1 /* 2 * Copyright 2008, 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 /** 25 * \file list.h 26 * \brief Doubly-linked list abstract container type. 27 * 28 * Each doubly-linked list has a sentinel head and tail node. These nodes 29 * contain no data. The head sentinel can be identified by its \c prev 30 * pointer being \c NULL. The tail sentinel can be identified by its 31 * \c next pointer being \c NULL. 32 * 33 * A list is empty if either the head sentinel's \c next pointer points to the 34 * tail sentinel or the tail sentinel's \c prev poiner points to the head 35 * sentinel. 36 * 37 * Instead of tracking two separate \c node structures and a \c list structure 38 * that points to them, the sentinel nodes are in a single structure. Noting 39 * that each sentinel node always has one \c NULL pointer, the \c NULL 40 * pointers occupy the same memory location. In the \c list structure 41 * contains a the following: 42 * 43 * - A \c head pointer that represents the \c next pointer of the 44 * head sentinel node. 45 * - A \c tail pointer that represents the \c prev pointer of the head 46 * sentinel node and the \c next pointer of the tail sentinel node. This 47 * pointer is \b always \c NULL. 48 * - A \c tail_prev pointer that represents the \c prev pointer of the 49 * tail sentinel node. 50 * 51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL, 52 * the list is empty. 53 * 54 * To anyone familiar with "exec lists" on the Amiga, this structure should 55 * be immediately recognizable. See the following link for the original Amiga 56 * operating system documentation on the subject. 57 * 58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html 59 * 60 * \author Ian Romanick <ian.d.romanick (at) intel.com> 61 */ 62 63 #pragma once 64 #ifndef LIST_CONTAINER_H 65 #define LIST_CONTAINER_H 66 67 #ifndef __cplusplus 68 #include <stddef.h> 69 #include <hieralloc.h> 70 #else 71 extern "C" { 72 #include <hieralloc.h> 73 } 74 #endif 75 76 #include <assert.h> 77 78 struct exec_node { 79 struct exec_node *next; 80 struct exec_node *prev; 81 82 #ifdef __cplusplus 83 /* Callers of this hieralloc-based new need not call delete. It's 84 * easier to just hieralloc_free 'ctx' (or any of its ancestors). */ 85 static void* operator new(size_t size, void *ctx) 86 { 87 void *node; 88 89 node = hieralloc_size(ctx, size); 90 assert(node != NULL); 91 92 return node; 93 } 94 95 /* If the user *does* call delete, that's OK, we will just 96 * hieralloc_free in that case. */ 97 static void operator delete(void *node) 98 { 99 hieralloc_free(node); 100 } 101 102 exec_node() : next(NULL), prev(NULL) 103 { 104 /* empty */ 105 } 106 107 const exec_node *get_next() const 108 { 109 return next; 110 } 111 112 exec_node *get_next() 113 { 114 return next; 115 } 116 117 const exec_node *get_prev() const 118 { 119 return prev; 120 } 121 122 exec_node *get_prev() 123 { 124 return prev; 125 } 126 127 void remove() 128 { 129 next->prev = prev; 130 prev->next = next; 131 next = NULL; 132 prev = NULL; 133 } 134 135 /** 136 * Link a node with itself 137 * 138 * This creates a sort of degenerate list that is occasionally useful. 139 */ 140 void self_link() 141 { 142 next = this; 143 prev = this; 144 } 145 146 /** 147 * Insert a node in the list after the current node 148 */ 149 void insert_after(exec_node *after) 150 { 151 after->next = this->next; 152 after->prev = this; 153 154 this->next->prev = after; 155 this->next = after; 156 } 157 /** 158 * Insert a node in the list before the current node 159 */ 160 void insert_before(exec_node *before) 161 { 162 before->next = this; 163 before->prev = this->prev; 164 165 this->prev->next = before; 166 this->prev = before; 167 } 168 169 /** 170 * Insert another list in the list before the current node 171 */ 172 void insert_before(struct exec_list *before); 173 174 /** 175 * Replace the current node with the given node. 176 */ 177 void replace_with(exec_node *replacement) 178 { 179 replacement->prev = this->prev; 180 replacement->next = this->next; 181 182 this->prev->next = replacement; 183 this->next->prev = replacement; 184 } 185 186 /** 187 * Is this the sentinel at the tail of the list? 188 */ 189 bool is_tail_sentinel() const 190 { 191 return this->next == NULL; 192 } 193 194 /** 195 * Is this the sentinel at the head of the list? 196 */ 197 bool is_head_sentinel() const 198 { 199 return this->prev == NULL; 200 } 201 #endif 202 }; 203 204 205 #ifdef __cplusplus 206 /* This macro will not work correctly if `t' uses virtual inheritance. If you 207 * are using virtual inheritance, you deserve a slow and painful death. Enjoy! 208 */ 209 #define exec_list_offsetof(t, f, p) \ 210 (((char *) &((t *) p)->f) - ((char *) p)) 211 #else 212 #define exec_list_offsetof(t, f, p) offsetof(t, f) 213 #endif 214 215 /** 216 * Get a pointer to the structure containing an exec_node 217 * 218 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to 219 * the containing structure. 220 * 221 * \param type Base type of the structure containing the node 222 * \param node Pointer to the \c exec_node 223 * \param field Name of the field in \c type that is the embedded \c exec_node 224 */ 225 #define exec_node_data(type, node, field) \ 226 ((type *) (((char *) node) - exec_list_offsetof(type, field, node))) 227 228 #ifdef __cplusplus 229 struct exec_node; 230 231 class iterator { 232 public: 233 void next() 234 { 235 } 236 237 void *get() 238 { 239 return NULL; 240 } 241 242 bool has_next() const 243 { 244 return false; 245 } 246 }; 247 248 class exec_list_iterator : public iterator { 249 public: 250 exec_list_iterator(exec_node *n) : node(n), _next(n->next) 251 { 252 /* empty */ 253 } 254 255 void next() 256 { 257 node = _next; 258 _next = node->next; 259 } 260 261 void remove() 262 { 263 node->remove(); 264 } 265 266 exec_node *get() 267 { 268 return node; 269 } 270 271 bool has_next() const 272 { 273 return _next != NULL; 274 } 275 276 private: 277 exec_node *node; 278 exec_node *_next; 279 }; 280 281 #define foreach_iter(iter_type, iter, container) \ 282 for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next()) 283 #endif 284 285 286 struct exec_list { 287 struct exec_node *head; 288 struct exec_node *tail; 289 struct exec_node *tail_pred; 290 291 #ifdef __cplusplus 292 /* Callers of this hieralloc-based new need not call delete. It's 293 * easier to just hieralloc_free 'ctx' (or any of its ancestors). */ 294 static void* operator new(size_t size, void *ctx) 295 { 296 void *node; 297 298 node = hieralloc_size(ctx, size); 299 assert(node != NULL); 300 301 return node; 302 } 303 304 /* If the user *does* call delete, that's OK, we will just 305 * hieralloc_free in that case. */ 306 static void operator delete(void *node) 307 { 308 hieralloc_free(node); 309 } 310 311 exec_list() 312 { 313 make_empty(); 314 } 315 316 void make_empty() 317 { 318 head = (exec_node *) & tail; 319 tail = NULL; 320 tail_pred = (exec_node *) & head; 321 } 322 323 bool is_empty() const 324 { 325 /* There are three ways to test whether a list is empty or not. 326 * 327 * - Check to see if the \c head points to the \c tail. 328 * - Check to see if the \c tail_pred points to the \c head. 329 * - Check to see if the \c head is the sentinel node by test whether its 330 * \c next pointer is \c NULL. 331 * 332 * The first two methods tend to generate better code on modern systems 333 * because they save a pointer dereference. 334 */ 335 return head == (exec_node *) &tail; 336 } 337 338 const exec_node *get_head() const 339 { 340 return !is_empty() ? head : NULL; 341 } 342 343 exec_node *get_head() 344 { 345 return !is_empty() ? head : NULL; 346 } 347 348 const exec_node *get_tail() const 349 { 350 return !is_empty() ? tail_pred : NULL; 351 } 352 353 exec_node *get_tail() 354 { 355 return !is_empty() ? tail_pred : NULL; 356 } 357 358 void push_head(exec_node *n) 359 { 360 n->next = head; 361 n->prev = (exec_node *) &head; 362 363 n->next->prev = n; 364 head = n; 365 } 366 367 void push_tail(exec_node *n) 368 { 369 n->next = (exec_node *) &tail; 370 n->prev = tail_pred; 371 372 n->prev->next = n; 373 tail_pred = n; 374 } 375 376 void push_degenerate_list_at_head(exec_node *n) 377 { 378 assert(n->prev->next == n); 379 380 n->prev->next = head; 381 head->prev = n->prev; 382 n->prev = (exec_node *) &head; 383 head = n; 384 } 385 386 /** 387 * Remove the first node from a list and return it 388 * 389 * \return 390 * The first node in the list or \c NULL if the list is empty. 391 * 392 * \sa exec_list::get_head 393 */ 394 exec_node *pop_head() 395 { 396 exec_node *const n = this->get_head(); 397 if (n != NULL) 398 n->remove(); 399 400 return n; 401 } 402 403 /** 404 * Move all of the nodes from this list to the target list 405 */ 406 void move_nodes_to(exec_list *target) 407 { 408 if (is_empty()) { 409 target->make_empty(); 410 } else { 411 target->head = head; 412 target->tail = NULL; 413 target->tail_pred = tail_pred; 414 415 target->head->prev = (exec_node *) &target->head; 416 target->tail_pred->next = (exec_node *) &target->tail; 417 418 make_empty(); 419 } 420 } 421 422 /** 423 * Append all nodes from the source list to the target list 424 */ 425 void 426 append_list(exec_list *source) 427 { 428 if (source->is_empty()) 429 return; 430 431 /* Link the first node of the source with the last node of the target list. 432 */ 433 this->tail_pred->next = source->head; 434 source->head->prev = this->tail_pred; 435 436 /* Make the tail of the source list be the tail of the target list. 437 */ 438 this->tail_pred = source->tail_pred; 439 this->tail_pred->next = (exec_node *) &this->tail; 440 441 /* Make the source list empty for good measure. 442 */ 443 source->make_empty(); 444 } 445 446 exec_list_iterator iterator() 447 { 448 return exec_list_iterator(head); 449 } 450 451 exec_list_iterator iterator() const 452 { 453 return exec_list_iterator((exec_node *) head); 454 } 455 #endif 456 }; 457 458 459 #ifdef __cplusplus 460 inline void exec_node::insert_before(exec_list *before) 461 { 462 if (before->is_empty()) 463 return; 464 465 before->tail_pred->next = this; 466 before->head->prev = this->prev; 467 468 this->prev->next = before->head; 469 this->prev = before->tail_pred; 470 471 before->make_empty(); 472 } 473 #endif 474 475 /** 476 * This version is safe even if the current node is removed. 477 */ 478 #define foreach_list_safe(__node, __list) \ 479 for (exec_node * __node = (__list)->head, * __next = __node->next \ 480 ; __next != NULL \ 481 ; __node = __next, __next = __next->next) 482 483 #define foreach_list(__node, __list) \ 484 for (exec_node * __node = (__list)->head \ 485 ; (__node)->next != NULL \ 486 ; (__node) = (__node)->next) 487 488 #define foreach_list_const(__node, __list) \ 489 for (const exec_node * __node = (__list)->head \ 490 ; (__node)->next != NULL \ 491 ; (__node) = (__node)->next) 492 493 #define foreach_list_typed(__type, __node, __field, __list) \ 494 for (__type * __node = \ 495 exec_node_data(__type, (__list)->head, __field); \ 496 (__node)->__field.next != NULL; \ 497 (__node) = exec_node_data(__type, (__node)->__field.next, __field)) 498 499 #define foreach_list_typed_const(__type, __node, __field, __list) \ 500 for (const __type * __node = \ 501 exec_node_data(__type, (__list)->head, __field); \ 502 (__node)->__field.next != NULL; \ 503 (__node) = exec_node_data(__type, (__node)->__field.next, __field)) 504 505 #endif /* LIST_CONTAINER_H */ 506