames[0];
   1244       if (gep->getNumOperands() == 2)
   1245         Out << ", " << opNames[1];
   1246     } else {
   1247       Out << "std::vector<Value*> " << iName << "_indices;";
   1248       nl(Out);
   1249       for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
   1250         Out << iName << "_indices.push_back("
   1251             << opNames[i] << ");";
   1252         nl(Out);
   1253       }
   1254       Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
   1255           << opNames[0] << ", " << iName << "_indices.begin(), "
   1256           << iName << "_indices.end()";
   1257     }
   1258     Out << ", \"";
   1259     printEscapedString(gep->getName());
   1260     Out << "\", " << bbname << ");";
   1261     break;
   1262   }
   1263   case Instruction::PHI: {
   1264     const PHINode* phi = cast<PHINode>(I);
   1265 
   1266     Out << "PHINode* " << iName << " = PHINode::Create("
   1267         << getCppName(phi->getType()) << ", "
   1268         << phi->getNumIncomingValues() << ", \"";
   1269     printEscapedString(phi->getName());
   1270     Out << "\", " << bbname << ");";
   1271     nl(Out);
   1272     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
   1273       Out << iName << "->addIncoming("
   1274           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
   1275           << getOpName(phi->getIncomingBlock(i)) << ");";
   1276       nl(Out);
   1277     }
   1278     break;
   1279   }
   1280   case Instruction::Trunc:
   1281   case Instruction::ZExt:
   1282   case Instruction::SExt:
   1283   case Instruction::FPTrunc:
   1284   case Instruction::FPExt:
   1285   case Instruction::FPToUI:
   1286   case Instruction::FPToSI:
   1287   case Instruction::UIToFP:
   1288   case Instruction::SIToFP:
   1289   case Instruction::PtrToInt:
   1290   case Instruction::IntToPtr:
   1291   case Instruction::BitCast: {
   1292     const CastInst* cst = cast<CastInst>(I);
   1293     Out << "CastInst* " << iName << " = new ";
   1294     switch (I->getOpcode()) {
   1295     case Instruction::Trunc:    Out << "TruncInst"; break;
   1296     case Instruction::ZExt:     Out << "ZExtInst"; break;
   1297     case Instruction::SExt:     Out << "SExtInst"; break;
   1298     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
   1299     case Instruction::FPExt:    Out << "FPExtInst"; break;
   1300     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
   1301     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
   1302     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
   1303     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
   1304     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
   1305     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
   1306     case Instruction::BitCast:  Out << "BitCastInst"; break;
   1307     default: assert(!"Unreachable"); break;
   1308     }
   1309     Out << "(" << opNames[0] << ", "
   1310         << getCppName(cst->getType()) << ", \"";
   1311     printEscapedString(cst->getName());
   1312     Out << "\", " << bbname << ");";
   1313     break;
   1314   }
   1315   case Instruction::Call: {
   1316     const CallInst* call = cast<CallInst>(I);
   1317     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
   1318       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
   1319           << getCppName(ila->getFunctionType()) << ", \""
   1320           << ila->getAsmString() << "\", \""
   1321           << ila->getConstraintString() << "\","
   1322           << (ila->hasSideEffects() ? "true" : "false") << ");";
   1323       nl(Out);
   1324     }
   1325     if (call->getNumArgOperands() > 1) {
   1326       Out << "std::vector<Value*> " << iName << "_params;";
   1327       nl(Out);
   1328       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
   1329         Out << iName << "_params.push_back(" << opNames[i] << ");";
   1330         nl(Out);
   1331       }
   1332       Out << "CallInst* " << iName << " = CallInst::Create("
   1333           << opNames[call->getNumArgOperands()] << ", "
   1334           << iName << "_params.begin(), "
   1335           << iName << "_params.end(), \"";
   1336     } else if (call->getNumArgOperands() == 1) {
   1337       Out << "CallInst* " << iName << " = CallInst::Create("
   1338           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
   1339     } else {
   1340       Out << "CallInst* " << iName << " = CallInst::Create("
   1341           << opNames[call->getNumArgOperands()] << ", \"";
   1342     }
   1343     printEscapedString(call->getName());
   1344     Out << "\", " << bbname << ");";
   1345     nl(Out) << iName << "->setCallingConv(";
   1346     printCallingConv(call->getCallingConv());
   1347     Out << ");";
   1348     nl(Out) << iName << "->setTailCall("
   1349         << (call->isTailCall() ? "true" : "false");
   1350     Out << ");";
   1351     nl(Out);
   1352     printAttributes(call->getAttributes(), iName);
   1353     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1354     nl(Out);
   1355     break;
   1356   }
   1357   case Instruction::Select: {
   1358     const SelectInst* sel = cast<SelectInst>(I);
   1359     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
   1360     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1361     printEscapedString(sel->getName());
   1362     Out << "\", " << bbname << ");";
   1363     break;
   1364   }
   1365   case Instruction::UserOp1:
   1366     /// FALL THROUGH
   1367   case Instruction::UserOp2: {
   1368     /// FIXME: What should be done here?
   1369     break;
   1370   }
   1371   case Instruction::VAArg: {
   1372     const VAArgInst* va = cast<VAArgInst>(I);
   1373     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
   1374         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
   1375     printEscapedString(va->getName());
   1376     Out << "\", " << bbname << ");";
   1377     break;
   1378   }
   1379   case Instruction::ExtractElement: {
   1380     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
   1381     Out << "ExtractElementInst* " << getCppName(eei)
   1382         << " = new ExtractElementInst(" << opNames[0]
   1383         << ", " << opNames[1] << ", \"";
   1384     printEscapedString(eei->getName());
   1385     Out << "\", " << bbname << ");";
   1386     break;
   1387   }
   1388   case Instruction::InsertElement: {
   1389     const InsertElementInst* iei = cast<InsertElementInst>(I);
   1390     Out << "InsertElementInst* " << getCppName(iei)
   1391         << " = InsertElementInst::Create(" << opNames[0]
   1392         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1393     printEscapedString(iei->getName());
   1394     Out << "\", " << bbname << ");";
   1395     break;
   1396   }
   1397   case Instruction::ShuffleVector: {
   1398     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
   1399     Out << "ShuffleVectorInst* " << getCppName(svi)
   1400         << " = new ShuffleVectorInst(" << opNames[0]
   1401         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1402     printEscapedString(svi->getName());
   1403     Out << "\", " << bbname << ");";
   1404     break;
   1405   }
   1406   case Instruction::ExtractValue: {
   1407     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
   1408     Out << "std::vector<unsigned> " << iName << "_indices;";
   1409     nl(Out);
   1410     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
   1411       Out << iName << "_indices.push_back("
   1412           << evi->idx_begin()[i] << ");";
   1413       nl(Out);
   1414     }
   1415     Out << "ExtractValueInst* " << getCppName(evi)
   1416         << " = ExtractValueInst::Create(" << opNames[0]
   1417         << ", "
   1418         << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
   1419     printEscapedString(evi->getName());
   1420     Out << "\", " << bbname << ");";
   1421     break;
   1422   }
   1423   case Instruction::InsertValue: {
   1424     const InsertValueInst *ivi = cast<InsertValueInst>(I);
   1425     Out << "std::vector<unsigned> " << iName << "_indices;";
   1426     nl(Out);
   1427     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
   1428       Out << iName << "_indices.push_back("
   1429           << ivi->idx_begin()[i] << ");";
   1430       nl(Out);
   1431     }
   1432     Out << "InsertValueInst* " << getCppName(ivi)
   1433         << " = InsertValueInst::Create(" << opNames[0]
   1434         << ", " << opNames[1] << ", "
   1435         << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
   1436     printEscapedString(ivi->getName());
   1437     Out << "\", " << bbname << ");";
   1438     break;
   1439   }
   1440   }
   1441   DefinedValues.insert(I);
   1442   nl(Out);
   1443   delete [] opNames;
   1444 }
   1445 
   1446 // Print out the types, constants and declarations needed by one function
   1447 void CppWriter::printFunctionUses(const Function* F) {
   1448   nl(Out) << "// Type Definitions"; nl(Out);
   1449   if (!is_inline) {
   1450     // Print the function's return type
   1451     printType(F->getReturnType());
   1452 
   1453     // Print the function's function type
   1454     printType(F->getFunctionType());
   1455 
   1456     // Print the types of each of the function's arguments
   1457     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1458          AI != AE; ++AI) {
   1459       printType(AI->getType());
   1460     }
   1461   }
   1462 
   1463   // Print type definitions for every type referenced by an instruction and
   1464   // make a note of any global values or constants that are referenced
   1465   SmallPtrSet<GlobalValue*,64> gvs;
   1466   SmallPtrSet<Constant*,64> consts;
   1467   for (Function::const_iterator BB = F->begin(), BE = F->end();
   1468        BB != BE; ++BB){
   1469     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1470          I != E; ++I) {
   1471       // Print the type of the instruction itself
   1472       printType(I->getType());
   1473 
   1474       // Print the type of each of the instruction's operands
   1475       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   1476         Value* operand = I->getOperand(i);
   1477         printType(operand->getType());
   1478 
   1479         // If the operand references a GVal or Constant, make a note of it
   1480         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1481           gvs.insert(GV);
   1482           if (GenerationType != GenFunction)
   1483             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1484               if (GVar->hasInitializer())
   1485                 consts.insert(GVar->getInitializer());
   1486         } else if (Constant* C = dyn_cast<Constant>(operand)) {
   1487           consts.insert(C);
   1488           for (unsigned j = 0; j < C->getNumOperands(); ++j) {
   1489             // If the operand references a GVal or Constant, make a note of it
   1490             Value* operand = C->getOperand(j);
   1491             printType(operand->getType());
   1492             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1493               gvs.insert(GV);
   1494               if (GenerationType != GenFunction)
   1495                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1496                   if (GVar->hasInitializer())
   1497                     consts.insert(GVar->getInitializer());
   1498             }
   1499           }
   1500         }
   1501       }
   1502     }
   1503   }
   1504 
   1505   // Print the function declarations for any functions encountered
   1506   nl(Out) << "// Function Declarations"; nl(Out);
   1507   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1508        I != E; ++I) {
   1509     if (Function* Fun = dyn_cast<Function>(*I)) {
   1510       if (!is_inline || Fun != F)
   1511         printFunctionHead(Fun);
   1512     }
   1513   }
   1514 
   1515   // Print the global variable declarations for any variables encountered
   1516   nl(Out) << "// Global Variable Declarations"; nl(Out);
   1517   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1518        I != E; ++I) {
   1519     if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
   1520       printVariableHead(F);
   1521   }
   1522 
   1523   // Print the constants found
   1524   nl(Out) << "// Constant Definitions"; nl(Out);
   1525   for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
   1526          E = consts.end(); I != E; ++I) {
   1527     printConstant(*I);
   1528   }
   1529 
   1530   // Process the global variables definitions now that all the constants have
   1531   // been emitted. These definitions just couple the gvars with their constant
   1532   // initializers.
   1533   if (GenerationType != GenFunction) {
   1534     nl(Out) << "// Global Variable Definitions"; nl(Out);
   1535     for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1536          I != E; ++I) {
   1537       if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
   1538         printVariableBody(GV);
   1539     }
   1540   }
   1541 }
   1542 
   1543 void CppWriter::printFunctionHead(const Function* F) {
   1544   nl(Out) << "Function* " << getCppName(F);
   1545   if (is_inline) {
   1546     Out << " = mod->getFunction(\"";
   1547     printEscapedString(F->getName());
   1548     Out << "\", " << getCppName(F->getFunctionType()) << ");";
   1549     nl(Out) << "if (!" << getCppName(F) << ") {";
   1550     nl(Out) << getCppName(F);
   1551   }
   1552   Out<< " = Function::Create(";
   1553   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
   1554   nl(Out) << "/*Linkage=*/";
   1555   printLinkageType(F->getLinkage());
   1556   Out << ",";
   1557   nl(Out) << "/*Name=*/\"";
   1558   printEscapedString(F->getName());
   1559   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
   1560   nl(Out,-1);
   1561   printCppName(F);
   1562   Out << "->setCallingConv(";
   1563   printCallingConv(F->getCallingConv());
   1564   Out << ");";
   1565   nl(Out);
   1566   if (F->hasSection()) {
   1567     printCppName(F);
   1568     Out << "->setSection(\"" << F->getSection() << "\");";
   1569     nl(Out);
   1570   }
   1571   if (F->getAlignment()) {
   1572     printCppName(F);
   1573     Out << "->setAlignment(" << F->getAlignment() << ");";
   1574     nl(Out);
   1575   }
   1576   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
   1577     printCppName(F);
   1578     Out << "->setVisibility(";
   1579     printVisibilityType(F->getVisibility());
   1580     Out << ");";
   1581     nl(Out);
   1582   }
   1583   if (F->hasGC()) {
   1584     printCppName(F);
   1585     Out << "->setGC(\"" << F->getGC() << "\");";
   1586     nl(Out);
   1587   }
   1588   if (is_inline) {
   1589     Out << "}";
   1590     nl(Out);
   1591   }
   1592   printAttributes(F->getAttributes(), getCppName(F));
   1593   printCppName(F);
   1594   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
   1595   nl(Out);
   1596 }
   1597 
   1598 void CppWriter::printFunctionBody(const Function *F) {
   1599   if (F->isDeclaration())
   1600     return; // external functions have no bodies.
   1601 
   1602   // Clear the DefinedValues and ForwardRefs maps because we can't have
   1603   // cross-function forward refs
   1604   ForwardRefs.clear();
   1605   DefinedValues.clear();
   1606 
   1607   // Create all the argument values
   1608   if (!is_inline) {
   1609     if (!F->arg_empty()) {
   1610       Out << "Function::arg_iterator args = " << getCppName(F)
   1611           << "->arg_begin();";
   1612       nl(Out);
   1613     }
   1614     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1615          AI != AE; ++AI) {
   1616       Out << "Value* " << getCppName(AI) << " = args++;";
   1617       nl(Out);
   1618       if (AI->hasName()) {
   1619         Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
   1620         nl(Out);
   1621       }
   1622     }
   1623   }
   1624 
   1625   // Create all the basic blocks
   1626   nl(Out);
   1627   for (Function::const_iterator BI = F->begin(), BE = F->end();
   1628        BI != BE; ++BI) {
   1629     std::string bbname(getCppName(BI));
   1630     Out << "BasicBlock* " << bbname <<
   1631            " = BasicBlock::Create(mod->getContext(), \"";
   1632     if (BI->hasName())
   1633       printEscapedString(BI->getName());
   1634     Out << "\"," << getCppName(BI->getParent()) << ",0);";
   1635     nl(Out);
   1636   }
   1637 
   1638   // Output all of its basic blocks... for the function
   1639   for (Function::const_iterator BI = F->begin(), BE = F->end();
   1640        BI != BE; ++BI) {
   1641     std::string bbname(getCppName(BI));
   1642     nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
   1643     nl(Out);
   1644 
   1645     // Output all of the instructions in the basic block...
   1646     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
   1647          I != E; ++I) {
   1648       printInstruction(I,bbname);
   1649     }
   1650   }
   1651 
   1652   // Loop over the ForwardRefs and resolve them now that all instructions
   1653   // are generated.
   1654   if (!ForwardRefs.empty()) {
   1655     nl(Out) << "// Resolve Forward References";
   1656     nl(Out);
   1657   }
   1658 
   1659   while (!ForwardRefs.empty()) {
   1660     ForwardRefMap::iterator I = ForwardRefs.begin();
   1661     Out << I->second << "->replaceAllUsesWith("
   1662         << getCppName(I->first) << "); delete " << I->second << ";";
   1663     nl(Out);
   1664     ForwardRefs.erase(I);
   1665   }
   1666 }
   1667 
   1668 void CppWriter::printInline(const std::string& fname,
   1669                             const std::string& func) {
   1670   const Function* F = TheModule->getFunction(func);
   1671   if (!F) {
   1672     error(std::string("Function '") + func + "' not found in input module");
   1673     return;
   1674   }
   1675   if (F->isDeclaration()) {
   1676     error(std::string("Function '") + func + "' is external!");
   1677     return;
   1678   }
   1679   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
   1680           << getCppName(F);
   1681   unsigned arg_count = 1;
   1682   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1683        AI != AE; ++AI) {
   1684     Out << ", Value* arg_" << arg_count;
   1685   }
   1686   Out << ") {";
   1687   nl(Out);
   1688   is_inline = true;
   1689   printFunctionUses(F);
   1690   printFunctionBody(F);
   1691   is_inline = false;
   1692   Out << "return " << getCppName(F->begin()) << ";";
   1693   nl(Out) << "}";
   1694   nl(Out);
   1695 }
   1696 
   1697 void CppWriter::printModuleBody() {
   1698   // Print out all the type definitions
   1699   nl(Out) << "// Type Definitions"; nl(Out);
   1700   printTypes(TheModule);
   1701 
   1702   // Functions can call each other and global variables can reference them so
   1703   // define all the functions first before emitting their function bodies.
   1704   nl(Out) << "// Function Declarations"; nl(Out);
   1705   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
   1706        I != E; ++I)
   1707     printFunctionHead(I);
   1708 
   1709   // Process the global variables declarations. We can't initialze them until
   1710   // after the constants are printed so just print a header for each global
   1711   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
   1712   for (Module::const_global_iterator I = TheModule->global_begin(),
   1713          E = TheModule->global_end(); I != E; ++I) {
   1714     printVariableHead(I);
   1715   }
   1716 
   1717   // Print out all the constants definitions. Constants don't recurse except
   1718   // through GlobalValues. All GlobalValues have been declared at this point
   1719   // so we can proceed to generate the constants.
   1720   nl(Out) << "// Constant Definitions"; nl(Out);
   1721   printConstants(TheModule);
   1722 
   1723   // Process the global variables definitions now that all the constants have
   1724   // been emitted. These definitions just couple the gvars with their constant
   1725   // initializers.
   1726   nl(Out) << "// Global Variable Definitions"; nl(Out);
   1727   for (Module::const_global_iterator I = TheModule->global_begin(),
   1728          E = TheModule->global_end(); I != E; ++I) {
   1729     printVariableBody(I);
   1730   }
   1731 
   1732   // Finally, we can safely put out all of the function bodies.
   1733   nl(Out) << "// Function Definitions"; nl(Out);
   1734   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
   1735        I != E; ++I) {
   1736     if (!I->isDeclaration()) {
   1737       nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
   1738               << ")";
   1739       nl(Out) << "{";
   1740       nl(Out,1);
   1741       printFunctionBody(I);
   1742       nl(Out,-1) << "}";
   1743       nl(Out);
   1744     }
   1745   }
   1746 }
   1747 
   1748 void CppWriter::printProgram(const std::string& fname,
   1749                              const std::string& mName) {
   1750   Out << "#include <llvm/LLVMContext.h>\n";
   1751   Out << "#include <llvm/Module.h>\n";
   1752   Out << "#include <llvm/DerivedTypes.h>\n";
   1753   Out << "#include <llvm/Constants.h>\n";
   1754   Out << "#include <llvm/GlobalVariable.h>\n";
   1755   Out << "#include <llvm/Function.h>\n";
   1756   Out << "#include <llvm/CallingConv.h>\n";
   1757   Out << "#include <llvm/BasicBlock.h>\n";
   1758   Out << "#include <llvm/Instructions.h>\n";
   1759   Out << "#include <llvm/InlineAsm.h>\n";
   1760   Out << "#include <llvm/Support/FormattedStream.h>\n";
   1761   Out << "#include <llvm/Support/MathExtras.h>\n";
   1762   Out << "#include <llvm/Pass.h>\n";
   1763   Out << "#include <llvm/PassManager.h>\n";
   1764   Out << "#include <llvm/ADT/SmallVector.h>\n";
   1765   Out << "#include <llvm/Analysis/Verifier.h>\n";
   1766   Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
   1767   Out << "#include <algorithm>\n";
   1768   Out << "using namespace llvm;\n\n";
   1769   Out << "Module* " << fname << "();\n\n";
   1770   Out << "int main(int argc, char**argv) {\n";
   1771   Out << "  Module* Mod = " << fname << "();\n";
   1772   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
   1773   Out << "  PassManager PM;\n";
   1774   Out << "  PM.add(createPrintModulePass(&outs()));\n";
   1775   Out << "  PM.run(*Mod);\n";
   1776   Out << "  return 0;\n";
   1777   Out << "}\n\n";
   1778   printModule(fname,mName);
   1779 }
   1780 
   1781 void CppWriter::printModule(const std::string& fname,
   1782                             const std::string& mName) {
   1783   nl(Out) << "Module* " << fname << "() {";
   1784   nl(Out,1) << "// Module Construction";
   1785   nl(Out) << "Module* mod = new Module(\"";
   1786   printEscapedString(mName);
   1787   Out << "\", getGlobalContext());";
   1788   if (!TheModule->getTargetTriple().empty()) {
   1789     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
   1790   }
   1791   if (!TheModule->getTargetTriple().empty()) {
   1792     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
   1793             << "\");";
   1794   }
   1795 
   1796   if (!TheModule->getModuleInlineAsm().empty()) {
   1797     nl(Out) << "mod->setModuleInlineAsm(\"";
   1798     printEscapedString(TheModule->getModuleInlineAsm());
   1799     Out << "\");";
   1800   }
   1801   nl(Out);
   1802 
   1803   // Loop over the dependent libraries and emit them.
   1804   Module::lib_iterator LI = TheModule->lib_begin();
   1805   Module::lib_iterator LE = TheModule->lib_end();
   1806   while (LI != LE) {
   1807     Out << "mod->addLibrary(\"" << *LI << "\");";
   1808     nl(Out);
   1809     ++LI;
   1810   }
   1811   printModuleBody();
   1812   nl(Out) << "return mod;";
   1813   nl(Out,-1) << "}";
   1814   nl(Out);
   1815 }
   1816 
   1817 void CppWriter::printContents(const std::string& fname,
   1818                               const std::string& mName) {
   1819   Out << "\nModule* " << fname << "(Module *mod) {\n";
   1820   Out << "\nmod->setModuleIdentifier(\"";
   1821   printEscapedString(mName);
   1822   Out << "\");\n";
   1823   printModuleBody();
   1824   Out << "\nreturn mod;\n";
   1825   Out << "\n}\n";
   1826 }
   1827 
   1828 void CppWriter::printFunction(const std::string& fname,
   1829                               const std::string& funcName) {
   1830   const Function* F = TheModule->getFunction(funcName);
   1831   if (!F) {
   1832     error(std::string("Function '") + funcName + "' not found in input module");
   1833     return;
   1834   }
   1835   Out << "\nFunction* " << fname << "(Module *mod) {\n";
   1836   printFunctionUses(F);
   1837   printFunctionHead(F);
   1838   printFunctionBody(F);
   1839   Out << "return " << getCppName(F) << ";\n";
   1840   Out << "}\n";
   1841 }
   1842 
   1843 void CppWriter::printFunctions() {
   1844   const Module::FunctionListType &funcs = TheModule->getFunctionList();
   1845   Module::const_iterator I  = funcs.begin();
   1846   Module::const_iterator IE = funcs.end();
   1847 
   1848   for (; I != IE; ++I) {
   1849     const Function &func = *I;
   1850     if (!func.isDeclaration()) {
   1851       std::string name("define_");
   1852       name += func.getName();
   1853       printFunction(name, func.getName());
   1854     }
   1855   }
   1856 }
   1857 
   1858 void CppWriter::printVariable(const std::string& fname,
   1859                               const std::string& varName) {
   1860   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
   1861 
   1862   if (!GV) {
   1863     error(std::string("Variable '") + varName + "' not found in input module");
   1864     return;
   1865   }
   1866   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
   1867   printVariableUses(GV);
   1868   printVariableHead(GV);
   1869   printVariableBody(GV);
   1870   Out << "return " << getCppName(GV) << ";\n";
   1871   Out << "}\n";
   1872 }
   1873 
   1874 void CppWriter::printType(const std::string &fname,
   1875                           const std::string &typeName) {
   1876   Type* Ty = TheModule->getTypeByName(typeName);
   1877   if (!Ty) {
   1878     error(std::string("Type '") + typeName + "' not found in input module");
   1879     return;
   1880   }
   1881   Out << "\nType* " << fname << "(Module *mod) {\n";
   1882   printType(Ty);
   1883   Out << "return " << getCppName(Ty) << ";\n";
   1884   Out << "}\n";
   1885 }
   1886 
   1887 bool CppWriter::runOnModule(Module &M) {
   1888   TheModule = &M;
   1889 
   1890   // Emit a header
   1891   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
   1892 
   1893   // Get the name of the function we're supposed to generate
   1894   std::string fname = FuncName.getValue();
   1895 
   1896   // Get the name of the thing we are to generate
   1897   std::string tgtname = NameToGenerate.getValue();
   1898   if (GenerationType == GenModule ||
   1899       GenerationType == GenContents ||
   1900       GenerationType == GenProgram ||
   1901       GenerationType == GenFunctions) {
   1902     if (tgtname == "!bad!") {
   1903       if (M.getModuleIdentifier() == "-")
   1904         tgtname = "<stdin>";
   1905       else
   1906         tgtname = M.getModuleIdentifier();
   1907     }
   1908   } else if (tgtname == "!bad!")
   1909     error("You must use the -for option with -gen-{function,variable,type}");
   1910 
   1911   switch (WhatToGenerate(GenerationType)) {
   1912    case GenProgram:
   1913     if (fname.empty())
   1914       fname = "makeLLVMModule";
   1915     printProgram(fname,tgtname);
   1916     break;
   1917    case GenModule:
   1918     if (fname.empty())
   1919       fname = "makeLLVMModule";
   1920     printModule(fname,tgtname);
   1921     break;
   1922    case GenContents:
   1923     if (fname.empty())
   1924       fname = "makeLLVMModuleContents";
   1925     printContents(fname,tgtname);
   1926     break;
   1927    case GenFunction:
   1928     if (fname.empty())
   1929       fname = "makeLLVMFunction";
   1930     printFunction(fname,tgtname);
   1931     break;
   1932    case GenFunctions:
   1933     printFunctions();
   1934     break;
   1935    case GenInline:
   1936     if (fname.empty())
   1937       fname = "makeLLVMInline";
   1938     printInline(fname,tgtname);
   1939     break;
   1940    case GenVariable:
   1941     if (fname.empty())
   1942       fname = "makeLLVMVariable";
   1943     printVariable(fname,tgtname);
   1944     break;
   1945    case GenType:
   1946     if (fname.empty())
   1947       fname = "makeLLVMType";
   1948     printType(fname,tgtname);
   1949     break;
   1950    default:
   1951     error("Invalid generation option");
   1952   }
   1953 
   1954   return false;
   1955 }
   1956 
   1957 char CppWriter::ID = 0;
   1958 
   1959 //===----------------------------------------------------------------------===//
   1960 //                       External Interface declaration
   1961 //===----------------------------------------------------------------------===//
   1962 
   1963 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
   1964                                            formatted_raw_ostream &o,
   1965                                            CodeGenFileType FileType,
   1966                                            CodeGenOpt::Level OptLevel,
   1967                                            bool DisableVerify) {
   1968   if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
   1969   PM.add(new CppWriter(o));
   1970   return false;
   1971 }
   1972