Home | History | Annotate | Download | only in engines
      1 package org.bouncycastle.crypto.engines;
      2 
      3 import org.bouncycastle.crypto.BlockCipher;
      4 import org.bouncycastle.crypto.CipherParameters;
      5 import org.bouncycastle.crypto.DataLengthException;
      6 import org.bouncycastle.crypto.params.KeyParameter;
      7 import org.bouncycastle.crypto.params.RC2Parameters;
      8 
      9 /**
     10  * an implementation of RC2 as described in RFC 2268
     11  *      "A Description of the RC2(r) Encryption Algorithm" R. Rivest.
     12  */
     13 public class RC2Engine
     14     implements BlockCipher
     15 {
     16     //
     17     // the values we use for key expansion (based on the digits of PI)
     18     //
     19     private static byte[] piTable =
     20     {
     21         (byte)0xd9, (byte)0x78, (byte)0xf9, (byte)0xc4, (byte)0x19, (byte)0xdd, (byte)0xb5, (byte)0xed,
     22         (byte)0x28, (byte)0xe9, (byte)0xfd, (byte)0x79, (byte)0x4a, (byte)0xa0, (byte)0xd8, (byte)0x9d,
     23         (byte)0xc6, (byte)0x7e, (byte)0x37, (byte)0x83, (byte)0x2b, (byte)0x76, (byte)0x53, (byte)0x8e,
     24         (byte)0x62, (byte)0x4c, (byte)0x64, (byte)0x88, (byte)0x44, (byte)0x8b, (byte)0xfb, (byte)0xa2,
     25         (byte)0x17, (byte)0x9a, (byte)0x59, (byte)0xf5, (byte)0x87, (byte)0xb3, (byte)0x4f, (byte)0x13,
     26         (byte)0x61, (byte)0x45, (byte)0x6d, (byte)0x8d, (byte)0x9, (byte)0x81, (byte)0x7d, (byte)0x32,
     27         (byte)0xbd, (byte)0x8f, (byte)0x40, (byte)0xeb, (byte)0x86, (byte)0xb7, (byte)0x7b, (byte)0xb,
     28         (byte)0xf0, (byte)0x95, (byte)0x21, (byte)0x22, (byte)0x5c, (byte)0x6b, (byte)0x4e, (byte)0x82,
     29         (byte)0x54, (byte)0xd6, (byte)0x65, (byte)0x93, (byte)0xce, (byte)0x60, (byte)0xb2, (byte)0x1c,
     30         (byte)0x73, (byte)0x56, (byte)0xc0, (byte)0x14, (byte)0xa7, (byte)0x8c, (byte)0xf1, (byte)0xdc,
     31         (byte)0x12, (byte)0x75, (byte)0xca, (byte)0x1f, (byte)0x3b, (byte)0xbe, (byte)0xe4, (byte)0xd1,
     32         (byte)0x42, (byte)0x3d, (byte)0xd4, (byte)0x30, (byte)0xa3, (byte)0x3c, (byte)0xb6, (byte)0x26,
     33         (byte)0x6f, (byte)0xbf, (byte)0xe, (byte)0xda, (byte)0x46, (byte)0x69, (byte)0x7, (byte)0x57,
     34         (byte)0x27, (byte)0xf2, (byte)0x1d, (byte)0x9b, (byte)0xbc, (byte)0x94, (byte)0x43, (byte)0x3,
     35         (byte)0xf8, (byte)0x11, (byte)0xc7, (byte)0xf6, (byte)0x90, (byte)0xef, (byte)0x3e, (byte)0xe7,
     36         (byte)0x6, (byte)0xc3, (byte)0xd5, (byte)0x2f, (byte)0xc8, (byte)0x66, (byte)0x1e, (byte)0xd7,
     37         (byte)0x8, (byte)0xe8, (byte)0xea, (byte)0xde, (byte)0x80, (byte)0x52, (byte)0xee, (byte)0xf7,
     38         (byte)0x84, (byte)0xaa, (byte)0x72, (byte)0xac, (byte)0x35, (byte)0x4d, (byte)0x6a, (byte)0x2a,
     39         (byte)0x96, (byte)0x1a, (byte)0xd2, (byte)0x71, (byte)0x5a, (byte)0x15, (byte)0x49, (byte)0x74,
     40         (byte)0x4b, (byte)0x9f, (byte)0xd0, (byte)0x5e, (byte)0x4, (byte)0x18, (byte)0xa4, (byte)0xec,
     41         (byte)0xc2, (byte)0xe0, (byte)0x41, (byte)0x6e, (byte)0xf, (byte)0x51, (byte)0xcb, (byte)0xcc,
     42         (byte)0x24, (byte)0x91, (byte)0xaf, (byte)0x50, (byte)0xa1, (byte)0xf4, (byte)0x70, (byte)0x39,
     43         (byte)0x99, (byte)0x7c, (byte)0x3a, (byte)0x85, (byte)0x23, (byte)0xb8, (byte)0xb4, (byte)0x7a,
     44         (byte)0xfc, (byte)0x2, (byte)0x36, (byte)0x5b, (byte)0x25, (byte)0x55, (byte)0x97, (byte)0x31,
     45         (byte)0x2d, (byte)0x5d, (byte)0xfa, (byte)0x98, (byte)0xe3, (byte)0x8a, (byte)0x92, (byte)0xae,
     46         (byte)0x5, (byte)0xdf, (byte)0x29, (byte)0x10, (byte)0x67, (byte)0x6c, (byte)0xba, (byte)0xc9,
     47         (byte)0xd3, (byte)0x0, (byte)0xe6, (byte)0xcf, (byte)0xe1, (byte)0x9e, (byte)0xa8, (byte)0x2c,
     48         (byte)0x63, (byte)0x16, (byte)0x1, (byte)0x3f, (byte)0x58, (byte)0xe2, (byte)0x89, (byte)0xa9,
     49         (byte)0xd, (byte)0x38, (byte)0x34, (byte)0x1b, (byte)0xab, (byte)0x33, (byte)0xff, (byte)0xb0,
     50         (byte)0xbb, (byte)0x48, (byte)0xc, (byte)0x5f, (byte)0xb9, (byte)0xb1, (byte)0xcd, (byte)0x2e,
     51         (byte)0xc5, (byte)0xf3, (byte)0xdb, (byte)0x47, (byte)0xe5, (byte)0xa5, (byte)0x9c, (byte)0x77,
     52         (byte)0xa, (byte)0xa6, (byte)0x20, (byte)0x68, (byte)0xfe, (byte)0x7f, (byte)0xc1, (byte)0xad
     53     };
     54 
     55     private static final int BLOCK_SIZE = 8;
     56 
     57     private int[]   workingKey;
     58     private boolean encrypting;
     59 
     60     private int[] generateWorkingKey(
     61         byte[]      key,
     62         int         bits)
     63     {
     64         int     x;
     65         int[]   xKey = new int[128];
     66 
     67         for (int i = 0; i != key.length; i++)
     68         {
     69             xKey[i] = key[i] & 0xff;
     70         }
     71 
     72         // Phase 1: Expand input key to 128 bytes
     73         int len = key.length;
     74 
     75         if (len < 128)
     76         {
     77             int     index = 0;
     78 
     79             x = xKey[len - 1];
     80 
     81             do
     82             {
     83                 x = piTable[(x + xKey[index++]) & 255] & 0xff;
     84                 xKey[len++] = x;
     85             }
     86             while (len < 128);
     87         }
     88 
     89         // Phase 2 - reduce effective key size to "bits"
     90         len = (bits + 7) >> 3;
     91         x = piTable[xKey[128 - len] & (255 >> (7 & -bits))] & 0xff;
     92         xKey[128 - len] = x;
     93 
     94         for (int i = 128 - len - 1; i >= 0; i--)
     95         {
     96                 x = piTable[x ^ xKey[i + len]] & 0xff;
     97                 xKey[i] = x;
     98         }
     99 
    100         // Phase 3 - copy to newKey in little-endian order
    101         int[] newKey = new int[64];
    102 
    103         for (int i = 0; i != newKey.length; i++)
    104         {
    105             newKey[i] = (xKey[2 * i] + (xKey[2 * i + 1] << 8));
    106         }
    107 
    108         return newKey;
    109     }
    110 
    111     /**
    112      * initialise a RC2 cipher.
    113      *
    114      * @param encrypting whether or not we are for encryption.
    115      * @param params the parameters required to set up the cipher.
    116      * @exception IllegalArgumentException if the params argument is
    117      * inappropriate.
    118      */
    119     public void init(
    120         boolean           encrypting,
    121         CipherParameters  params)
    122     {
    123         this.encrypting = encrypting;
    124 
    125         if (params instanceof RC2Parameters)
    126         {
    127             RC2Parameters   param = (RC2Parameters)params;
    128 
    129             workingKey = generateWorkingKey(param.getKey(),
    130                                             param.getEffectiveKeyBits());
    131         }
    132         else if (params instanceof KeyParameter)
    133         {
    134             byte[]    key = ((KeyParameter)params).getKey();
    135 
    136             workingKey = generateWorkingKey(key, key.length * 8);
    137         }
    138         else
    139         {
    140             throw new IllegalArgumentException("invalid parameter passed to RC2 init - " + params.getClass().getName());
    141         }
    142 
    143     }
    144 
    145     public void reset()
    146     {
    147     }
    148 
    149     public String getAlgorithmName()
    150     {
    151         return "RC2";
    152     }
    153 
    154     public int getBlockSize()
    155     {
    156         return BLOCK_SIZE;
    157     }
    158 
    159     public final int processBlock(
    160         byte[] in,
    161         int inOff,
    162         byte[] out,
    163         int outOff)
    164     {
    165         if (workingKey == null)
    166         {
    167             throw new IllegalStateException("RC2 engine not initialised");
    168         }
    169 
    170         if ((inOff + BLOCK_SIZE) > in.length)
    171         {
    172             throw new DataLengthException("input buffer too short");
    173         }
    174 
    175         if ((outOff + BLOCK_SIZE) > out.length)
    176         {
    177             throw new DataLengthException("output buffer too short");
    178         }
    179 
    180         if (encrypting)
    181         {
    182             encryptBlock(in, inOff, out, outOff);
    183         }
    184         else
    185         {
    186             decryptBlock(in, inOff, out, outOff);
    187         }
    188 
    189         return BLOCK_SIZE;
    190     }
    191 
    192     /**
    193      * return the result rotating the 16 bit number in x left by y
    194      */
    195     private int rotateWordLeft(
    196         int x,
    197         int y)
    198     {
    199         x &= 0xffff;
    200         return (x << y) | (x >> (16 - y));
    201     }
    202 
    203     private void encryptBlock(
    204         byte[]  in,
    205         int     inOff,
    206         byte[]  out,
    207         int     outOff)
    208     {
    209         int x76, x54, x32, x10;
    210 
    211         x76 = ((in[inOff + 7] & 0xff) << 8) + (in[inOff + 6] & 0xff);
    212         x54 = ((in[inOff + 5] & 0xff) << 8) + (in[inOff + 4] & 0xff);
    213         x32 = ((in[inOff + 3] & 0xff) << 8) + (in[inOff + 2] & 0xff);
    214         x10 = ((in[inOff + 1] & 0xff) << 8) + (in[inOff + 0] & 0xff);
    215 
    216         for (int i = 0; i <= 16; i += 4)
    217         {
    218                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    219                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    220                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    221                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    222         }
    223 
    224         x10 += workingKey[x76 & 63];
    225         x32 += workingKey[x10 & 63];
    226         x54 += workingKey[x32 & 63];
    227         x76 += workingKey[x54 & 63];
    228 
    229         for (int i = 20; i <= 40; i += 4)
    230         {
    231                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    232                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    233                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    234                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    235         }
    236 
    237         x10 += workingKey[x76 & 63];
    238         x32 += workingKey[x10 & 63];
    239         x54 += workingKey[x32 & 63];
    240         x76 += workingKey[x54 & 63];
    241 
    242         for (int i = 44; i < 64; i += 4)
    243         {
    244                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    245                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    246                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    247                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    248         }
    249 
    250         out[outOff + 0] = (byte)x10;
    251         out[outOff + 1] = (byte)(x10 >> 8);
    252         out[outOff + 2] = (byte)x32;
    253         out[outOff + 3] = (byte)(x32 >> 8);
    254         out[outOff + 4] = (byte)x54;
    255         out[outOff + 5] = (byte)(x54 >> 8);
    256         out[outOff + 6] = (byte)x76;
    257         out[outOff + 7] = (byte)(x76 >> 8);
    258     }
    259 
    260     private void decryptBlock(
    261         byte[]  in,
    262         int     inOff,
    263         byte[]  out,
    264         int     outOff)
    265     {
    266         int x76, x54, x32, x10;
    267 
    268         x76 = ((in[inOff + 7] & 0xff) << 8) + (in[inOff + 6] & 0xff);
    269         x54 = ((in[inOff + 5] & 0xff) << 8) + (in[inOff + 4] & 0xff);
    270         x32 = ((in[inOff + 3] & 0xff) << 8) + (in[inOff + 2] & 0xff);
    271         x10 = ((in[inOff + 1] & 0xff) << 8) + (in[inOff + 0] & 0xff);
    272 
    273         for (int i = 60; i >= 44; i -= 4)
    274         {
    275             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    276             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    277             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    278             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    279         }
    280 
    281         x76 -= workingKey[x54 & 63];
    282         x54 -= workingKey[x32 & 63];
    283         x32 -= workingKey[x10 & 63];
    284         x10 -= workingKey[x76 & 63];
    285 
    286         for (int i = 40; i >= 20; i -= 4)
    287         {
    288             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    289             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    290             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    291             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    292         }
    293 
    294         x76 -= workingKey[x54 & 63];
    295         x54 -= workingKey[x32 & 63];
    296         x32 -= workingKey[x10 & 63];
    297         x10 -= workingKey[x76 & 63];
    298 
    299         for (int i = 16; i >= 0; i -= 4)
    300         {
    301             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    302             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    303             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    304             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    305         }
    306 
    307         out[outOff + 0] = (byte)x10;
    308         out[outOff + 1] = (byte)(x10 >> 8);
    309         out[outOff + 2] = (byte)x32;
    310         out[outOff + 3] = (byte)(x32 >> 8);
    311         out[outOff + 4] = (byte)x54;
    312         out[outOff + 5] = (byte)(x54 >> 8);
    313         out[outOff + 6] = (byte)x76;
    314         out[outOff + 7] = (byte)(x76 >> 8);
    315     }
    316 }